A unifying framework for recycling-based iterative methods

Kirk M. Soodhalter

Trinity College Dublin The University of Dublin Ireland https://math.soodhalter.com ksoodha@maths.tcd.ie

15.–17. August 2022

Joint work with

Framework: Misha Kilmer (Tufts) and Eric de Sturler (Virginia Tech) Matrix function evaluation: Liam Burke (TCD), Gustavo Ramirez-Hidalgo (Wuppertal), and Andreas Frommer (Wuppertal)

Outline of this Talk

- 1. Augmentation of iterative methods
- 2. A framework describing augmentation methods
- 3. Unprojected methods
- 4. Short recurrence schemes
- 5. Recycling for matrix function evaluation
- 6. Future work

Iterative methods for linear systems

Consider solving $\mathbf{A}(\mathbf{x}_0 + \boldsymbol{\eta}) = \mathbf{b}$; We approximate $\boldsymbol{\eta} \approx \mathbf{t}_m \in \mathcal{V}_m$ by constraining the residual

$$\mathbf{b} - \mathbf{A}(\mathbf{x}_0 + \mathbf{t}_m) \perp \widetilde{\mathcal{V}}_m, \ \dim \mathcal{V}_m = \dim \widetilde{\mathcal{V}}_m$$

Examples (with $\mathbf{r}_0 = \mathbf{A}\boldsymbol{\eta} = \mathbf{b} - \mathbf{A}\mathbf{x}_0$):

- GMRES: $V_m = \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ and $\widetilde{V}_m = \mathbf{A}\mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$
- CG: **A** SPD, $V_m = \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ and $\widetilde{V}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$
- BiCG: $\mathcal{V}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ and $\widetilde{\mathcal{V}}_m = \mathcal{K}_m(\mathbf{A}^T, \mathbf{r}_0)$

...and so on. This formulation works with other Krylov subspace methods, e.g., as well as **gradient descent** and many stationary iterative methods

Iterative methods for linear systems

Consider solving $\mathbf{A}(\mathbf{x}_0 + \boldsymbol{\eta}) = \mathbf{b}$; We approximate $\boldsymbol{\eta} \approx \mathbf{t}_m \in \mathcal{V}_m$ by constraining the residual

$$\mathbf{b} - \mathbf{A}(\mathbf{x}_0 + \mathbf{t}_m) \perp \widetilde{\mathcal{V}}_m, \ \dim \mathcal{V}_m = \dim \widetilde{\mathcal{V}}_m$$

Examples (with $\mathbf{r}_0 = \mathbf{A}\boldsymbol{\eta} = \mathbf{b} - \mathbf{A}\mathbf{x}_0$):

- GMRES: $V_m = \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ and $\widetilde{V}_m = \mathbf{A}\mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$
- CG: **A** SPD, $\mathcal{V}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ and $\widetilde{\mathcal{V}}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$
- BiCG: $V_m = \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ and $\widetilde{V}_m = \mathcal{K}_m(\mathbf{A}^T, \mathbf{r}_0)$

...and so on. This formulation works with other Krylov subspace methods, e.g., as well as **gradient descent** and many stationary iterative methods

Krylov Subspace Method - GMRES

Given **A** and \mathbf{r}_0 , the *m*th Krylov subspace is defined

$$\mathcal{K}_m(\mathbf{A}, \mathbf{r}_0) = \operatorname{span} \left\{ \mathbf{r}_0, \mathbf{A} \mathbf{r}_0, \dots, \mathbf{A}^{m-1} \mathbf{r}_0 \right\}.$$

Thus, $\mathbf{u} \in \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ is such that

$$\mathbf{u} = p(\mathbf{A})\mathbf{r}_0$$

where p(x) is a polynomial of degree less than m.

GMRES

- For an initial approximation \mathbf{x}_0 , let $\mathbf{r}_0 = \mathbf{b} \mathbf{A}\mathbf{x}_0$
- Krylov subspace:

$$\mathcal{K}_m(\mathbf{A}, \mathbf{r}_0) = \operatorname{span} \{\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \dots, \mathbf{A}^{m-1} \ \mathbf{r}_0\}.$$

- Choose $\mathbf{x}_m = \mathbf{x}_0 + \mathbf{t}_m$. Let $\mathbf{r}_m = \mathbf{b} \mathbf{A}\mathbf{x}_m$.
- For GMRES, construct $\mathbf{x}_m = \mathbf{x}_0 + \mathbf{t}_m$ where $\mathbf{t}_m \in \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ such that \mathbf{t}_m min imizes

$$\min_{\mathbf{t} \in \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)} \|\mathbf{b} - \mathbf{A}(\mathbf{x}_0 + \mathbf{t})\|$$

- This is equivalent to $\mathbf{r}_m \perp \mathbf{A} \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$
- Sibling method: Full Orthogonalization Method (FOM) −
 r_m ⊥ K_m(A, r₀) ⇔ Conjugate Gradients if A is Hermitian positive-definite

GMRES

- For an initial approximation \mathbf{x}_0 , let $\mathbf{r}_0 = \mathbf{b} \mathbf{A}\mathbf{x}_0$
- Krylov subspace:

$$\mathcal{K}_m(\mathbf{A}, \mathbf{r}_0) = \operatorname{span} \left\{ \mathbf{r}_0, \mathbf{A} \mathbf{r}_0, \dots, \mathbf{A}^{m-1} \ \mathbf{r}_0 \right\}.$$

- Choose $\mathbf{x}_m = \mathbf{x}_0 + \mathbf{t}_m$. Let $\mathbf{r}_m = \mathbf{b} \mathbf{A}\mathbf{x}_m$.
- For GMRES, construct $\mathbf{x}_m = \mathbf{x}_0 + \mathbf{t}_m$ where $\mathbf{t}_m \in \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ such that \mathbf{t}_m min imizes

$$\min_{\mathbf{t} \in \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)} \|\mathbf{b} - \mathbf{A}(\mathbf{x}_0 + \mathbf{t})\|$$

- This is equivalent to $\mathbf{r}_m \perp \mathbf{A} \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$
- Sibling method: Full Orthogonalization Method (FOM) −
 r_m ⊥ K_m(A, r₀) ⇔ Conjugate Gradients if A is Hermitian positive-definite

GMRES

- For an initial approximation \mathbf{x}_0 , let $\mathbf{r}_0 = \mathbf{b} \mathbf{A}\mathbf{x}_0$
- Krylov subspace:

$$\mathcal{K}_m(\mathbf{A}, \mathbf{r}_0) = \operatorname{span} \{\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \dots, \mathbf{A}^{m-1} \ \mathbf{r}_0\}.$$

- Choose $\mathbf{x}_m = \mathbf{x}_0 + \mathbf{t}_m$. Let $\mathbf{r}_m = \mathbf{b} \mathbf{A}\mathbf{x}_m$.
- For GMRES, construct $\mathbf{x}_m = \mathbf{x}_0 + \mathbf{t}_m$ where $\mathbf{t}_m \in \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ such that \mathbf{t}_m min imizes

$$\min_{\mathbf{t} \in \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)} \|\mathbf{b} - \mathbf{A}(\mathbf{x}_0 + \mathbf{t})\|$$

- This is equivalent to $\mathbf{r}_m \perp \mathbf{A} \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$
- Sibling method: Full Orthogonalization Method (FOM) −
 r_m ⊥ K_m(A, r₀) ⇔ Conjugate Gradients if A is Hermitian positive-definite

Augmented iterative methods

Consider solving $\mathbf{A}(\mathbf{x}_0 + \boldsymbol{\eta}) = \mathbf{b}$; We approximate $\boldsymbol{\eta} \approx \mathbf{s}_m + \mathbf{t}_m \in \mathcal{U} + \mathcal{V}_m$ according to a constraint.

