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Iterative methods for linear systems

Consider solving A(xg + n) = b;
We approximate n = t,,, € V,,, by constraining the residual

b—A(xg+ty,) L 9m, dimV,, = dim V,,
Examples (with ro = An =b — Axg):
e GMRES: V,, = K (A, o) and V,,, = AK (A, 1)

e CG: A SPD, V,, = Kin(A, o) and V,, = K (A, 1)
e BiCG: Vi = K (A, ro) and V,, = K (AT xg)
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Iterative methods for linear systems

Consider solving A(xg + n) = b;
We approximate n = t,,, € V,,, by constraining the residual

b — A(xg + tp) L Yy, dimV, = dimV,,

Examples (with ro = An =b — Axg):
e GMRES: V,, = K (A, o) and V,,, = AK (A, 1)
e CG: A SPD, V,, = Kin(A, o) and V,, = K (A, 1)
e BiCG: Vi = K (A, ro) and V,, = K (AT xg)
...and so on. This formulation works with other Krylov subspace

methods, e.g., as well as gradient descent and many
stationary iterative methods
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Krylov Subspace Method - GMRES

Given A and rg, the mth Krylov subspace is defined
Km(A,ry) = span {rO,ArO, e Am_lro} .
Thus, u € K, (A, ro) is such that
u = p(A)rg

where p(x) is a polynomial of degree less than m.
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GMRES

e For an initial approximation xg, let ro = b — Axg
e Krylov subspace:

K (A, ro) = span {rg, Arg, ..., A™! ro}.
e Choose x,,, = xg + t;,. Let r,;, = b — Ax,,.

e For GMRES, construct x,,, = xg + t,, where
tm € Kin(A,1rp) such that t,, min imizes

i b— A(xg+t
te;cffﬁﬁ,m)” (x0+t)||

e This is equivalent to r,, L AK,,(A, rp)
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GMRES

For an initial approximation xq, let rp = b — Axg
Krylov subspace:

K (A, ro) = span {rg, Arg, ..., A™! ro}.
Choose x,, = xg + t,,. Let r;, = b — Ax,,.

For GMRES, construct x,, = xg + t,, where
tm € Kin(A,1rp) such that t,, min imizes

i b—-—A(xg+t
celin | (%0 +t)]|
This is equivalent to r,, L AK,,(A, rg)

Sibling method: Full Orthogonalization Method (FOM) —
rm L Kn(A, o)
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GMRES

For an initial approximation xq, let rp = b — Axg
Krylov subspace:

K (A, ro) = span {rg, Arg, ..., A™! ro}.
Choose x,, = xg + t,,. Let r;, = b — Ax,,.

For GMRES, construct x,, = xg + t,, where

tm € Kin(A, 1) such that t,, min imizes

i b—A(xg+t
tEICrrle(IR,ro) H (XO )H

This is equivalent to r,, L AK,,(A, rg)

Sibling method: Full Orthogonalization Method (FOM) —

ry L Kn(A,rg)< Conjugate Gradients if A is Hermitian

positive-definite
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Augmented iterative methods

Consider solving A(xg + 1) = b;
We approximate n = s, + t,, € U + V,, according to a
constraint.
e U{ is a fixed subspace used to augment
— many possible choices, may be updated periodically
(e.g., at restart/between systems)
e V), is an iteratively generated subspace associated to an
underlying method
e Enables subspace recycling between restarts and multiple
linear systems

— also can append, e.g., approximate solutions,
approximate eigenvectors, real-time streaming data
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Conceptual Outline: GCRO-type/recycled GMRES cycle

C =AU
Set Q to be the orthogonal projector onto C
Set P to be the AT A-orthogonal projector onto U
Apply GMRES to (I— Q)At =(I— Q)rg
— at stepm: t = t, € Kn(I-Q)A,(I-Q)rp)
. Xm:X0+P77+(I—P)tm
— P(n—ty,) el and t,, €V, = £,,(I-Q)A, (I-Q)rp)

o U < Upew where Upew CU + Vi

See, e.g.,: de Sturler ’96, '99, Parks et al 05
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GCRO-DR all-at-once approach

