
AMG+: Extended Principles 
Illustrated on the 1D Helmholtz Equation

Achi Brandt
James Brannick
Karsten Kahl
Oren Livne

Numerical Analysis and Lattice QCD 
CIRM - August 15, 2022



2

Paris to Fréjus:
July 1-7, 1990

1020km: ↑ 8.7𝑘𝑚
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Saint-Gervais-les-Bains: 

Le Brévent



AMG+
MOTIVATION

Make AMG work for many new problems
Formulate generalized guiding principles
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Multilevel Methods
Multitude of variables/unknowns

multilevel organization 
▷ At each level:

1. Relaxation
2. Identifying coarse-level variables
3. Interpolation
4. Coarse-level equations

▷ For each step:
1. Quality Measure
2. Construction method
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Coarse Variable construction

▷ AMG: coarse variable = a representative/average of 
several “strongly connected” fine variables.

▷ In many problems (non-elliptic, NN, …) there may 
not be particularly strong connections.

▷ Can coarsen only larger aggregate of moderately 
connected variables, with several coarse variables 
per aggregate.

▷ Coarse variables are of different type than fine vars.
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AMG+



PDE Example: Helmholtz Equation

▷ Moderate correlation between neighboring error values.

▷ ”Multi-coarsening” is required.

▷ Past specialized multi-coarsening failed.

▷ The general systematic approach proposed here works.
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∆ + 𝑘2 𝑢 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 , 𝑘 = 𝑘(𝑥, 𝑦)

Constant 𝑘: slowly converging errors are


𝛼2+𝛽2=𝑘2

𝐴𝛼𝛽𝑒
𝑖(𝛼𝑥+𝛽𝑦) = ”𝑟𝑎𝑦” 𝑘



AMG+: Guiding Quality Measures

▷ Relaxation: Residual shrinkage factor/work

▷ Coarse variables: Mock cycle convergence factor

▷ Interpolation: Test functions

▷ Coarse equation: 2-level convergence factor
Sparsity, symmetry
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predicts



AMG+ for 1D Helmholtz

9



PDE Example: 1D Helmholtz

▷ Discretization: 5-point, 𝑂 ℎ4 -accurate.

▷ Solve fast on a fixed domain size. 
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∆ + 𝑘2 𝑢(𝑥) = 𝑓(𝑥)

𝑢 𝑥 + 𝐿 = 𝑢(𝑥)

𝑥 ∈ [0, 𝐿)

−1 16 16 −1−30
+ 12 𝑘ℎ 2

𝐴𝑥 = 𝑏
0 1 𝑛 − 1…



PDE Example: 1D Helmholtz

▷ Fixed domain size. 𝐿 = 𝑛, 𝑛 = 96, 𝑘ℎ = 0.523 difficult case in practice
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∆ + 𝑘2 𝑢(𝑥) = 𝑓(𝑥)

𝑢 𝑥 + 𝐿 = 𝑢(𝑥)

𝑥 ∈ [0, 𝐿)

Repetitiveness
We exploit the equations’ repetitiveness for 

simplicity & eyeing upscaling. 

0 1 𝑛 − 1

−0.083 1.333 1.333 −0.083−2.226

𝐴𝑥 = 𝑏

…



1. Relaxation
should exhibit a fast initial residual reduction,
starting from a random initial error.
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Assessing Relaxation: Shrinkage Factor
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▷ GMG: error is smoothed; smoothing factor.

▷ AMG: shrink the error’s information content: 𝑟 ≪ 𝐴 𝑒 , 𝑟 = 𝐴𝑒 .

▷ AMG+: Relax 𝐴𝑥 = 0, starting from 𝑟𝑎𝑛𝑑[−1,1].
○ 𝜇𝜈 = ( 𝑟𝜈 / 𝑟0 )1/𝜈 , ҧ𝜇 ≔ 𝜇𝜈 = shrinkage factor, at point of diminishing returns.
○ Average conv factor over 5 cases.



