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Solution of Large-sparse linear system

Goal: approximate the solution to a large, (often) sparse linear
system,

Ax = b where A ∈ Cn×n and n� 0

• Sparse means most of the matrix entries are zeros.
• More generally: matrices which allow for fast application

(e.g., FFT-based )
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Krylov Subspaces

Given A and b, the jth Krylov subspace is defined

Kj(A,b) = span
{
b,Ab, . . . ,Aj−1b

}
.

Thus, u ∈ Kj(A,b) is such that

u = p(A)b

where p(x) is a polynomial of degree less than j.

Definition

The basis
{
b,Ab, . . . ,Aj−1b

}
is called a Krylov basis.
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Selecting Approximations from Kj(A,b)

• In many Krylov subspace methods, we select
xj ∈ Kj(A,b), so that

xj = pj(A)b

Why?
• The inverse A−1 of any nonsingular matrix A can be

written as
A−1 = q(A)

where q(x) is a polynomial of degree less than n.
• We want pj(x) to be a low-degree “approximation” to
q(x). . .
→ only need to approximate action pj(A)b ≈ q(A)b
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GMRES

A General Linear System

A (x0 + t) = b with A ∈ Cn×n, b ∈ Cn

• For x0, let r0 = b−Ax0 =⇒ At = r0

• Krylov subspace: Kj(A, r0) = span
{
r0,Ar0, . . . ,A

j−1r0

}
.

• Choose xj = x0 + tj . Let rj = b−Axj .
• GMRES - Generalized Minimum Residual Method
• For GMRES, construct xj = x0 + tj where tj ∈ Kj(A, r0)

such that tj minimizes

min
t∈Kj(A,r0)

‖b−A(x0 + t)‖

• This is equivalent to rj ⊥ AKj(A, r0)

• Sibling method: Full Orthogonalization Method
(FOM) – rj ⊥ Kj(A, r0)
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Role of eigenvalues in residual convergence

GMRES polynomial minimization problem

‖rj‖ = min
q∈Πj
q(0)=1

‖q(A)r0‖

≤ K2(X) min
q∈Πj
q(0)=1

max
λ∈σ(A)

|q(λ)| ‖r0‖
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Properties of the A determining residual convergence

Theorem (Greenbaum, Ptàk, and Strakoš 1996)
Given any non-increasing sequence

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0,

there exists matrices A ∈ Cn×n and vectors r0, ‖r0‖ = f(0) such
that GMRES applied to At = r0 produces residuals rk,
‖rk‖ = f(k) for all k.

An A can be constructed to have any eigenvalues.
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Selected previous work analyzing GMRES/FOM

The relationship between GMRES and FOM
• Relationship of FOM/GMRES convergence: [Walker ’95],

[Zhou and Walker ’94], [Brown ’91], [Saad ’03]
• Galerkin/norm minimizing pairs of methods (e.g.,

BiCG/QMR): [Cullum ’95], [Cullum and Greenbaum ’96]
• Geometric analysis: [Eiermann and Ernst ’01]

Constructing matrices with predetermined GMRES
convergence
• Any nonincreasing convergence curve is possible for

GMRES: [Greenbaum et al, 1996]
• Parameterization of the pairs (A,b) producing specific

convergence: [Arioli et al, 1998]
• Any Admissible Ritz/harmonic Ritz values: [Du et al,

2017], [Tebbens and Meurant, 2012]
• Any admissible CG convergence possible (cannot also

specify eigenvalues) [Meurant 2022]
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What happens if one has
multiple right-hand sides?
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Block Krylov subspaces

• Consider: AX = B ∈ Cn×s, s > 1

• Let X0 ∈ Cn×s and

F0 = B−AX0 =
[
f

(1)
0 f

(2)
0 f

(3)
0 · · · f

(s)
0

]
∈ Cn×s.

• Then we have the block Krylov subspace

Kj(A,F0) = Kj(A, f (1)
0 ) +Kj(A, f (2)

0 ) + · · ·+Kj(A, f (s)
0 ).