Build V,, via Arnoldi for (I — Q)A, (I — Q)ro)
Modified Arnoldi

AU V,|=[C V]G,

Bn

where G, = {Ik H

] and B,, = CTAV,,.

m

e Full Minimization (full residual constraint L A(U + Vy,) )

(Zm, Ym) = argmin
uerk
veERI

Yy

[C V] 10— G, H

2

® Xy = X0+ 1)770 %_.\fﬂ%)’ww 4_.[IZ7n
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GCRO-DR projected GMRES approach

e Build V,, via Arnoldi for K,,(I — Q)A, (I — Q)ro)

o t,, = V,,ym is the mth GMRES approximation for
I-Q)At = (I-Q)ro
o x,, =x0+Pny+ (I-P)t,
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Deriving augmented iterative methods

One approach has its origins in domain decomposition.

e Choose projectors P and Q onto ¢/ and C = AU,
respectively (orthogonal or oblique)

— Required: AP = QA
ex=x0+n=%x0+Pn+(I-P)n

— Pn can be directly computed

— (I — P)n is approximated by an iterative method

Apply an iterative method to (I — Q)At = (I — Q)r( to obtain
t,, and approximate

(I-P)n~ (I-P)t,,

!see, e.g., Mandel 1993, Erlangga and Nabben 2008, Dolean et al (SIAM
Book) 2015
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Residual constraint formulation

Consider solving A(xg +n) = b;
We can also approximate 1 = s, + t,, € U + V' by
constraining the residual over a sum of spaces

b — A(xo+ Sm + bm) LU+ V),

e GCRO-DR: U +V,, = AU+ V)
¢ DCG2 U+ Vy =U+Vy,
e non-optimal methods have a variety constraint strategies

How to reconcile different derivations and augmentation
strategies?

2Saad et al ’00
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)
@ The correction Uz") + Uzg) + V. ym satisfies
—_————  ——

Sm tm
b—A(xg+sm+tn) LU+YV, —
oy, approz. solves (I—Q)AV,,v=(I1-Q)ryp

“special cases proven by, e.g., de Sturler 96, Gaul et al ’13, Gaul ’14,
Gutknecht '15, Kahl and Rittich ’17

Soodhalter Trinity College - Dublin Recycling methods framework



How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)
@ The correction Uz") + Uzg) + V. ym satisfies
—_————  ——

Sm tm

b—A(X0+Sm+tm) LU+ YV, —
L4 /fm = (I_Q) [PO_AVmYm] —Lf}m

“special cases proven by, e.g., de Sturler 96, Gaul et al ’13, Gaul ’14,
Gutknecht '15, Kahl and Rittich ’17
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)
@ The correction Uz") + Uzg) + V. ym satisfies
—_————  ——

Sm tm

b—A(X0+Sm+tm) LU+ YV, —
o Vi, (I-Q)AV,ym =V}, (I-Q)rg

“special cases proven by, e.g., de Sturler 96, Gaul et al ’13, Gaul ’14,
Gutknecht '15, Kahl and Rittich ’17
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)
@ The correction Uz") + Uzg) + V. ym satisfies
—_————  ——

Sm tm

b—A(X0+Sm+tm) LU+ YV, —
¢ V;,I-Q)AV,y, = V;, (1-Q)rg
e initial error projection

“special cases proven by, e.g., de Sturler 96, Gaul et al ’13, Gaul ’14,
Gutknecht '15, Kahl and Rittich ’17
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)
@ The correction Uz") + Uzg) + V. ym satisfies
—_————  ——
sm~ _ Eam
b—A(xg+sm+tn) LU+YV, —
e Vi I—Q)AV,ym = V5 (I-Q)ro
o Uz() = P (x — xq)