Shrinkage Factor In Action

ҧ𝜇 = .38
ҧ𝜈 = 2

Helmholtz

Kaczmarz

ҧ𝜇 = .5
ҧ𝜈 = 6

Laplace

GS
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The shrinkage’s 𝜈
tells us how many fine-level 

sweeps to use in the cycle.



2. Test Functions
are examples of slowly-converging errors,
which reveal connection strength between variables.
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Quick Notation

▷ Coarsening: the definition of coarse variables.

▷ Interpolation: transfer coarse vector to fine level.

▷ Restriction: transfer fine vector to coarse level.
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𝑅

𝑃

𝑄 𝑅; 𝑃𝑇For instance, 



Test Functions (TFs)

▷ Examples of slowly converging errors.
▷ Finding Neighborhoods

○ Neighbors are highly correlated across TFs.
○ May be very different from strong coupling.

▷ Bootstrap
○ Improve TFs while adding levels.
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Near null-space functions
If exist, are eventually revealed 

as slow-to-converge functions in 

the cycle.

Separating species of vars
is important in systems.

CycleTFs
Random 

starts

Relax on
𝐴𝑥 = 0

Build 𝑅, 𝑃

Mini-cycle on
𝐴𝑥 = 0

In non-linear systems,
can still produce such examples.



3. SVD Coarsening
reveals the right type of coarse variables, and guides the 
choice of coarsening ratio.
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Sample Windows from single TF

▷ Windows of size 𝑎.

▷ Coarse variables 𝑅𝑛𝑐×𝑎 = 𝑛𝑐 principal components of 𝑋

▷ Compute the interpolation stencil(s) from samples 
obtained from windows (assuming shift invariance).
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0 1 𝑛 − 12 3 4 5 …

Multiple coarse vars per 

aggregate.
As in SA interpolation.

𝑋

𝑥1

𝑥2

𝑥0

= 𝑈Σ𝑉𝑇

𝑎

…

Repetitive case: tile 𝑅
From aggregate to entire domain.



SVD Coarsening in Action: Agg Size = 4
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SVD Coarsening in Action: Agg Size = 6
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𝑛𝑐 = # coarse variable species.
Helmholtz: 𝑛𝑐 = 2 is natural: cos/sin, left/right waves.



How many components to use?

▷ SVD is best rank-𝑛𝑐 Frobenius approximation.

▷ Unexplained variance = relative interpolation error

▷ For Laplace, 𝑅 is piecewise constant, so error can be large!
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||𝑋 − 𝑋𝑅𝑇𝑅||2

( 

𝑖≥𝑛𝑐

𝜎𝑖
2 /

𝑖

𝜎𝑖
2)1/2

Use SVD only to provide tentative values of coarsening ratios.
The actual number of components to be determined by the quantitative predictor of cycle convergence.   



4. Quantitative Quality 
Prediction
allows designing each multilevel component 
separately and reliably (coarsening & cycle).
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Mock Cycle: Predictor of 2-level Convergence

▷ Start with random 𝑥 = 𝑥0.
▷ MockCycle 𝑅, 𝜈 :

○ Relax 𝜈 times.
○ Update 𝑥 such that 𝑅𝑥 = 𝑅𝑥0.
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Direct solver/Kaczmarz
To project. 

𝑥 ← 𝑥 − 𝑅𝑇 𝑅𝑅𝑇 −1𝑅(𝑥 − 𝑥0)

Use Mock Cycle asymptotic convergence factor as the ultimate

coarsening quality test.
Determines the optimal aggregate size and #components.



Mock Cycle: Predictor of 2-level Convergence

▷ Start with random 𝑥 = 𝑥0.
▷ MockCycle 𝑅, 𝜈 :

○ Relax 𝜈 times.
○ Update 𝑥 such that 𝑅𝑥 = 𝑅𝑥0.
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Direct solver/Kaczmarz
To project. 

