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Disconnected Loops

➢Disconnected loop effects in many 
physical quantities

➢Hard to evaluate due to many 
matrix inversions needed to 
measure all the background 
fermionic degrees of freedom

➢Treat the disconnected quark loops 
stochastically, through the use of 
noise vectors to project out 
operator contributions

Subtraction methods needed in order to 
reduce the variance of these noisy 

calculations
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Noise Subtraction
The approximate trace of the inverse 
Wilson matrix can be formed using 

large N

lim
𝑁→∞

𝑇𝑟 𝑀−1𝑋𝑍(4) = 𝑇𝑟 𝑀−1

The variance of the trace is given by:

𝑉𝑎𝑟 𝑇𝑟 𝑀−1𝑋𝑍(4) =
1

𝑁


𝑖≠𝑗

𝑀𝑖𝑗
−1 2

Expectation value of the trace is 
invariant under the addition of a 

traceless matrix

𝑇𝑟(𝑀−1𝑋𝑍 4 ) = 𝑇𝑟 𝑀−1 − ෩𝑀−1 𝑋𝑍(4)

Variance of the trace is not invariant:

𝑉𝑎𝑟 𝑇𝑟 𝑀−1 − ෩𝑀−1 𝑋𝑍(4) =
1

𝑁


𝑖≠𝑗

𝑀𝑖𝑗
−1 − ෩𝑀𝑖𝑗

−1 2

Goal: Find a traceless matrix ෩𝑀−1 that has off diagonal 
elements as close to 𝑀−1 as possible Numerical Challenges in Lattice QCD 2022



Subtraction Methods

➢ Polynomial Subtraction (POLY)

old (power):

new: GMRES polynomial, double GMRES polynomial

➢ Hermitian Forced Polynomial Subtraction (HFPOLY)

➢ Eigenvalue Subtraction on Polynomials (ESPOLY)
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Solvers
➢ MINRES-DR(m,k)1

• Calculate the lowest Q eigenpairs of the Hermitian Wilson matrix, 𝑀𝛾5, to be 
used in the HF-type subtraction methods. Used on the first right hand side to 
produce k eigenvectors.

➢ GMRES-Proj2

• Uses the k eigenvectors produced from GMRES-DR to accelerate the 
convergence of the remaining right hand sides.

1 A. Abdel-Raheim et. al., SIAM J. Sci. Comput. 32 (2010) 129.
2 D. Darnell, R. B. Morgan, W. Wilcox, Linear Algebra Appl. 429 (2008) 2415. 
3 J. A. Loe and R. B. Morgan, Numer. Linear Algebra Appl. 29 (2022) 1.

➢ PP(d)-GMRES(m), PP-Arnoldi3

• We use unrestarted GMRES and PP-Arnoldi to form the GMRES polynomials, 
which, at high order also gives eigenvalues and eigenvectors. PP(d)-GMRES 
then is used to solve for the noises using the GMRES polynomial of degree d. 
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The GMRES Polynomial
➢ GMRES Polynomial

• Formed by GMRES algorithm, 

𝑟 2 = min
𝜋 𝐴 ∈𝒫

𝜋 𝐴 𝑏 2

➢ “Power” method 
• Polynomial coefficients 𝑔 solutions to normal equations, 

𝐴𝑌 †𝐴𝑌𝑔 = 𝐴𝑌 †𝑏 where 𝑌 = [𝑏, 𝐴𝑏,… , 𝐴𝑑−1𝑏]

• Suffered from instability beyond degree 12 polynomials. 
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The GMRES Polynomial Cont.
➢ New GMRES Polynomial used in Morgan and Loe’s PP-GMRES:

• Implementation from factored roots, 

𝜋 𝛼 =ෑ

𝑖=1

𝑑

1 −
𝛼

෨𝜃𝑖

• ෨𝜃𝑖 are the Leja ordered, harmonic Ritz values of system 

• Much more stable 
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The GMRES Polynomial Cont.
➢ New GMRES Polynomial 

• GMRES polynomial related to 𝑝 𝐴 ≐ 𝐴−1 by 𝜋 𝛼 = 1 − 𝛼𝑝(𝛼), 

• 𝑝 𝛼 reduces to, 

𝑝 𝛼 = 

𝑘=1

𝑑

𝑢𝑘 where 𝑢𝑘 =
1

෨𝜃𝑘
1 −

1

෨𝜃1
1 −

1

෨𝜃2
⋯ 1 −

1

෨𝜃𝑘−1

• For subtraction, ෩𝑀𝑝𝑜𝑙𝑦
−1 ≐ 𝑝(𝑀)
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Wilson fermions,
kappa_crit,
scalar,
unpartitioned noise,
averaged over configs (10),
and noises (10 or 50),
no error bars yet!
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Thanks to Ron Morgan. Uses PP(50)-GMRES(50). Trace(inv(A)-p(A)).