“special cases proven by, e.g., de Sturler 96, Gaul et al ’13, Gaul ’14,
Gutknecht '15, Kahl and Rittich ’17
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)
@ The correction Uz") + Uzg) + V. ym satisfies
—_————  ——

Sm tm
b—A(X0+Sm+tm) LU+ YV, —
e Vi,(I- Q) AV,yn = V;, 1-Q)ro
o Uz() = P (x — xq)
e projection of Vi ym

“special cases proven by, e.g., de Sturler 96, Gaul et al ’13, Gaul ’14,
Gutknecht '15, Kahl and Rittich ’17
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)
@ The correction UzM) + Uzgg) + Vi ym satisfies
—_———  ~—

Sm Em
b — A (xg + Spm + ti) LU+ VY, =
o Vi, (I- Q) AV,ym = Vi, (I-Q)ry
o Uz() = P (x — xq)
e Uz? = PV,ym

“special cases proven by, e.g., de Sturler '96, Gaul et al 13, Gaul 14,
Gutknecht ’15, Kahl and Rittich 17
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)
@ The correction UzM) + Uzgg) + Vi ym satisfies
—_———  ~—

Sm tm

b—A(Xo+sm+tm)LL~l+l7m =
V:n (I_Q) AV, ym :V:n (I_Q) ro

(]

o Uz() = P (x — xq)

° Ung) =—-PV,ym

o full residual r,, is projected subproblem residual

“special cases proven by, e.g., de Sturler '96, Gaul et al 13, Gaul 14,
Gutknecht ’15, Kahl and Rittich 17
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)

@ The correction UzM) + Uzgg) + Vi ym satisfies
—_——— ~——

Sm tm

b — A (X0 +Sm +tm) LU+ Vy <~
o Vi, (I- Q) AV,ym = Vi, (I-Q)rg
o Uz() = P (x — xq)
e Uz? = PV,ym
er,=7,=(1-Q)[ro— AV,,yn]

“special cases proven by, e.g., de Sturler '96, Gaul et al 13, Gaul 14,
Gutknecht ’15, Kahl and Rittich ’17
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)

@ The correction UzM) + Uzgg) + Vi ym satisfies
—_——— ~——

Sm tm

b — A (X0 +Sm +tm) LU+ Vy <~
Vi, (I- Q) AVyym = Vi, (I- Q)
o Uz() = P (x — xq)

e Uz? = PV,ym
er,=7,=(1-Q)[ro— AV,,yn]

“special cases proven by, e.g., de Sturler '96, Gaul et al 13, Gaul 14,
Gutknecht ’15, Kahl and Rittich ’17

v

e P. Q projectors as before with nullspaces determined by u.
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How to design an augmented iterative method

Theorem (Kilmer, de Sturler, S. '20)

@ The correction UzM) + Uzgg) + Vi ym satisfies
—_——— ~——

Sm tm

b — A (X0 +Sm +tm) LU+ Vy <~
Vi, (I- Q) AVyym = Vi, (I- Q)
o Uz() = P (x — xq)

e Uz? = PV,ym
er,=7,=(1-Q)[ro— AV,,yn]

“special cases proven by, e.g., de Sturler '96, Gaul et al 13, Gaul 14,
Gutknecht ’15, Kahl and Rittich ’17

v

e P. Q projectors as before with nullspaces determined by u.

e r,, =T,, = projected problem determines convergence
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Previous work...list not exhaustive

e Existing methods:

— Well-posed problems: [GCRO-DR, Parks et al|,
[Deflated CG, Saad et al ’00; Carlberg '16], [Recycled
BiCG, Ahuja ’09; Ahuja et al, '12|, [Recycled
MINRES, Wang et al, ’07; Schlomer and Gaul, '14],
[GMRES for Shifted Systems, S. ’12; S. et al ’14; S.
'16], [FGMRES-based augmentation, Saad "97|