• Assumption: dimKj(A,F0) = js
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Block Arnoldi process

• Let F0 = V1S0 be a skinny QR-factorization.
• At step j we get Vj+1 ∈ Cn×s with orthonormal columns
• Wj =

[
V1, . . . , Vj

]
∈ Cn×js is basis of Kj(A,F0)

• Arnoldi relation: AWj = Wj+1Hj , Hj

• Hj = (Hik)ik ∈ C(j+1)s×js is block upper Hessenberg
• For �, ∈ Cs×s and upper triangular

Hj =



� � � � · · · �
� � � · · · �

� � · · · �
� · · · �

�
. . .

...


∈ C(j+1)s×js
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From scalars to s× s matrices

• Orthogonalization:

v← v − (q∗v)︸ ︷︷ ︸
∈C

q becomes V← V −Q (Q∗V)︸ ︷︷ ︸
∈Cs×s

• Linear combinations:

u =

k∑
i=1

αi︸︷︷︸
∈C

vi︸︷︷︸
∈Cn

becomes U =

k∑
i=1

Vi︸︷︷︸
∈Cn×s

αi︸︷︷︸
∈Cs×s
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Block GMRES and Block FOM

Block GMRES and Block FOM valid for all s ≥ 1

• Build an orthonormal basis for Km(A,F0)

• For block GMRES
Compute Y

(G)
m = argmin

Y ∈Cms×s

∥∥∥HmY −E
(m+1)
1 S0

∥∥∥
F

a

Set X(G)
m = X0 + WmY

(G)
m , R(G)

m = B−AX
(G)
m

• For block FOM
Compute Y

(F )
m = H−1

m E
[m]
1 S0

b

Set X(F )
m = X0 + WmY

(F )
m , R(F )

m = B−AX
(F )
m

aE
(m+1)
1 ∈ C(m+1)s×s has appropriate columns of an identity matrix

bE
[m]
1 ∈ Cms×s has appropriate columns of an identity matrix
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Pros and cons of block Krylov methods

Pros
• Constraining residuals over larger subspaces
→ Leads to convergence in fewer iterations

• Block matrix-vector product has more efficient data
movement characteristics–i.e., computational intensity

Cons
• More operations per iteration
• Increased operation cost thought to not justify by increase

in convergence rate
• Interactions between systems makes analysis more difficult

Renewed interest in block methods in HPC setting necessitates
new analysis to extend existing non-block results to block
Krylov subspace case
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Selected previous work on analysis of block GMRES

• Convergence analysis: [Simoncini and Gallopoulos; 1997]
• Block Grade: [Gutknecht and Schmelzer; 2009]
• Relationship to block FOM and characterization of

stagnation [S.; 2017]
• *-algebra framework [Frommer, Lund, Szyld; 2017]
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The ∗-algebra framework

We follow [Frommer et al 2017] and consider the problem over
∗-algebra S of complex s× s matrices. We define a framework of
corresponding objects and operations over C and over S.
• A ∈ Cns×ns → A ∈ Sn×n

• B ∈ Cns → B ∈ Sn

• Kj(A,B) = blockspan{B,AB, . . . ,Aj−1B}
•
∑j

i=1 ViDi, Di ∈ Cs×s is a block linear combination
• {V1, . . . ,Vj} is the basis of this subspace
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The ∗-algebra framework - definitions

standard block

C S = Cs×s

R+ S+. . . upper-∆ with positive diag. entries

R+
0 S+

0 . . . upper-∆ with nonnegative diag. entries

0 singular s× s matrix

1 I
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The ∗-algebra framework - properties I

standard block

a, b ∈ C A,B ∈ S
|a| =

√
a∗a ∈ R+

0 |A| =
√
A∗A ≡ cholUT(A∗A) ∈ S+

0

|a| ∈ R+ ⇐⇒ a 6= 0 |A| ∈ S+ ⇐⇒ A nonsingular
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The ∗-algebra framework - properties II

standard block

x,y ∈ Cn X,Y ∈ Sn(= Cns×s)
〈x,y〉 ≡ y∗x ∈ C 〈〈X,Y〉〉 ≡ Y∗X ∈ S
〈x,y〉 = 〈y,x〉∗ 〈〈X,Y〉〉 = 〈〈Y,X〉〉∗