𝑥 ← 𝑥 − 𝑅𝑇 𝑅𝑅𝑇 −1𝑅𝑥

Accurate for X ~ A (A, X SPD), where

𝜋𝑋 𝑅 − 𝜋𝐴 𝑅 𝐴
2= 𝜋𝑋 𝑅 𝐴

2 −1 (Mock cycle: 𝑋 = 𝐼)



Mock Cycle in Action: Convergence

𝝂 = 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕

4/2 .49 .29 .18 .12 .088 .056 .054

6/3 .52 .29 .18 .12 .098 .078 .064

6/2 .84 .67 .62 .53 .45 .37 .33
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Guides the coarsening 𝑹.

Compare different choices. Reduction per 

relaxation sweep ≈ smoothing rate, up to 

accuracy limit.

Guides the interpolation 𝑷.

2-level rates should attain mock cycle rates.

Prefer small aggregate size.

Aggressive coarsening can be too ambitious.



5. Interpolation
is constructed to accurately reproduce TFs, but 
tested via two-level cycle rates. 
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Least-Squares Fitting to TFs 

𝑃𝑖 tiled from aggregate to entire domain
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min
𝑝𝑖



𝑠

𝑥𝑖𝑠 −

𝑗

𝑝𝑖𝑗𝑥𝑗𝑠
𝑐

2

𝑖 = 0. . 𝑎 − 1; 𝑥𝑐 = 𝑅𝑥.

0 1 𝟐 3

Caliber = 4
𝑃 = 𝑅𝑇



Mock cycle predicts the ‘ideal’ 2-level rates

𝝂 = 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕
Fill-

in |𝑨 − 𝑨𝑻|

4/2 .49 .29 .18 .12 .09 .06 .05 - -

𝑹𝑨𝑹𝑻 .58 .46 .41 .37 .36 .32 .32 1.2 0

𝑹𝑨𝑷 .51 .28 .17 .12 .09 .07 .06 1.2 0.0046

𝑷𝑻𝑨𝑷 .52 .27 .14 .09 .07 .05 .04 2.0 0
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𝑃: caliber 4 2-level rates guide the choice of 𝑃.
TF reconstruction 𝑙2 or energy error are bad predictors.



Coarse-level Equations
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𝑅𝐴𝑅𝑇

𝑅𝐴𝑃

0.20 0.34 -0.17 0.01 0.20 -0.32

-0.32 -0.56 0.01 -1.46 0.34 -0.56

0.15 0.17 -0.03 0.00 0.15 -0.17

-0.17 -0.16 0.01 -0.63 0.17 -0.16

-0.08 1.33 -2.23 1.33 -0.08

Ray Equations

Wave Equation



6. Bootstrap
Improves and reveals test functions as more levels are 
gradually added to the multilevel solver.
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3-level Cycle Works

𝝂 = 𝟑 𝟒 𝟓 𝟔 𝟕 Fill-in |𝑨 − 𝑨𝑻|

Mock .18 .12 .09 .06 .05 - -

0 -> 1 .36 .24 .23 .23 .11 1.2 0

1 -> 2 .34 .24 .16 .13 .11 1 0

3-level, V .41 .31 .20 .16 .11 - -
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𝑃: caliber 4



Save Setup Cost by Switching 
Coarse Variables

▷ Smooth TFs more efficiently computed by mini-cycles with 
to obtain high-order 𝑃.
○ 𝑅 requires only little smoothing.
○ Setup work dominated by SVD, though.

▷ Temporarily work with expensive, accurate operator for 2-
level bootstrapping (𝐴𝑐 = 𝑃𝑇𝐴𝑃).

▷ Post-processing:
○ Sparsify: 𝐴𝑐 = 𝑅𝐴𝑃.
○ Symmetrize 𝐴𝑐 = 𝑄𝐴𝑃. 33

AMG+ uses 𝑅!
For the first time, 𝑅 is not just a 

prediction tool (mock cycle), but 

used in bootstrap & solver.