— Ill-posed problems: [Augmented GMRES, Baglama
and Reichel 07|, [Augmented CG, Calvetti et al 03],
[Renaut et al ’12],|Augmented rrGMRES, Dong et al
"14],[Augmented LSQR, Jiang et al 2021]

e Analysis/Framework: [Non-optimal augmentation, Saad
97|, [Recycling Methods, Gaul Ph.D. Thesis "14],

[Deflation/Augmentation Framework, Gutknecht ’12; Gaul
et al ’13; Gutknecht ’14; de Sturler, Kilmer, S. ’20 and
in-progress review/algorithm design paper|
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Separates spaces from projected subproblem

Residual projection over sums of subspaces induces a projected
subproblem independent from V,, (and V,;,)

e GCRO-DR and DCG have agreement of projectors (such as
in [Gutknecht '14])

e Framework admits larger subclass of augmented methods
into ‘“recycling” paradigm

e Design of new methods with differing operators in
projected subproblem and solution subspace possible

— need operator compatibility for efficient
implementation
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Unprojected methods

rrrGMRES [Dong et al ‘14|, [S. ‘22]

Method proposed is a minimum residual method, meaning
rm L AU+ V). However, V,, = K, (A, Ab‘s) is range
restricted and unprojected.

Soodhalter Trinity College - Dublin Recycling methods framework



Unprojected methods

rrrGMRES [Dong et al ‘14|, [S. ‘22]
Method proposed is a minimum residual method, meaning
rm L AU+ V). However, V,, = K, (A, Ab‘s) is range
restricted and unprojected.
e New modified Arnoldi method
A[V, U]=[V;n C,]|H»

= W
3 3
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Unprojected methods

rrrGMRES [Dong et al ‘14|, [S. ‘22]
Method proposed is a minimum residual method, meaning
rm L AU+ V). However, V,, = K, (A, Ab‘s) is range
restricted and unprojected.
e New modified Arnoldi method _
AlVa Ul=[Vian Gl |Hm 2r

m

T H, ]§m
v e[ B

—

e Solve min
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Unprojected methods

rrrGMRES [Dong et al ‘14|, [S. ‘22]

Method proposed is a minimum residual method, meaning
rm L AU+ V). However, V,, = K, (A, Ab‘s) is range
restricted and unprojected.

e New modified Arnoldi method

A[Ve Ul=[Vu Cu] Ho ];m]
e Solve min ||[Vj41 Cp]"b? — [Hm Bm} m
F,| |z )
e Equivalently, (ﬁﬁﬁ — ﬁ;‘gﬁmﬁz Lﬁm> Vi = rhs
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Unprojected methods

rrrGMRES [Dong et al ‘14|, [S. ‘22]
Method proposed is a minimum residual method, meaning
rm L AU+ V). However, V,, = K, (A, Ab‘s) is range
restricted and unprojected.
e New modified Arnoldi method _
AlVn U=[Vsu G [Tm Er]

m

v v e B[]
")

e Equivalently, (H H - H B BT

e Solve min

2

Ym = rhs

e t,, =V, vy, and s,, = Pey — Pt,,
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Short recurrence methods

The framework accommodates short recurrence methods

Challenges

e Short-recurrence compatibility must be ensured

— DCG: projected operator is Hermitian

— RMINRES: projected operator is Hermitian on the
Krylov subspace

— bi-orthog Lanczos: for appropriate projector pairs,
bi-orthogonality of bases still holds on the Krylov
subspaces

— Golub-Kahan bi-diagonalization: similar

e Must systematically update recycled subspace without
storing all vectors

e Stability
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Windowed Lanczos for efficient recycled subspace updates

Fl_n‘z ____________ I
If)’._) ay O3 |
| B3 az 4, |
R |
I e Qeenp-2 O-1)p-1 ) |
| Bie-1p-1 e—1p—1 Oe-1yp | ]
B np  Q-1)p |f\u 1p+1

I Be Dp+1 [l-1)p+1
e — — Bie Dp+2 - f;lp

I\u, 1)p+1] Qg
L ‘fl,n‘l

T

Vi = [V(f—l)p Xf] i AV, = [V(f—l)p v, pr+1] T
= 0(r—1)pV(e-1)p + VT + Bopt1Vep+1

(and similar for biorthogonal bases)?