- \bullet \mathcal{U} is a fixed subspace used to augment
 - → many possible choices, may be updated periodically (e.g., at restart/between systems)
- V_m is an iteratively generated subspace associated to an underlying method
- Enables subspace *recycling* between restarts and multiple linear systems
 - \rightarrow also can append, e.g., approximate solutions, approximate eigenvectors, real-time streaming data

Conceptual Outline: GCRO-type/recycled GMRES cycle

- C = AU
- Set ${f Q}$ to be the orthogonal projector onto ${\cal C}$
- Set **P** to be the $\mathbf{A}^T\mathbf{A}$ -orthogonal projector onto \mathcal{U}
- Apply GMRES to $(\mathbf{I} \mathbf{Q})\mathbf{A}\mathbf{t} = (\mathbf{I} \mathbf{Q})\mathbf{r}_0$ \rightarrow at step m: $\mathbf{t} \approx \mathbf{t}_m \in \mathcal{K}_m(\mathbf{I} - \mathbf{Q})\mathbf{A}, (\mathbf{I} - \mathbf{Q})\mathbf{r}_0)$
- $\mathbf{x}_m = \mathbf{x}_0 + \mathbf{P}\boldsymbol{\eta} + (\mathbf{I} \mathbf{P})\mathbf{t}_m$ $\rightarrow \mathbf{P}(\boldsymbol{\eta} - \mathbf{t}_m) \in \mathcal{U} \text{ and } \mathbf{t}_m \in \mathcal{V}_m = \mathcal{K}_m(\mathbf{I} - \mathbf{Q})\mathbf{A}, (\mathbf{I} - \mathbf{Q})\mathbf{r}_0)$
- $\mathcal{U} \leftarrow \mathcal{U}_{new}$ where $\mathcal{U}_{new} \subset \mathcal{U} + \mathcal{V}_m$

See, e.g.,: de Sturler '96, '99, Parks et al '05

GCRO-DR all-at-once approach

- Build \mathbf{V}_m via Arnoldi for $\mathcal{K}_m(\mathbf{I} \mathbf{Q})\mathbf{A}, (\mathbf{I} \mathbf{Q})\mathbf{r}_0)$
- Modified Arnoldi

$$\mathbf{A} \begin{bmatrix} \mathbf{U} & \mathbf{V}_m \end{bmatrix} = \begin{bmatrix} \mathbf{C} & \mathbf{V}_{m+1} \end{bmatrix} \underline{\mathbf{G}}_m$$

where $\underline{\mathbf{G}}_m = \begin{bmatrix} \mathbf{I}_k & \mathbf{B}_m \\ & \underline{\mathbf{H}}_m \end{bmatrix}$ and $\mathbf{B}_m = \mathbf{C}^T \mathbf{A} \mathbf{V}_m$.

• Full Minimization (full residual constraint $\perp \mathbf{A}(\mathcal{U} + \mathcal{V}_m)$)

$$(\mathbf{z}_m, \mathbf{y}_m) = \operatorname*{argmin}_{\substack{\mathbf{u} \in \mathbb{R}^k \\ \mathbf{v} \in \mathbb{R}^j}} \left\| \begin{bmatrix} \mathbf{C} & \mathbf{V}_{m+1} \end{bmatrix}^T \mathbf{r}_0 - \underline{\mathbf{G}}_m \begin{bmatrix} \mathbf{z} \\ \mathbf{y} \end{bmatrix} \right\|_2.$$

 $\bullet \mathbf{x}_m = \mathbf{x}_0 + \mathbf{P}\boldsymbol{\eta}_0 + \mathbf{V}_m \mathbf{y}_m + \mathbf{U}\mathbf{z}_m$

GCRO-DR projected GMRES approach

- Build V_m via Arnoldi for $\mathcal{K}_m(\mathbf{I} \mathbf{Q})\mathbf{A}, (\mathbf{I} \mathbf{Q})\mathbf{r}_0)$
- $\mathbf{t}_m = \mathbf{V}_m \mathbf{y}_m$ is the *m*th GMRES approximation for $(\mathbf{I} \mathbf{Q})\mathbf{A}\mathbf{t} = (\mathbf{I} \mathbf{Q})\mathbf{r}_0$
- $\bullet \mathbf{x}_m = \mathbf{x}_0 + \mathbf{P}\boldsymbol{\eta}_0 + (\mathbf{I} \mathbf{P})\mathbf{t}_m$

Deriving augmented iterative methods

One approach has its origins in domain decomposition.¹

- Choose projectors **P** and **Q** onto \mathcal{U} and $\mathcal{C} = A\mathcal{U}$, respectively (orthogonal or oblique)
 - \rightarrow Required: $\mathbf{AP} = \mathbf{QA}$
- $\mathbf{x} = \mathbf{x}_0 + \boldsymbol{\eta} = \mathbf{x}_0 + \mathbf{P}\boldsymbol{\eta} + (\mathbf{I} \mathbf{P})\boldsymbol{\eta}$
 - \rightarrow **P** η can be directly computed
 - ightarrow $(\mathbf{I} \mathbf{P}) \boldsymbol{\eta}$ is approximated by an iterative method

Apply an iterative method to $(\mathbf{I} - \mathbf{Q})\mathbf{At} = (\mathbf{I} - \mathbf{Q})\mathbf{r}_0$ to obtain \mathbf{t}_m and approximate

$$(\mathbf{I} - \mathbf{P})\boldsymbol{\eta} \approx (\mathbf{I} - \mathbf{P})\mathbf{t}_m$$

 $^{^{1}\}mathrm{see},$ e.g., Mandel 1993, Erlangga and Nabben 2008, Dolean et al (SIAM Book) 2015

Residual constraint formulation

Consider solving $\mathbf{A}(\mathbf{x}_0 + \boldsymbol{\eta}) = \mathbf{b}$; We can also approximate $\boldsymbol{\eta} \approx \mathbf{s}_m + \mathbf{t}_m \in \mathcal{U} + \mathcal{V}_m$ by constraining the residual over a sum of spaces

$$\mathbf{b} - \mathbf{A}(\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m$$

- GCRO-DR: $\widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m = \mathbf{A}(\mathcal{U} + \mathcal{V}_m)$
- $DCG^2 \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m = \mathcal{U} + \mathcal{V}_m$
- non-optimal methods have a variety constraint strategies

How to reconcile different derivations and augmentation strategies?

²Saad et al '00

^a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} \left(\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m \right) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

- \mathbf{y}_m approx. solves $(\mathbf{I} \mathbf{Q}) \mathbf{A} \mathbf{V}_m \mathbf{v} = (\mathbf{I} \mathbf{Q}) \mathbf{r}_0$
- initial error projection
- projection of $V_m y_m$
- full residual \mathbf{r}_m is projected subproblem residual

- P, Q projectors as before with nullspaces determined by \mathcal{U} .
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

 $[^]a$ special cases proven by, e.g., de Sturler '96, Gaul et al '13, Gaul '14, Gutknecht '15, Kahl and Rittich '17

Theorem (Kilmer, de Sturler, S. '20)

^a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} (\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

•
$$\hat{\mathbf{r}}_m = (\mathbf{I} - \mathbf{Q}) [\mathbf{r}_0 - \mathbf{A} \mathbf{V}_m \mathbf{y}_m] \perp \widetilde{\mathcal{V}}_m$$

- initial error projection
- projection of $V_m y_m$
- full residual \mathbf{r}_m is projected subproblem residual

- P, Q projectors as before with nullspaces determined by $\widetilde{\mathcal{U}}$.
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

Theorem (Kilmer, de Sturler, S. '20)

^a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} \left(\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m \right) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

$$\bullet \ \ \widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{A}\mathbf{V}_{m}\mathbf{y}_{m}=\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{r}_{0}$$

- initial error projection
- projection of $V_m y_m$
- full residual \mathbf{r}_m is projected subproblem residual

- P, Q projectors as before with nullspaces determined by $\widetilde{\mathcal{U}}$.
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

Theorem (Kilmer, de Sturler, S. '20)

^a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} \left(\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m \right) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

- $\bullet \ \ \widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{A}\mathbf{V}_{m}\mathbf{y}_{m}=\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{r}_{0}$
- initial error projection
- projection of $V_m y_m$
- full residual \mathbf{r}_m is projected subproblem residual