〈xa,y〉 = 〈x,y〉a 〈〈XA,Y〉〉 = 〈〈X,Y〉〉A
〈x,ya〉 = a∗〈x,y〉 〈〈X,YA〉〉 = A∗〈〈X,Y〉〉
‖x‖ ≡

√
〈x,x〉 ∈ R+

0 |||X||| ≡
√
〈〈X,X〉〉 ∈ S+

0

〈x,y〉 = ‖x‖ ‖y‖ cos θx,y 〈〈X,Y〉〉 = |||Y|||∗U diag(ci)V
∗|||X|||
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Block Arnoldi revisited

• Let F0 = V1S0; V1 ∈ Sn and S0 = |||F0||| ∈ S+

• The block Arnoldi process is generally performed in
terms of 〈〈·, ·〉〉
• Wj =

[
V1, . . . , Vj

]
∈ Sn×j has orthonormal columns

• Arnoldi relation: AWj = Wj+1Hj

• Hj = (Hik)ik ∈ S(j+1)×j is upper Hessenberg
• For � ∈ S and ∈ S+

Hj =



� � � � · · · �
� � � · · · �

� � · · · �
� · · · �

�
. . .

...
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Peak-plateau relationship between blFOM and blGMRES

Proposition (Kubínová and S. 2020)

The blGMRES and blFOM residuals satisfy:

〈〈RF
k ,R

F
k 〉〉−1 = 〈〈RG

k ,R
G
k 〉〉−1 − 〈〈RG

k−1,R
G
k−1〉〉−1.

Applying this relation recursively, we obtain

〈〈RG
k ,R

G
k 〉〉−1 =

k∑
i=0

〈〈RF
i ,R

F
i 〉〉−1.
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Generalization of the ordering of R+
0

Generalize the ordering of nonnegative real numbers R+
0 to

upper triangular matrices with nonnegative diagonal entries S+
0

as follows:

|A| ≺ |B| ⇐⇒ A∗A
Löwner
≺ B∗B,

|A| � |B| ⇐⇒ A∗A
Löwner
� B∗B.

Peak-plateau result has some nontrivial consequences for the
convergence behavior of blGMRES. In particular, the ordering
of the residual norms
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blGMRES residual norm ordering

Theorem (Kubínová and S. 2020)
The blGMRES residuals satisfy

|||R0||| � |||RG
1 ||| � · · · � |||RG

n−1||| � 0.

Definition (Admissible convergence sequence)

Any sequence {Fk}n−1
k=0 ⊂ S+ that satisfies

F0 � F1 � · · · � Fn−1 � 0

is called an admissible convergence sequence.

Note: One can construct non-trivial examples of inadmissible
sequences where the individual column norms decrease
monotonically
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Prescribing convergence of blGMRES

Theorem (Kubínová and S. 2020)

Let {Fk}n−1
k=0 ⊂ S+ be an admissible convergence sequence. The

following are equivalent:
• Residuals of blGMRES(A,B) satisfy |||RG

k ||| = Fk ∀ k
• The A and B satisfy

A = WR̂ĤW∗ and B = WG,

where W is unitary, R̂ ∈ Sn×n nonsing., upper block ∆,

Ĥ =


0 〈〈B,Wn〉〉−1

I
. . . −〈〈B,W1〉〉〈〈B,Wn〉〉−1

. . . 0
...

I −〈〈B,Wn−1〉〉〈〈B,Wn〉〉−1

 ,

and the blocks of G are
√
〈〈Fk−1,Fk−1〉〉 − 〈〈Fk,Fk〉〉
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All solvents are possible

Choosing R̂ as
R̂ ≡ Ĥ−1C.

we can make A similar to any block companion matrix C.

Lemma (Kubínová and S. 2020)

Assume that A is of the form A = WR̂ĤW∗. Then, for any
sequence C0, . . . ,Cn, Ck ∈ S, k = 0, . . . , n− 1, C0 nonsingular,
there exists R̂, such that A is similar to

C =


0 C0

I
. . . C1

. . . 0
...