Leads to short recurrence updates for recycled subspace
3see, e.g., [Wang et al ‘07; Ahuja et al ‘12; Bolten et al ‘22|

Recycling methods framework
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Short recurrence methods-stability

How we exploit short-recurrences can effect stability. For
example:

e DCG [Saad et al ‘00]: all at once approach folds
augmenting subspace into search direction construction

e |[Kahl & Rittich] first observed the projected problem
formulation — apply CG directly to a projected subproblem
and get update in U by projection at convergence

— inherits stability characteristics of CG
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Recycling for matrix function evaluation
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The Arnoldi approximation of f(A)b Part I

Evaluate: f(A / f(o) (eI — A 'b do
T 2mi
e f(z) =exp(z): the solution of ODEs
e f(z) =log(z): Markov model analysis
o f(z) =sign(z): lattice QCD simulations with overlap
fermions

o f(2)= %: standard linear system solution

When A is large and sparse, matrix-free Krylov subspace
methods used to approximate f(A)b
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The Arnoldi approximation of f(A)b Part 11

Ingredients:
e (cI-A)"'b < (¢dI-A)x(0)=Db
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The Arnoldi approximation of f(A)b Part 11

Ingredients:
e (cI-A)"'b < (¢dI-A)x(0)=Db
e Shift Invariance: K,,(cI — A;b) = K,,,(A,b)
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The Arnoldi approximation of f(A)b Part 11

Ingredients:
e (cI-A)"'b < (¢dI-A)x(0)=Db
e Shift Invariance: K,,(cI — A;b) = K,,,(A,b)

e Shifted FOM Condition:
b — (61— A)(xo(0) + Vinym(o)) L Kn(A,b)
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The Arnoldi approximation of f(A)b Part 11

Ingredients:
e (cI-A)"'b = (cI-A)x(c)=b
e Shift Invariance: K,,(cI — A;b) = K,,,(A,b)
Shifted FOM Condition:
b — (61— A)(xo(0) + Vinym(o)) L Kn(A,b)
Shifted FOM Approximation:
ym(o) = ||b||(c1 - H,,)le; = x(0) =~ V(oI — Hy,) leg
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The Arnoldi approximation of f(A)b Part 11

Ingredients:
e (cI-A)"'b = (cI-A)x(c)=b
e Shift Invariance: K,,(cI — A;b) = K,,,(A,b)
Shifted FOM Condition:
b — (61— A)(xo(0) + Vinym(o)) L Kn(A,b)
Shifted FOM Approximation:
ym(o) = ||b||(c1 - H,,)le; = x(0) =~ V(oI — Hy,) leg

e Matrix function action approximation:
~ o [ 0ValoT-H,) er do = [V, (e
= omi
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Some related /background works

e Hochbruck and Lubich. On Krylov subspace approzimations
to the matriz exponential operator. SINUM 1997.

e Saad. Analysis of some Krylov subspace approximations to
the matriz exponential operator. SINUM 1992.

e Eiermann, Ernst, and Giittel. Deflated restarting for matrix
functions. SIMAX 2011.

e Simoncini. Restarted full orthogonalization method for
shifted linear systems. BIT 2003.

e Many others. ..
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Difficulties extending recycling to approximate f(A)b

Find t,,(0) € V;, corresponding to each o

(I-Qo)(cI—A)t(o) = (I-Qqs)b
such that r,(6) = (I - Q,)(b — (61 — A)t(0)) L Vi

e Augmentation for each shifted system induces its own
shift-dependent projected subproblem