- P, Q projectors as before with nullspaces determined by \mathcal{U} .
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

Theorem (Kilmer, de Sturler, S. '20)

a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} \left(\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m \right) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

- $\bullet \ \ \widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{A}\mathbf{V}_{m}\mathbf{y}_{m}=\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{r}_{0}$
- $\bullet \ \mathbf{U}\mathbf{z}^{(1)} = \mathbf{P}\left(\mathbf{x} \mathbf{x}_0\right)$
- projection of $V_m y_m$
- full residual \mathbf{r}_m is projected subproblem residual

- P, Q projectors as before with nullspaces determined by $\hat{\mathcal{U}}$.
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} \left(\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m \right) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

- $\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{A}\mathbf{V}_{m}\mathbf{y}_{m}=\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{r}_{0}$
- $\bullet \ \mathbf{U}\mathbf{z}^{(1)} = \mathbf{P}\left(\mathbf{x} \mathbf{x}_0\right)$
- projection of $\mathbf{V}_m \mathbf{y}_m$
- full residual \mathbf{r}_m is projected subproblem residual

- P, Q projectors as before with nullspaces determined by $\widetilde{\mathcal{U}}$.
- $\mathbf{r}_m = \widehat{\mathbf{r}}_m \implies$ projected problem determines convergence

 $[^]a$ special cases proven by, e.g., de Sturler '96, Gaul et al '13, Gaul '14, Gutknecht '15, Kahl and Rittich '17

^a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} (\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

- $\bullet \ \ \widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{A}\mathbf{V}_{m}\mathbf{y}_{m}=\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{r}_{0}$
- $\bullet \ \mathbf{U}\mathbf{z}^{(1)} = \mathbf{P}\left(\mathbf{x} \mathbf{x}_0\right)$
- $\bullet \ \mathbf{U}\mathbf{z}_m^{(2)} = -\mathbf{P}\mathbf{V}_m\mathbf{y}_m$
- full residual \mathbf{r}_m is projected subproblem residual

- P, Q projectors as before with nullspaces determined by $\widetilde{\mathcal{U}}$.
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

^aspecial cases proven by, e.g., de Sturler '96, Gaul et al '13, Gaul '14, Gutknecht '15, Kahl and Rittich '17

^a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} \left(\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m \right) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

- $\bullet \ \ \widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{A}\mathbf{V}_{m}\mathbf{y}_{m}=\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{r}_{0}$
- $\bullet \ \mathbf{U}\mathbf{z}^{(1)} = \mathbf{P}\left(\mathbf{x} \mathbf{x}_0\right)$
- $\mathbf{U}\mathbf{z}_m^{(2)} = -\mathbf{P}\mathbf{V}_m\mathbf{y}_m$
- full residual \mathbf{r}_m is projected subproblem residual

- P, Q projectors as before with nullspaces determined by $\widetilde{\mathcal{U}}$.
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

^aspecial cases proven by, e.g., de Sturler '96, Gaul et al '13, Gaul '14, Gutknecht '15, Kahl and Rittich '17

^a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} \left(\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m \right) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

- $\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{A}\mathbf{V}_{m}\mathbf{y}_{m}=\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{r}_{0}$
- $\bullet \ \mathbf{U}\mathbf{z}^{(1)} = \mathbf{P}\left(\mathbf{x} \mathbf{x}_0\right)$
- $\bullet \ \mathbf{U}\mathbf{z}_m^{(2)} = -\mathbf{P}\mathbf{V}_m\mathbf{y}_m$
- $\mathbf{r}_m = \widehat{\mathbf{r}}_m = (\mathbf{I} \mathbf{Q}) [\mathbf{r}_0 \mathbf{A} \mathbf{V}_m \mathbf{y}_m]$

- P, Q projectors as before with nullspaces determined by $\widetilde{\mathcal{U}}$.
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

^aspecial cases proven by, e.g., de Sturler '96, Gaul et al '13, Gaul '14, Gutknecht '15, Kahl and Rittich '17

^a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} (\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

- $\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{A}\mathbf{V}_{m}\mathbf{y}_{m}=\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{r}_{0}$
- $\bullet \ \mathbf{U}\mathbf{z}^{(1)} = \mathbf{P}\left(\mathbf{x} \mathbf{x}_0\right)$
- $\bullet \ \mathbf{U}\mathbf{z}_m^{(2)} = -\mathbf{P}\mathbf{V}_m\mathbf{y}_m$
- $\mathbf{r}_m = \widehat{\mathbf{r}}_m = (\mathbf{I} \mathbf{Q}) [\mathbf{r}_0 \mathbf{A} \mathbf{V}_m \mathbf{y}_m]$

- P, Q projectors as before with nullspaces determined by \mathcal{U} .
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

^aspecial cases proven by, e.g., de Sturler '96, Gaul et al '13, Gaul '14, Gutknecht '15, Kahl and Rittich '17

^a The correction
$$\underbrace{\mathbf{U}\mathbf{z}^{(1)} + \mathbf{U}\mathbf{z}_{m}^{(2)}}_{\mathbf{s}_{m}} + \underbrace{\mathbf{V}_{m}\mathbf{y}_{m}}_{\mathbf{t}_{m}}$$
 satisfies

$$\mathbf{b} - \mathbf{A} (\mathbf{x}_0 + \mathbf{s}_m + \mathbf{t}_m) \perp \widetilde{\mathcal{U}} + \widetilde{\mathcal{V}}_m \iff$$

- $\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{A}\mathbf{V}_{m}\mathbf{y}_{m}=\widetilde{\mathbf{V}}_{m}^{*}\left(\mathbf{I}-\mathbf{Q}\right)\mathbf{r}_{0}$
- $\bullet \ \mathbf{U}\mathbf{z}^{(1)} = \mathbf{P}\left(\mathbf{x} \mathbf{x}_0\right)$
- $\bullet \ \mathbf{U}\mathbf{z}_m^{(2)} = -\mathbf{P}\mathbf{V}_m\mathbf{y}_m$
- $\mathbf{r}_m = \widehat{\mathbf{r}}_m = (\mathbf{I} \mathbf{Q}) [\mathbf{r}_0 \mathbf{A} \mathbf{V}_m \mathbf{y}_m]$

- P, Q projectors as before with nullspaces determined by $\widetilde{\mathcal{U}}$.
- $\mathbf{r}_m = \hat{\mathbf{r}}_m \implies$ projected problem determines convergence

^aspecial cases proven by, e.g., de Sturler '96, Gaul et al '13, Gaul '14, Gutknecht '15, Kahl and Rittich '17

Previous work...list not exhaustive

- Existing methods:
 - → Well-posed problems: [GCRO-DR, Parks et al],
 [Deflated CG, Saad et al '00; Carlberg '16], [Recycled BiCG, Ahuja '09; Ahuja et al, '12], [Recycled MINRES, Wang et al, '07; Schlömer and Gaul, '14],
 [GMRES for Shifted Systems, S. '12; S. et al '14; S. '16], [FGMRES-based augmentation, Saad '97]
 - → Ill-posed problems: [Augmented GMRES, Baglama and Reichel '07], [Augmented CG, Calvetti et al '03], [Renaut et al '12], [Augmented rrGMRES, Dong et al '14], [Augmented LSQR, Jiang et al 2021]
- Analysis/Framework: [Non-optimal augmentation, Saad '97], [Recycling Methods, Gaul Ph.D. Thesis '14],

[Deflation/Augmentation Framework, Gutknecht '12; Gaul et al '13; Gutknecht '14; de Sturler, Kilmer, S. '20 and in-progress review/algorithm design paper]

Separates spaces from projected subproblem

Residual projection over sums of subspaces induces a projected subproblem independent from V_m (and \widetilde{V}_m)

- GCRO-DR and DCG have agreement of projectors (such as in [Gutknecht '14])
- Framework admits *larger* subclass of augmented methods into "recycling" paradigm
- Design of new methods with differing operators in projected subproblem and solution subspace possible
 - \rightarrow need operator compatibility for efficient implementation

rrrGMRES [Dong et al '14], [S. '22]