Lattice: 12^3 x 16
Tolerance: 0.001 * 12^3 X 16, check every 2 noises

Numerical Challenges in Lattice QCD 2022

Reducing errors
on (s=scalar)

instead of just 
the real part!!
Nevertheless, it
demonstrates
actual time 
savings with this 
method.

Caveat
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An alternate type of evaluation is to run a fixed number of noises (50
here) and directly measure the relative variance. This establishes directly 
the connection between variance reduction and cost savings.

Corrected but different version. Uses Real(Trace(inv(A)-p(A))).



Interesting issue: 
Polynomial 
effectiveness
may be affected by 
type of starting noise:
gaussian, Z2, Z4.



Multi-Level Trace Cascade
➢ Single polynomial preconditioning:   

• Right precondition 𝐴𝑥 = 𝑏 using 𝑝1 𝐴 ≐ 𝐴−1, 

𝜙1 𝐴 𝑦 = 𝑏 where 𝜙1 𝐴 ≡ 𝐴𝑝1 𝐴

➢ Double polynomial preconditioning:  

• Preconditioner system a second time with 𝑝2 𝐴 ≐ 𝜙1 𝐴
−1

, 

𝜙2 𝜙1 𝐴 𝑧 = 𝑏 where 𝜙2 𝜙1 𝐴 ≡ 𝜙1 𝐴 𝑝2 𝜙1 𝐴
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➢ Double polynomial preconditioner: 
• Preconditioners 𝑝1 𝐴 , 𝑝2 𝜙1 𝐴 act as a single preconditioner, 

𝑝 𝐴 ≡ 𝑝1 𝐴 𝑝2 𝜙1 𝐴

• Orthonormal basis for Arnoldi is expensive to form and store 

• Much cheaper to form as it requires two smaller Krylov subspaces

➢ Double polynomial subtraction: 
• For subtraction, we wish to use ෩𝑀𝑝𝑜𝑙𝑦

−1 ≐ 𝑝1 𝑀 𝑝2 𝜙1 𝑀

Multi-Level Cascade
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Linear equations use PP(50)-GMRES

Lattice: 12^3 x 16
Tolerance: 0.0005 * 12^3 X 16, check every 
2 noises
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Reducing errors
on (s=scalar)

instead of just 
the real part!!

Caveat

Tolerance: 0.001* 12^3 X 16, check every 2 noises.
Ron Morgan’s statement: “It scares me to think of doing the
same problem with no polynomial.”

Linear equations use PP(50)-GMRES. Larger problem, larger time savings.
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A Little Double Dealing

12^3x16, 
5 configs, 50 noises each
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Single Polynomial

Double Polynomial

Double poly: Using a p1 polynomial of degree 20. The polynomial 
used for subtraction is always one degree lower. 

double degree = 
[0 99 199 399 599 799 999 1199]



• Preliminary work done on minimizing the cost function for polynomial 
degrees d1 and d2. Last polynomial done exactly with probing vectors 
or point vectors with tricks.

• Adaptation of work by Hallman and Troester, “A Multi-level Approach 
to Stochastic Trace Estimation”.

• Plan to use a scaled GMRES residual norm curve as an estimate or 
guide of the sample variances.

Cost Function for Degree Cascade
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GMRES res. norm/ variance connection



Summary
➢High-degree GMRES polynomials can be efficiently formed and used in 

lattice QCD for disconnected loop noise subtraction. Our approach 
combines high-degree polynomials and deflation techniques. HFPOLY is 
effective, but eventually only POLY helps at very high polynomial order. 

➢The subtraction algorithm can be completed with a multi-level trace 
“cascade”. An efficient approach uses a double-polynomial construction to 
form the GMRES polynomials and PPGMRES and PPArnoldi to solve noises 
and deflate the polynomial-only steps in the subtraction cascade.

➢We can use the eigenvalues generated to both speed up the solution of 
noise equations as well as to deflate the subtraction algorithm. Thus, 
deflation plays two roles!

➢Our work is ongoing. Current numerical results show that computer time 
savings for large lattices can be large compared to brute force noise 
methods.
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For a different approach to noise reduction, please see Travis Whyte’s 
interesting contribution on shift selection noise reduction at 3:10.
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Ron Morgan HH XXI 2022 talk. Uses PP(8)-GMRES(50)

Lattice: 12^3 x 16
Tolerance: 0.001 * 12^3 X 16, check every 5 noises
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Reducing errors
on (s=scalar)

instead of just 
the real part!!
Nevertheless, it
demonstrates
actual time 
savings with this 
method.

Caveat
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