I Cn−1

 .
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Specifying solvents (i.e., “block eigenvalues”)

• C is the block companion matrix to

M(λ) = Iλn −
n−1∑
j=0

Ckλ
k =

n∏
i=1

(Iλ− Sk)

• “Block eigenvalues” Sk ∈ S are called solvents.
• eigenvalues of the solvents are also the eigenvalues of C
• Thus, eigenvalues of the solvents Sk ∈ S , k = 1, . . . , n, are

also the eigenvalues of C
• Prescribing solvents is however stronger than prescribing

just the scalar eigenvalues,
→ since there are multiple block companion matrices

similar to each other
→ more right-hand sides reduces the predictive value of

the eigenvalues
.
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Specifying Ritz solvents

We can in addition specify the Ritz solvents C(j)
k (solvents of

Hessenberg matrices at each step).

Let U =



I −C(1)
0 −C(2)

0 · · · −C(n−1)
0

I −C(2)
1 · · ·

...
. . .

. . .
...

I −C(n−1)
n−2

I



−1

and

DΣ = diag(I,Σ1,Σ1Σ2, . . . ,

n−1∏
k=1

Σk) ∈
(
S+
)n×n

.

Then A = WDΣUCU−1D−1
Σ W∗ has the specified solvents,

produces the specified Ritz solvents during block Arnoldi, and
WE1 = V1 should be our chosen starting vector (normalized)
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Conclusions

We provided:
• an explicit peak-plateau relation for blFOM and blGMRES;
• an explicit characterization of admissible convergence

behavior of blGMRES;
and showed that:
• any admissible convergence behavior is also attainable by

blGMRES;
• arbitrary spectral properties of A can be enforced, while

preserving the convergence behavior.
Conclusion: the ∗-algebra framework is the correct way
to analyse block Krylov subspace method behavior.
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Future work

• handling of linear dependence
→ Vj+1 is rank-deficient ⇐⇒ |||Vj+1||| is singular
→ Zero-divisors complicate the analysis

• analysis of restarted block GMRES
• iterative methods for systems over ∗-algebras.
• analyze other block-level structural characteristics of

matrices and matrix algorithms
→ Understanding of “geometric” relationships of elements

of the ∗-algebra as well as of vectors and systems built
from them
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Thank you! Questions?
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Bonus Slides!
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Residual norm versus error norm

What does this mean? residual convergence need not be
connected to the eigenvalues. Meurant observed, however, that
error convergence will still be connected to eigenvalues. This

result is an indication that we are perhaps not
measuring residual in the correct norm.
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Geometry in Sn

What is the geometric interpretation of the block vector?
• The span of the columns of V ∈ Sn is generally an
s-dimensional subspace.
• V represents a specific parallelotope1 living in R(V).
• Compressed QR-factorization V = QR decomposes V into

its “orientation” Q ∈ Sn and its “n orm” R ∈ S+
0

• detR is the volume of the parallelotope defined by V

Theorem (Carson et al 2021)
Let X,Y,Z ∈ Sn be full rank, with X = Y + Z and Y ⊥ Z.
Then we have the block Pythagorean identity

|||X|||∗|||X||| = |||Y|||∗|||Y|||+ |||Z|||∗|||Z|||.

1generalization of a parallelogram
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Geometry in Sn

Figure: The two-dimensional parallelogram formed by two vectors, u
and v along with the normalized cube parallelotope induced by the
QR-factorization. The ordering of the vectors changes the normalized
orientation of the square parallelogram associated to the Q factor.

Soodhalter Trinity College - Dublin Block GMRES Convergence



Non-admissible convergence behavior

Ordering of blGMRES residual norms:
• implies monotonic convergence of the size of the

individual residuals
• takes into account the relationship between the

residuals

Example (of non-admissible convergence behavior, s = 2)

• initial residuals of size one and almost linearly dependent:

〈〈R0,R0〉〉 ≡
(

1 1− ε
1− ε 1

)
, ε = 0.01,

• let first residual be decreased to ε and the second one to
1− ε:

〈〈R1,R1〉〉 ≡
(
ε p
p 1− ε

)
, p unknown,

• there is no p such that:

〈〈R0,R0〉〉
Löwner
� 〈〈R1,R1〉〉

Löwner
� 0.
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