Method proposed is a minimum residual method, meaning $\mathbf{r}_m \perp \mathbf{A} (\mathcal{U} + \mathcal{V}_m)$. However, $\mathcal{V}_m = \mathcal{K}_m (\mathbf{A}, \mathbf{A} \mathbf{b}^{\delta})$ is range restricted and unprojected.

rrrGMRES [Dong et al '14], [S. '22]

Method proposed is a minimum residual method, meaning $\mathbf{r}_m \perp \mathbf{A} (\mathcal{U} + \mathcal{V}_m)$. However, $\mathcal{V}_m = \mathcal{K}_m (\mathbf{A}, \mathbf{A} \mathbf{b}^{\delta})$ is range restricted and unprojected.

$$\mathbf{A} \begin{bmatrix} \mathbf{V}_m & \mathbf{U} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{j+1} & \mathbf{C}_m \end{bmatrix} \begin{bmatrix} \mathbf{H}_m & \hat{\mathbf{B}}_m \\ & \mathbf{F}_m \end{bmatrix}$$

• Solve min
$$\| \begin{bmatrix} \mathbf{V}_{j+1} & \mathbf{C}_m \end{bmatrix}^T \mathbf{b}^{\delta} - \begin{bmatrix} \overline{\mathbf{H}}_m & \widehat{\mathbf{B}}_m \\ \mathbf{F}_m \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \|_2$$

- Equivalently, $\left(\overline{\mathbf{H}}_{m}^{T}\overline{\mathbf{H}} \overline{\mathbf{H}}_{m}^{T}\widehat{\mathbf{B}}_{m}\widehat{\mathbf{B}}_{m}^{T}\overline{\mathbf{H}}_{m}\right)\mathbf{y}_{m} = \mathbf{rhs}$
- $\mathbf{t}_m = \mathbf{V}_m \mathbf{y}_m$ and $\mathbf{s}_m = \mathbf{P} \mathbf{e}_0 \mathbf{P} \mathbf{t}_m$

rrrGMRES [Dong et al '14], [S. '22]

Method proposed is a minimum residual method, meaning $\mathbf{r}_m \perp \mathbf{A} (\mathcal{U} + \mathcal{V}_m)$. However, $\mathcal{V}_m = \mathcal{K}_m (\mathbf{A}, \mathbf{A} \mathbf{b}^{\delta})$ is range restricted and unprojected.

$$\mathbf{A} \begin{bmatrix} \mathbf{V}_m & \mathbf{U} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{j+1} & \mathbf{C}_m \end{bmatrix} \begin{bmatrix} \mathbf{H}_m & \hat{\mathbf{B}}_m \\ & \mathbf{F}_m \end{bmatrix}$$

• Solve min
$$\| \begin{bmatrix} \mathbf{V}_{j+1} & \mathbf{C}_m \end{bmatrix}^T \mathbf{b}^{\delta} - \begin{bmatrix} \overline{\mathbf{H}}_m & \widehat{\mathbf{B}}_m \\ \mathbf{F}_m \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \|_2$$

- Equivalently, $\left(\overline{\mathbf{H}}_{m}^{T}\overline{\mathbf{H}} \overline{\mathbf{H}}_{m}^{T}\widehat{\mathbf{B}}_{m}\widehat{\mathbf{B}}_{m}^{T}\overline{\mathbf{H}}_{m}\right)\mathbf{y}_{m} = \mathbf{rhs}$
- $\mathbf{t}_m = \mathbf{V}_m \mathbf{y}_m$ and $\mathbf{s}_m = \mathbf{P} \mathbf{e}_0 \mathbf{P} \mathbf{t}_m$

rrrGMRES [Dong et al '14], [S. '22]

Method proposed is a minimum residual method, meaning $\mathbf{r}_m \perp \mathbf{A} (\mathcal{U} + \mathcal{V}_m)$. However, $\mathcal{V}_m = \mathcal{K}_m (\mathbf{A}, \mathbf{A} \mathbf{b}^{\delta})$ is range restricted and unprojected.

$$\mathbf{A} \begin{bmatrix} \mathbf{V}_m & \mathbf{U} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{j+1} & \mathbf{C}_m \end{bmatrix} \begin{bmatrix} \mathbf{H}_m & \hat{\mathbf{B}}_m \\ & \mathbf{F}_m \end{bmatrix}$$

- Solve min $\| \begin{bmatrix} \mathbf{V}_{j+1} & \mathbf{C}_m \end{bmatrix}^T \mathbf{b}^{\delta} \begin{bmatrix} \overline{\mathbf{H}}_m & \widehat{\mathbf{B}}_m \\ \mathbf{F}_m \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \|_2$
- Equivalently, $\left(\overline{\mathbf{H}}_{m}^{T}\overline{\mathbf{H}} \overline{\mathbf{H}}_{m}^{T}\widehat{\mathbf{B}}_{m}\widehat{\mathbf{B}}_{m}^{T}\overline{\mathbf{H}}_{m}\right)\mathbf{y}_{m} = \mathbf{rhs}$
- $\mathbf{t}_m = \mathbf{V}_m \mathbf{y}_m$ and $\mathbf{s}_m = \mathbf{P} \mathbf{e}_0 \mathbf{P} \mathbf{t}_m$

rrrGMRES [Dong et al '14], [S. '22]

Method proposed is a minimum residual method, meaning $\mathbf{r}_m \perp \mathbf{A} (\mathcal{U} + \mathcal{V}_m)$. However, $\mathcal{V}_m = \mathcal{K}_m (\mathbf{A}, \mathbf{A}\mathbf{b}^{\delta})$ is range restricted and unprojected.

$$\mathbf{A} egin{bmatrix} \mathbf{V}_m & \mathbf{U} \end{bmatrix} = egin{bmatrix} \mathbf{V}_{j+1} & \mathbf{C}_m \end{bmatrix} egin{bmatrix} \mathbf{H}_m & \widehat{\mathbf{B}}_m \\ & \mathbf{F}_m \end{bmatrix}$$

- Solve min $\| \begin{bmatrix} \mathbf{V}_{j+1} & \mathbf{C}_m \end{bmatrix}^T \mathbf{b}^{\delta} \begin{bmatrix} \overline{\mathbf{H}}_m & \widehat{\mathbf{B}}_m \\ \mathbf{F}_m \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \|_2$
- Equivalently, $\left(\overline{\mathbf{H}}_{m}^{T}\overline{\mathbf{H}} \overline{\mathbf{H}}_{m}^{T}\widehat{\mathbf{B}}_{m}\widehat{\mathbf{B}}_{m}^{T}\overline{\mathbf{H}}_{m}\right)\mathbf{y}_{m} = \mathbf{rhs}$
- $\mathbf{t}_m = \mathbf{V}_m \mathbf{y}_m$ and $\mathbf{s}_m = \mathbf{P} \mathbf{e}_0 \mathbf{P} \mathbf{t}_m$

Short recurrence methods

The framework accommodates short recurrence methods

Challenges

- Short-recurrence compatibility must be ensured
 - \rightarrow DCG: projected operator is Hermitian
 - \rightarrow RMINRES: projected operator is Hermitian on the Krylov subspace
 - \rightarrow bi-orthog Lanczos: for appropriate projector pairs, bi-orthogonality of bases still holds on the Krylov subspaces
 - \rightarrow Golub-Kahan bi-diagonalization: similar
- Must systematically update recycled subspace without storing all vectors
- Stability

Windowed Lanczos for efficient recycled subspace updates

$$\begin{aligned} \mathbf{V}_{\ell p} &= \begin{bmatrix} \mathbf{V}_{(\ell-1)p} & \underline{\mathbf{V}}_{\ell} \end{bmatrix}; \qquad \mathbf{A}\underline{\mathbf{V}}_{\ell} &= \begin{bmatrix} \mathbf{v}_{(\ell-1)p} & \underline{\mathbf{V}}_{\ell} & \mathbf{v}_{\ell p+1} \end{bmatrix} \underline{\mathbf{T}} \\ &= \delta_{(\ell-1)p} \mathbf{v}_{(\ell-1)p} + \underline{\mathbf{V}}_{\ell} \mathbf{T} + \beta_{\ell p+1} \mathbf{v}_{\ell p+1} \end{aligned}$$