(I- QO’)(UI - A)t(U) =I- Qa)b
Km((I-Qs)(cI—A), (I—Q,)b) is no longer shift invariant
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Alternative augmented projection formulation

Find t,,,(0) € Vp,, corresponding to each o
(cI—-A)t(oc)=b

such that r,,(¢) =b — (61 — A)t(o) L (I— Qy)*Vin
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Alternative augmented projection formulation

Find t,,,(0) € Vp,, corresponding to each o

(cI—-A)t(oc)=b

such that r,,(¢) =b — (61 — A)t(o) L (I— Qy)*Vin

e Moves projector from subproblem onto constraint space
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Alternative augmented projection formulation

Find t,,,(0) € Vp,, corresponding to each o
(cI—-A)t(oc)=b

such that r,,(¢) =b — (61 — A)t(o) L (I— Qy)*Vin

e Moves projector from subproblem onto constraint space

e Applying non-projected augmentation enables use of
Krylov shift invariance
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Alternative augmented projection formulation

Find t,,,(0) € Vp,, corresponding to each o
(cI—-A)t(oc)=b

such that r,,(¢) =b — (61 — A)t(o) L (I— Qy)*Vin

e Moves projector from subproblem onto constraint space

e Applying non-projected augmentation enables use of
Krylov shift invariance

e FOM-type condition Vy, = K (A, b)

Soodhalter Trinity College - Dublin Recycling methods framework



Alternative augmented projection formulation

Find t,,,(0) € Vp,, corresponding to each o
(cI—-A)t(oc)=b

such that r,,(¢) =b — (61 — A)t(o) L (I— Qy)*Vin

e Moves projector from subproblem onto constraint space

Applying non-projected augmentation enables use of
Krylov shift invariance

FOM-type condition Vy, = Ky (A, b)

Multiple approaches to computing x,,, (o)
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Alternative augmented projection formulation

Find t,,,(0) € Vp,, corresponding to each o

(cI—-A)t(oc)=b

such that r,,(¢) =b — (61 — A)t(o) L (I— Qy)*Vin

e Moves projector from subproblem onto constraint space

e Applying non-projected augmentation enables use of
Krylov shift invariance
e FOM-type condition Vy, = K (A, b)
e Multiple approaches to computing x,, (o)
o (Vo= Qo)[Vin(oT — Hyn) = hjs15v511€5])ym(or) =
i1 —Qo)b
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Alternative augmented projection formulation

Find t,,,(0) € Vp,, corresponding to each o

(cI—-A)t(oc)=b

such that r,,(¢) =b — (61 — A)t(o) L (I— Qy)*Vin

e Moves projector from subproblem onto constraint space

e Applying non-projected augmentation enables use of
Krylov shift invariance

e FOM-type condition Vy, = K (A, b)

e Multiple approaches to computing x,, (o)

o (ViI—=Qo)[Vim(ol —Hp) — hjy1vjtien, w)ym(o) =

Vin(I-Qo)b

o X,(0) =V ym(o)+U(cU*U - U*C)*IU*b U(cU*U -

U*C)'U* [V, (01 — Hy,) — hjt1,vjt1el]ym(o)
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Recycled FOM for functions of matrices (rFOM?)

f(A)b fz/f )% (0

211

e Choose an approach for computing x,, (o)
— Decoupled approach (last slide)
— All-at-once approach
— Matrix-function evaluation plus correction:
F(A)b =V, f(Gp) (W5 W) " 'Wi b — V,, TW?, b
e Choose appropriate contour and some quadrature technique
to numerically integrate

Vi [U V m], Wi =[C V]
T=gs [ fo W*ﬁvmxal = G)) T 1+ Wi R (W, W) (o1 —
Gm)) HYWiRe (W5, W) (01 — G)) ! do
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Eigenvector /Harmonic Ritz vector recycling