ҧ𝜇 = .58
ҧ𝜈 = 6

ҧ𝜇 = .04
ҧ𝜇1/𝑊 = .38
ҧ𝜈 = 1

Mini-Cycle Shrinkage in Action

2-level Cycle(2,2)Kaczmarz
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Mini-cycle shrinks
more efficiently than relaxation, 

even if asymptotically slow.

Using sampling (shift invariance)  

gives convergent adaptive setup.



7.  Coarse-level 
Construction is Local,
which is especially useful for repetitive problems & 
upscaling.
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Coarse-level Construction is Local
(**In Principle)
▷ Relaxation is local, so producing TFs is local.

▷ In repetitive problems, sample across the domain. 

▷ Mock cycle rate well estimated on domain size = 4 × aggregate_size.

▷ Two-level cycle rate well estimated on domain size = 
4 × aggregate_size.
○ Only shrinkage is important, not asymptotic rate.
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Recap of AMG+ Principles

1. Relaxation should have good shrinkage.

2. Test Functions (TFs) are used to construct coarsening & interpolation and.

3. Coarse-level variables are obtained by local TF SVD and tested by the mock cycle.

4. Quantitative quality prediction tools, e.g., the mock cycle, guide the separate 
design of each multigrid component.

5. Interpolation is constructed by least-squares fitting of TF values, but ultimately 
tested via 2-level cycle shrinkage factor.

6. TFs & cycle iteratively improve each other via bootstrap. 

7. Coarse-level construction is a local process and with shift invariance the process 
converges.
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Thanks!
Questions/Ideas for Applications?
Email us at
achibr@gmail.com
jjb23@psu.edu 
oren.livne@gmail.com
kkahl@uni-wuppertal.de
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Challenging Problems for AMG
▷ Nearly Singular

▷ Systems
Species are not explicitly identified

▷ Highly indefinite

▷ Emerging types of coarse variables

39

∆ − 𝜀 𝑥 2 𝑢 𝑥 = 𝑓 𝑥 , 𝜀 𝑥 ≪
1

L

∆ + 𝑘2 𝑢 = 𝑓

𝑘 ≫
1

L

Multiple types: 
directional rays

𝑷 𝑷

𝑷 𝑷

𝑽 𝑽

𝑽 𝑽

𝑽 𝑽

𝑼

𝑼

𝑼

𝑼

𝑼

𝑼

Stokes

𝑘



Challenging Problems for AMG (Cont.)
▷ Upscaling

○ Deriving equations at increasingly coarser scale
○ Creating interpretable coarse-level variables

▷ Non-linear systems
○ where a coarse version is not given

▷ Inverse Problems

▷ Non-local equations 

▷ Stochastic Optimization

▷ No geometric locations

▷ No locality graph

Neural networks

න𝑔 𝑥, 𝑦 𝑢 𝑦 𝑑𝑦 =𝑓(𝑥, 𝑢)
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Goals

SOLVE THE 1D HELMHOLTZ EQUATION

• Key challenge: automatically derive ray
coarse variables from wave fine variables.

• Don’t exploit particulars of Helmholtz or 1D.

• Factor out other, unrelated difficulties.

DEVELOP GENERAL MULTILEVEL PRINCIPLES

that can apply to a wide variety of problems.
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Ridge Least-Squares Fitting to TFs 

▷ Weighting 𝑊𝑖𝑠 = 𝑟𝑖𝑠
−2

, local norm; unimportant for comparable TFs.

▷ 𝛼 determined by minimizing interpolation error on validation samples. (Use SVD!)

▷ 𝑃𝑎×? tiled from aggregate to domain; stride = 2 is possible, but 4 is easier.
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min
𝑝𝑖



𝑠

𝑊𝑖𝑠 𝑥𝑖𝑠 −

𝑗

𝑝𝑖𝑗𝑥𝑗𝑠
𝑐

2

+ 𝛼

𝑠

𝑊𝑖𝑠 𝑥𝑖𝑠
2

𝑖 = 0. . 𝑎 − 1; 𝑥𝑐 = 𝑅𝑥.

0 1 𝟐 3

Caliber = 4
𝑃 = 𝑅𝑇