(and similar for biorthogonal bases)³

Leads to short recurrence updates for recycled subspace

³see, e.g., [Wang et al '07; Ahuja et al '12; Bolten et al '22]

Short recurrence methods-stability

How we exploit short-recurrences can effect stability. For example:

- DCG [Saad et al '00]: all at once approach folds augmenting subspace into search direction construction
- [Kahl & Rittich] first observed the projected problem formulation apply CG directly to a projected subproblem and get update in \mathcal{U} by projection at convergence
 - \rightarrow inherits stability characteristics of CG

DCG - A specific convergence diagram

Recycling for matrix function evaluation

Evaluate:
$$f(\mathbf{A})\mathbf{b} = \frac{1}{2\pi i} \int_{\Gamma} f(\sigma)(\sigma \mathbf{I} - \mathbf{A})^{-1} \mathbf{b} d\sigma$$

- $f(z) = \exp(z)$: the solution of ODEs
- $f(z) = \log(z)$: Markov model analysis
- f(z) = sign(z): lattice QCD simulations with overlap fermions
- $f(z) = \frac{1}{z}$: standard linear system solution

When **A** is large and sparse, matrix-free Krylov subspace methods used to approximate $f(\mathbf{A})\mathbf{b}$

- $\bullet \ (\sigma \mathbf{I} \mathbf{A})^{-1} \mathbf{b} \iff (\sigma \mathbf{I} \mathbf{A}) \mathbf{x}(\sigma) = \mathbf{b}$
- Shift Invariance: $\mathcal{K}_m(\sigma \mathbf{I} \mathbf{A}, \mathbf{b}) = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Shifted FOM Condition: $\mathbf{b} - (\sigma \mathbf{I} - \mathbf{A})(\mathbf{x}_0(\sigma) + \mathbf{V}_m \mathbf{y}_m(\sigma)) \perp \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Shifted FOM Approximation: $\mathbf{y}_m(\sigma) = \|\mathbf{b}\|(\sigma\mathbf{I} \mathbf{H}_m)^{-1}\mathbf{e}_1 \Rightarrow \mathbf{x}(\sigma) \approx \mathbf{V}_m(\sigma\mathbf{I} \mathbf{H}_m)^{-1}\mathbf{e}_1$
- Matrix function action approximation:

$$f(\mathbf{A})\mathbf{b} \approx \frac{\|\mathbf{b}\|}{2\pi i} \int_{\Gamma} f(\sigma) \mathbf{V}_m (\sigma \mathbf{I} - \mathbf{H}_m)^{-1} \mathbf{e}_1 d\sigma = \|\mathbf{b}\| \mathbf{V}_m f(\mathbf{H}_m) \mathbf{e}_1$$

- $\bullet \ (\sigma \mathbf{I} \mathbf{A})^{-1} \mathbf{b} \iff (\sigma \mathbf{I} \mathbf{A}) \mathbf{x}(\sigma) = \mathbf{b}$
- Shift Invariance: $\mathcal{K}_m(\sigma \mathbf{I} \mathbf{A}, \mathbf{b}) = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Shifted FOM Condition: $\mathbf{b} - (\sigma \mathbf{I} - \mathbf{A})(\mathbf{x}_0(\sigma) + \mathbf{V}_m \mathbf{y}_m(\sigma)) \perp \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Shifted FOM Approximation: $\mathbf{y}_m(\sigma) = \|\mathbf{b}\|(\sigma\mathbf{I} \mathbf{H}_m)^{-1}\mathbf{e}_1 \Rightarrow \mathbf{x}(\sigma) \approx \mathbf{V}_m(\sigma\mathbf{I} \mathbf{H}_m)^{-1}\mathbf{e}_1$
- Matrix function action approximation:

$$f(\mathbf{A})\mathbf{b} \approx \frac{\|\mathbf{b}\|}{2\pi i} \int_{\Gamma} f(\sigma) \mathbf{V}_m (\sigma \mathbf{I} - \mathbf{H}_m)^{-1} \mathbf{e}_1 d\sigma = \|\mathbf{b}\| \mathbf{V}_m f(\mathbf{H}_m) \mathbf{e}_1$$

- $\bullet \ (\sigma \mathbf{I} \mathbf{A})^{-1} \mathbf{b} \iff (\sigma \mathbf{I} \mathbf{A}) \mathbf{x}(\sigma) = \mathbf{b}$
- Shift Invariance: $\mathcal{K}_m(\sigma \mathbf{I} \mathbf{A}, \mathbf{b}) = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Shifted FOM Condition:

$$\mathbf{b} - (\sigma \mathbf{I} - \mathbf{A})(\mathbf{x}_0(\sigma) + \mathbf{V}_m \mathbf{y}_m(\sigma)) \perp \mathcal{K}_m(\mathbf{A}, \mathbf{b})$$

- Shifted FOM Approximation: $\mathbf{y}_m(\sigma) = \|\mathbf{b}\| (\sigma \mathbf{I} - \mathbf{H}_m)^{-1} \mathbf{e}_1 \Rightarrow \mathbf{x}(\sigma) \approx \mathbf{V}_m (\sigma \mathbf{I} - \mathbf{H}_m)^{-1} \mathbf{e}_1$
- Matrix function action approximation:

$$f(\mathbf{A})\mathbf{b} \approx \frac{\|\mathbf{b}\|}{2\pi i} \int_{\Gamma} f(\sigma) \mathbf{V}_m (\sigma \mathbf{I} - \mathbf{H}_m)^{-1} \mathbf{e}_1 \ d\sigma = \|\mathbf{b}\| \mathbf{V}_m f(\mathbf{H}_m) \mathbf{e}_1$$

- $(\sigma \mathbf{I} \mathbf{A})^{-1}\mathbf{b} \iff (\sigma \mathbf{I} \mathbf{A})\mathbf{x}(\sigma) = \mathbf{b}$
- Shift Invariance: $\mathcal{K}_m(\sigma \mathbf{I} \mathbf{A}, \mathbf{b}) = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Shifted FOM Condition:
 - $\mathbf{b} (\sigma \mathbf{I} \mathbf{A})(\mathbf{x}_0(\sigma) + \mathbf{V}_m \mathbf{y}_m(\sigma)) \perp \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Shifted FOM Approximation: $\mathbf{y}_m(\sigma) = \|\mathbf{b}\|(\sigma\mathbf{I} \mathbf{H}_m)^{-1}\mathbf{e}_1 \Rightarrow \mathbf{x}(\sigma) \approx \mathbf{V}_m(\sigma\mathbf{I} \mathbf{H}_m)^{-1}\mathbf{e}_1$
- Matrix function action approximation:

$$f(\mathbf{A})\mathbf{b} \approx \frac{\|\mathbf{b}\|}{2\pi i} \int_{\Gamma} f(\sigma) \mathbf{V}_m (\sigma \mathbf{I} - \mathbf{H}_m)^{-1} \mathbf{e}_1 \ d\sigma = \|\mathbf{b}\| \mathbf{V}_m f(\mathbf{H}_m) \mathbf{e}_1$$

- $(\sigma \mathbf{I} \mathbf{A})^{-1}\mathbf{b} \iff (\sigma \mathbf{I} \mathbf{A})\mathbf{x}(\sigma) = \mathbf{b}$
- Shift Invariance: $\mathcal{K}_m(\sigma \mathbf{I} \mathbf{A}, \mathbf{b}) = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Shifted FOM Condition: $\mathbf{b} - (\sigma \mathbf{I} - \mathbf{A})(\mathbf{x}_0(\sigma) + \mathbf{V}_m \mathbf{y}_m(\sigma)) \perp \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Shifted FOM Approximation: $\mathbf{y}_m(\sigma) = \|\mathbf{b}\|(\sigma\mathbf{I} \mathbf{H}_m)^{-1}\mathbf{e}_1 \Rightarrow \mathbf{x}(\sigma) \approx \mathbf{V}_m(\sigma\mathbf{I} \mathbf{H}_m)^{-1}\mathbf{e}_1$
- Matrix function action approximation:

$$f(\mathbf{A})\mathbf{b} \approx \frac{\|\mathbf{b}\|}{2\pi i} \int_{\Gamma} f(\sigma) \mathbf{V}_m (\sigma \mathbf{I} - \mathbf{H}_m)^{-1} \mathbf{e}_1 \ d\sigma = \|\mathbf{b}\| \mathbf{V}_m f(\mathbf{H}_m) \mathbf{e}_1$$

Some related/background works

- Hochbruck and Lubich. On Krylov subspace approximations to the matrix exponential operator. SINUM 1997.
- Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator. SINUM 1992.
- Eiermann, Ernst, and Güttel. Deflated restarting for matrix functions. SIMAX 2011.
- Simoncini. Restarted full orthogonalization method for shifted linear systems. BIT 2003.
- Many others...

Difficulties extending recycling to approximate $f(\mathbf{A})\mathbf{b}$

Find $\mathbf{t}_m(\sigma) \in \mathcal{V}_m$ corresponding to each σ

$$(\mathbf{I} - \mathbf{Q}_{\sigma})(\sigma \mathbf{I} - \mathbf{A})\mathbf{t}(\sigma) = (\mathbf{I} - \mathbf{Q}_{\sigma})\mathbf{b}$$

such that
$$\mathbf{r}_m(\sigma) = (\mathbf{I} - \mathbf{Q}_{\sigma})(\mathbf{b} - (\sigma \mathbf{I} - \mathbf{A})\mathbf{t}_m(\sigma)) \perp \tilde{\mathcal{V}}_m$$

 Augmentation for each shifted system induces its own shift-dependent projected subproblem

$$(\mathbf{I} - \mathbf{Q}_{\sigma})(\sigma \mathbf{I} - \mathbf{A})\mathbf{t}(\sigma) = (\mathbf{I} - \mathbf{Q}_{\sigma})\mathbf{b}$$

• $\mathcal{K}_m((\mathbf{I} - \mathbf{Q}_{\sigma})(\sigma \mathbf{I} - \mathbf{A}), (\mathbf{I} - \mathbf{Q}_{\sigma})\mathbf{b})$ is no longer shift invariant

$$(\sigma \mathbf{I} - \mathbf{A})\mathbf{t}(\sigma) = \mathbf{b}$$

such that
$$\mathbf{r}_m(\sigma) = \mathbf{b} - (\sigma \mathbf{I} - \mathbf{A}) \mathbf{t}_m(\sigma) \perp (\mathbf{I} - \mathbf{Q}_{\sigma})^* \tilde{\mathcal{V}}_m$$

- Moves projector from subproblem onto constraint space
- Applying non-projected augmentation enables use of Krylov shift invariance
- FOM-type condition $\tilde{\mathcal{V}}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Multiple approaches to computing $\mathbf{x}_m(\sigma)$
- $(\mathbf{V}_m^*(\mathbf{I} \mathbf{Q}_\sigma)[\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j}\mathbf{v}_{j+1}\mathbf{e}_m^T])\mathbf{y}_m(\sigma) = \mathbf{V}_{j+1}^*(\mathbf{I} \mathbf{Q}_\sigma)\mathbf{b}$
- $\mathbf{x}_m(\sigma) = \mathbf{V}_m \mathbf{y}_m(\sigma) + \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* \mathbf{b} \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* [\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j} \mathbf{v}_{j+1} \mathbf{e}_m^T] \mathbf{y}_m(\sigma)$

$$(\sigma \mathbf{I} - \mathbf{A})\mathbf{t}(\sigma) = \mathbf{b}$$

such that
$$\mathbf{r}_m(\sigma) = \mathbf{b} - (\sigma \mathbf{I} - \mathbf{A}) \mathbf{t}_m(\sigma) \perp (\mathbf{I} - \mathbf{Q}_{\sigma})^* \tilde{\mathcal{V}}_m$$

- Moves projector from subproblem onto constraint space
- Applying non-projected augmentation enables use of Krylov shift invariance
- FOM-type condition $\tilde{\mathcal{V}}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Multiple approaches to computing $\mathbf{x}_m(\sigma)$
- $(\mathbf{V}_m^*(\mathbf{I} \mathbf{Q}_\sigma)[\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j}\mathbf{v}_{j+1}\mathbf{e}_m^T])\mathbf{y}_m(\sigma) = \mathbf{V}_{j+1}^*(\mathbf{I} \mathbf{Q}_\sigma)\mathbf{b}$
- $\mathbf{x}_m(\sigma) = \mathbf{V}_m \mathbf{y}_m(\sigma) + \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* \mathbf{b} \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* [\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j} \mathbf{v}_{j+1} \mathbf{e}_m^T] \mathbf{y}_m(\sigma)$

$$(\sigma \mathbf{I} - \mathbf{A})\mathbf{t}(\sigma) = \mathbf{b}$$

such that
$$\mathbf{r}_m(\sigma) = \mathbf{b} - (\sigma \mathbf{I} - \mathbf{A}) \mathbf{t}_m(\sigma) \perp (\mathbf{I} - \mathbf{Q}_{\sigma})^* \tilde{\mathcal{V}}_m$$

- Moves projector from subproblem onto constraint space
- Applying non-projected augmentation enables use of Krylov shift invariance
- FOM-type condition $\tilde{\mathcal{V}}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Multiple approaches to computing $\mathbf{x}_m(\sigma)$
- $(\mathbf{V}_m^*(\mathbf{I} \mathbf{Q}_\sigma)[\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j}\mathbf{v}_{j+1}\mathbf{e}_m^T])\mathbf{y}_m(\sigma) = \mathbf{V}_{j+1}^*(\mathbf{I} \mathbf{Q}_\sigma)\mathbf{b}$
- $\mathbf{x}_m(\sigma) = \mathbf{V}_m \mathbf{y}_m(\sigma) + \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* \mathbf{b} \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* [\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j} \mathbf{v}_{j+1} \mathbf{e}_m^T] \mathbf{y}_m(\sigma)$

$$(\sigma \mathbf{I} - \mathbf{A})\mathbf{t}(\sigma) = \mathbf{b}$$

such that
$$\mathbf{r}_m(\sigma) = \mathbf{b} - (\sigma \mathbf{I} - \mathbf{A}) \mathbf{t}_m(\sigma) \perp (\mathbf{I} - \mathbf{Q}_{\sigma})^* \tilde{\mathcal{V}}_m$$

- Moves projector from subproblem onto constraint space
- Applying non-projected augmentation enables use of Krylov shift invariance
- FOM-type condition $\tilde{\mathcal{V}}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Multiple approaches to computing $\mathbf{x}_m(\sigma)$
- $(\mathbf{V}_m^*(\mathbf{I} \mathbf{Q}_\sigma)[\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j}\mathbf{v}_{j+1}\mathbf{e}_m^T])\mathbf{y}_m(\sigma) = \mathbf{V}_{j+1}^*(\mathbf{I} \mathbf{Q}_\sigma)\mathbf{b}$
- $\mathbf{x}_m(\sigma) = \mathbf{V}_m \mathbf{y}_m(\sigma) + \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* \mathbf{b} \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* [\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j} \mathbf{v}_{j+1} \mathbf{e}_m^T] \mathbf{y}_m(\sigma)$

$$(\sigma \mathbf{I} - \mathbf{A})\mathbf{t}(\sigma) = \mathbf{b}$$

such that
$$\mathbf{r}_m(\sigma) = \mathbf{b} - (\sigma \mathbf{I} - \mathbf{A}) \mathbf{t}_m(\sigma) \perp (\mathbf{I} - \mathbf{Q}_{\sigma})^* \tilde{\mathcal{V}}_m$$

- Moves projector from subproblem onto constraint space
- Applying non-projected augmentation enables use of Krylov shift invariance
- FOM-type condition $\tilde{\mathcal{V}}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Multiple approaches to computing $\mathbf{x}_m(\sigma)$
- $(\mathbf{V}_m^*(\mathbf{I} \mathbf{Q}_\sigma)[\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j}\mathbf{v}_{j+1}\mathbf{e}_m^T])\mathbf{y}_m(\sigma) = \mathbf{V}_{j+1}^*(\mathbf{I} \mathbf{Q}_\sigma)\mathbf{b}$
- $\mathbf{x}_m(\sigma) = \mathbf{V}_m \mathbf{y}_m(\sigma) + \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* \mathbf{b} \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* [\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j} \mathbf{v}_{j+1} \mathbf{e}_m^T] \mathbf{y}_m(\sigma)$

$$(\sigma \mathbf{I} - \mathbf{A})\mathbf{t}(\sigma) = \mathbf{b}$$

such that
$$\mathbf{r}_m(\sigma) = \mathbf{b} - (\sigma \mathbf{I} - \mathbf{A}) \mathbf{t}_m(\sigma) \perp (\mathbf{I} - \mathbf{Q}_{\sigma})^* \tilde{\mathcal{V}}_m$$

- Moves projector from subproblem onto constraint space
- Applying non-projected augmentation enables use of Krylov shift invariance
- FOM-type condition $\tilde{\mathcal{V}}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Multiple approaches to computing $\mathbf{x}_m(\sigma)$
- $(\mathbf{V}_m^*(\mathbf{I} \mathbf{Q}_{\sigma})[\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j}\mathbf{v}_{j+1}\mathbf{e}_m^T])\mathbf{y}_m(\sigma) = \mathbf{V}_{j+1}^*(\mathbf{I} \mathbf{Q}_{\sigma})\mathbf{b}$
- $\mathbf{x}_m(\sigma) = \mathbf{V}_m \mathbf{y}_m(\sigma) + \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* \mathbf{b} \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* [\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j} \mathbf{v}_{j+1} \mathbf{e}_m^T] \mathbf{y}_m(\sigma)$

$$(\sigma \mathbf{I} - \mathbf{A})\mathbf{t}(\sigma) = \mathbf{b}$$

such that
$$\mathbf{r}_m(\sigma) = \mathbf{b} - (\sigma \mathbf{I} - \mathbf{A}) \mathbf{t}_m(\sigma) \perp (\mathbf{I} - \mathbf{Q}_{\sigma})^* \tilde{\mathcal{V}}_m$$

- Moves projector from subproblem onto constraint space
- Applying non-projected augmentation enables use of Krylov shift invariance
- FOM-type condition $\tilde{\mathcal{V}}_m = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$
- Multiple approaches to computing $\mathbf{x}_m(\sigma)$
- $(\mathbf{V}_m^*(\mathbf{I} \mathbf{Q}_{\sigma})[\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j}\mathbf{v}_{j+1}\mathbf{e}_m^T])\mathbf{y}_m(\sigma) = \mathbf{V}_{j+1}^*(\mathbf{I} \mathbf{Q}_{\sigma})\mathbf{b}$
- $\mathbf{x}_m(\sigma) = \mathbf{V}_m \mathbf{y}_m(\sigma) + \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* \mathbf{b} \mathbf{U}(\sigma \mathbf{U}^* \mathbf{U} \mathbf{U}^* \mathbf{C})^{-1} \mathbf{U}^* [\mathbf{V}_m(\sigma \mathbf{I} \mathbf{H}_m) h_{j+1,j} \mathbf{v}_{j+1} \mathbf{e}_m^T] \mathbf{y}_m(\sigma)$

Recycled FOM for functions of matrices (rFOM²)

$$f(\mathbf{A})\mathbf{b} \approx \tilde{\mathbf{f}} = \frac{1}{2\pi i} \int_{\Gamma} f(\sigma) \mathbf{x}_m(\sigma) d\sigma$$

- Choose an approach for computing $\mathbf{x}_m(\sigma)$
 - \rightarrow Decoupled approach (last slide)
 - \rightarrow All-at-once approach
 - $\rightarrow \text{ Matrix-function evaluation plus correction:} f(\mathbf{A})\mathbf{b} \approx \widehat{\mathbf{V}}_m f(\mathbf{G}_m) (\widehat{\mathbf{W}}_m^* \widehat{\mathbf{W}}_m)^{-1} \widehat{\mathbf{W}}_m^* \mathbf{b} \widehat{\mathbf{V}}_m \mathcal{I} \widehat{\mathbf{W}}_m^* \mathbf{b}^{45}$
- Choose appropriate contour and some quadrature technique to numerically integrate

$${}^{4}\widehat{\mathbf{V}}_{m} = \begin{bmatrix} \mathbf{U} & \mathbf{V}_{m} \end{bmatrix}, \ \widehat{\mathbf{W}}_{m} = \begin{bmatrix} \mathbf{C} & \mathbf{V}_{m} \end{bmatrix}$$

$${}^{5}\mathcal{I} = \frac{1}{2\pi i} \int f(\sigma)((\widehat{\mathbf{W}}_{m}^{*}\widehat{\mathbf{W}}_{m})(\sigma\mathbf{I} - \mathbf{G}_{m}))^{-1}(\mathbf{I} + \widehat{\mathbf{W}}_{m}^{*}\mathbf{R}_{\sigma}((\widehat{\mathbf{W}}_{m}^{*}\widehat{\mathbf{W}}_{m})(\sigma\mathbf{I} - \mathbf{G}_{m}))^{-1})\widehat{\mathbf{W}}_{m}^{*}\mathbf{R}_{\sigma}((\widehat{\mathbf{W}}_{m}^{*}\widehat{\mathbf{W}}_{m})(\sigma\mathbf{I} - \mathbf{G}_{m}))^{-1} d\sigma$$

Eigenvector/Harmonic Ritz vector recycling

Recycle to project away (approximate) eigenvector directions associated to eigenvalues near singularities of f(z)

- Use exact eigenvectors if you have them (rare)
- For a sequence of problems, compute Harmonic Ritz vectors

Find
$$(\mathbf{y}_i, \mu_i)$$
 such that $\mathbf{A}^{-1}\mathbf{y}_i - \mu_i\mathbf{y}_i \perp \mathbf{A}(\mathcal{K}_m(\mathbf{A}, \mathbf{b}) + \mathcal{U})$
with $\mathbf{y}_m \in \mathbf{A}(\mathcal{K}_m(\mathbf{A}, \mathbf{b}) + \mathcal{U})$

Numerical Results

Experiment 1: $f(\mathbf{A})\mathbf{b}$ with \mathbf{U} exact eigenvectors

Figure: rFOM² approx $f(\mathbf{A})\mathbf{b}$ for (a) $f(z) = \text{sign}(\mathbf{A})$, \mathbf{A} is a Wilson Dirac (4⁴ lattice); (b) $f(z) = \frac{1}{z}$ for the same; (c) $f(z) = \log(z)$ for \mathbf{A} is a $10^5 \times 10^5$ chemical potential matrix; (d) $f(z) = \sqrt{z}$ for a $10^5 \times 10^5$ Poisson matrix. Cycle length m = 40 and recycle space dim. k = 20

Experiment 2: $\operatorname{sign}^{-1}(\mathbf{A} + \varepsilon \mathbf{R}_i)\mathbf{b}_i$

Figure: Error comparison for a sequence of 15 applications of the inverse of the sign function to 15 random vectors. Cycle length m=40 and recycle space dim. k=20 and 2000 quadrature points. In fig (a) we took $\varepsilon=0$, and in (b) $\varepsilon=0.001$.

Experiment 3: $sign(\mathbf{A} + \varepsilon \mathbf{R}_i)\mathbf{b}_i$

Figure: rFOM² 30 applications of sign function on for different values of ε . (a) $\varepsilon = 0$; (b) $\varepsilon = 0.0001$; (c) $\varepsilon = 0.001$; (d) $\varepsilon = 0.01$. Cycle length m = 40 and recycle space dim. k = 20 and 2000 quadrature points. (d) demonstrates need to modify contour for 20^{th} system.

Conclusions and future work

- Understanding recycling/augmented iterative methods in a common framework brings tangible benefits
- Straightforward design roadmap for new methods
- Methods inherit convergence and stability properties of the method applied to the projected subproblem
- Framework provides clear path to extending recycling to treating matrix function evaluation
- Future: Restarting and error monitoring for recycling for matrix functions; Augmented/recycling methods for iterative solvers for other complicated problems (non-linear, Kronecker/Tensor problems, etc)

References

Results in this talk are drawn from the following manuscripts

- S., Kilmer, de Sturler A survey of subspace recycling iterative methods., GAMM Mitteilungen, 2020.
- S. A note on augmented unprojected Krylov subspace methods, ETNA 2022.
- Burke, Frommer, Ramirez-Hidalgo, S. Krylov subspace recycling for matrix functions, 2022 (soon on arXiv)
- S., Kilmer, de Sturler Design and implementation of new recycling methods based on framework., 202?.

Some other related works

- Hutterer, Ramlau, and S. Subspace Recycling-based Regularization Methods, SIMAX 2021.
- Brennan, Islam, Basquill, S. Computation of Scattering from Rough Surfaces using Successive Symmetric Over Relaxation and Eigenvalue Deflation, 16th EuCAP 2022

For more information: https://math.soodhalter.com

References

Results in this talk are drawn from the following manuscripts

- S., Kilmer, de Sturler A survey of subspace recycling iterative methods., GAMM Mitteilungen, 2020.
- S. A note on augmented unprojected Krylov subspace methods, ETNA 2022.
- Burke, Frommer, Ramirez-Hidalgo, S. Krylov subspace recycling for matrix functions, 2022 (soon on arXiv)
- S., Kilmer, de Sturler Design and implementation of new recycling methods based on framework., 202?.

Some other related works

- Hutterer, Ramlau, and S. Subspace Recycling-based Regularization Methods, SIMAX 2021.
- Brennan, Islam, Basquill, S. Computation of Scattering from Rough Surfaces using Successive Symmetric Over Relaxation and Eigenvalue Deflation, 16th EuCAP 2022.

For more information: https://math.soodhalter.com

Bonus Slides!

Augmented stationary iterations

Framework accommodates deflated stationary methods; see, e.g., [Burrage et al '98; Brennan et al '22]

- Many stationary methods have a residual constraint formulation
- We can build augmented stationary iterative schemes
- Such a method was proposed as a deflation scheme in '98
- Approximately deflate eigenvalues of the iteration matrix > 1
- We applied this to an SSOR technique for scattering of electromagnetic waves from randomly rough surfaces
 - \rightarrow More complicated surface leads to iteration matrix with more "bad" eigenvalues
 - \rightarrow Adaptive: iteration allows for estimation of these eigenvectors

Analysis of methods as a regularization

Can augmentation techniques be used reliably to treat ill-posed problems?

- Plenty of methods proposed already
- General strategy: apply regularization method to

$$(\mathbf{I} - \mathbf{Q})\mathbf{At} = (\mathbf{I} - \mathbf{Q})\mathbf{r}_0$$

• Regularization analysis: in infinite-dimensional setting for ill-posed operator $T: \mathcal{X} \to \mathcal{Y}$ mapping between Hilbert spaces

$$Tx = y + e^{\delta}$$

• Recycling methods can be formally posed in this infinite dimensional setting [de Sturler, Kilmer, S.]

Apply any regularizer to $(\mathbf{I} - \mathbf{Q})\mathbf{A}\mathbf{t} = (\mathbf{I} - \mathbf{Q})\mathbf{r}_0$

- We can treat the subproblem with any reg. method
- Noise-based estimates for the error incurred by all parts of the method available
- \bullet Formal analysis in the regularization-theory sense as noise-level $\delta \to 0$ possible
- Overall residual behavior determined by residual of projected subproblem

Theorem (Hutterer, Ramlau, and S.)

 $Tx = y \text{ with } T : \mathcal{X} \to \mathcal{Y} \text{ (Hilbert spaces) with } y^{\delta}, \|y - y^{\delta}\|_{\mathcal{Y}} < \delta.$ Treating the projected subproblem with any regularization method is itself a regularization method; i.e., $a\overline{s} \ \overline{\delta} \to 0, \ x_m^{\delta} \to x^{\dagger} = T^{\dagger}y.$

Apply any regularizer to $(\mathbf{I} - \mathbf{Q})\mathbf{A}\mathbf{t} = (\mathbf{I} - \mathbf{Q})\mathbf{r}_0$

- We can treat the subproblem with any reg. method
- Noise-based estimates for the error incurred by all parts of the method available
- Formal analysis in the regularization-theory sense as noise-level $\delta \to 0$ possible
- Overall residual behavior determined by residual of projected subproblem

Theorem (Hutterer, Ramlau, and S.)

 $Tx = y \text{ with } T: \mathcal{X} \to \mathcal{Y} \text{ (Hilbert spaces) with } y^{\delta}, \|y - y^{\delta}\|_{\mathcal{Y}} < \delta.$ Treating the projected subproblem with any regularization method is itself a regularization method; i.e., $a\overline{s} \ \overline{\delta} \to 0, \ x_m^{\delta} \to x^{\dagger} = T^{\dagger}y.$

Augmented steepest descent for the normal equations

- 1 Given: $\mathbf{U} \in \mathcal{X}^k$ representing \mathcal{U}
- **2** Set $r_0 = y Tx_0$
- 3 Compute "QR-factorization" (Gram-Schmidt) $T\mathbf{U} = \mathbf{C}\mathbf{R}$
- 4 $\mathbf{U} \leftarrow \mathbf{U}\mathbf{R}^{-1}$
- $\mathbf{z}^{(1)} = (r_0, \mathbf{C})_{\gamma}$
- 6 $x \leftarrow x_0 + \mathbf{Uz}^{(1)}$
- 7 $r \leftarrow r_0 \mathbf{C}\mathbf{z}^{(1)}$
- 8 while STOPPING-CRITERIA do

$$\mathbf{9} \qquad \alpha_i = \frac{\|T^*r_i\|_{\mathcal{Y}}^2}{\|(I_{\mathcal{Y}} - Q)T^*Tr_i\|_{\mathcal{Y}}^2}$$

10
$$\widehat{\mathbf{w}} \leftarrow = (TT^*r, \mathbf{C})_{\mathcal{Y}}$$

11
$$x \leftarrow x + \alpha_i T^* r - \alpha_i \mathbf{U} \widehat{\mathbf{w}}$$

12
$$r \leftarrow r - \alpha_i T T^* r + \alpha_i \mathbf{C} \widehat{\mathbf{w}}$$

Augmented Landweber for the normal equations

- 1 Given: $\mathbf{U} \in \mathcal{X}^k$ representing $\mathcal{U}, \ \alpha > 0$
- **2** Set $r_0 = y Tx_0$
- 3 Compute "QR-factorization" (Gram-Schmidt) $T\mathbf{U} = \mathbf{C}\mathbf{R}$
- 4 $\mathbf{U} \leftarrow \mathbf{U}\mathbf{R}^{-1}$
- $\mathbf{z}^{(1)} = (r_0, \mathbf{C})_{\mathcal{V}}$
- 6 $x \leftarrow x_0 + \mathbf{Uz}^{(1)}$
- 7 $r \leftarrow r_0 \mathbf{C}\mathbf{z}^{(1)}$
- 8 while STOPPING-CRITERIA do
- 9 $\widehat{\mathbf{w}} \leftarrow = (TT^*r, \mathbf{C})_{\mathcal{Y}}$
- 10 $x \leftarrow x + \alpha T^*r \alpha \mathbf{U}\widehat{\mathbf{w}}$
- 11 $r \leftarrow r \alpha T T^* r + \alpha \mathbf{C} \widehat{\mathbf{w}}$
- 12 end