Recycle to project away (approximate) eigenvector directions
associated to eigenvalues near singularities of f(z)

e Use exact eigenvectors if you have them (rare)

e For a sequence of problems, compute Harmonic Ritz vectors

Find  (y;,p;) such that  A7ly; — pys L A(Kn(A,b) +U)
with  y, € A(Kn(A,b) +U)
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Numerical Results
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Experiment 1: f(A)b with U exact eigenvectors

Figure: tTFOM? approx f(A)b for (a) f(z) = sign(A), A is a Wilson
Dirac (4% lattice); (b) f(z) = L for the same; (c) f(z) = log(z) for A
is a 10° x 105 chemical potential matrix; (d) f(z) = 1/ for a 10% x 105
Poisson matrix. Cycle length m = 40 and recycle space dim. k = 20
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Soodhalter

inv(A)b - error vs. problem index

I S
o e =

—&— Arnoldi

o Arnoldi (q)

N FOM? f;
e ——rFOM? fy
N & 1FOM? f;

problem index

(a)

[S(A)D =2

inv(A)b - error vs. problem index

a Q

RSN

A
g g’

—&— Arnoldi
o Arnoldi (q)

problem index

(b)

Figure: Error comparison for a sequence of 15 applications of the
inverse of the sign function to 15 random vectors. Cycle length
m = 40 and recycle space dim. k = 20 and 2000 quadrature points. In

fig (a) we took € =0, and in (b) € = 0.001.
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Experiment 3: sign(A + ¢R;)b;

Figure: TFOM? 30 applications of sign function on for different values
of e. (a) e =0; (b) € =0.0001; (c) € = 0.001; (d) e = 0.01. Cycle
length m = 40 and recycle space dim. k = 20 and 2000 quadrature
points. (d) demonstrates need to modify contour for 20" system.
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Conclusions and future work

Understanding recycling/augmented iterative methods in a
common framework brings tangible benefits

Straightforward design roadmap for new methods

Methods inherit convergence and stability properties of the
method applied to the projected subproblem

Framework provides clear path to extending recycling to
treating matrix function evaluation

Future: Restarting and error monitoring for recycling for
matrix functions; Augmented /recycling methods for
iterative solvers for other complicated problems (non-linear,
Kronecker/Tensor problems, etc)
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Augmented stationary iterations

Framework accommodates deflated stationary methods; see,
e.g., [Burrage et al ‘98; Brennan et al ‘22]

e Many stationary methods have a residual constraint
formulation

We can build augmented stationary iterative schemes

Such a method was proposed as a deflation scheme in ‘98

Approximately deflate eigenvalues of the iteration matrix
>1

We applied this to an SSOR technique for scattering of
electromagnetic waves from randomly rough surfaces

— More complicated surface leads to iteration matrix
with more “bad” eigenvalues

— Adaptive: iteration allows for estimation of these
eigenvectors
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Analysis of methods as a regularization

Can augmentation techniques be used reliably to treat ill-posed
problems?

e Plenty of methods proposed already

e General strategy: apply regularization method to
I-Q)At = (I-Q)ro

e Regularization analysis: in infinite-dimensional setting for
ill-posed operator T' : X — ) mapping between Hilbert
spaces

Tr=y+ e’

e Recycling methods can be formally posed in this infinite
dimensional setting [de Sturler, Kilmer, S.]
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We can treat the subproblem with any reg. method

Noise-based estimates for the error incurred by all parts of
the method available

Formal analysis in the regularization-theory sense as
noise-level § — 0 possible

Overall residual behavior determined by residual of
projected subproblem

Soodhalter

Trinity College - Dublin Recycling methods framework



e We can treat the subproblem with any reg. method

e Noise-based estimates for the error incurred by all parts of
the method available

e Formal analysis in the regularization-theory sense as
noise-level § — 0 possible

e Overall residual behavior determined by residual of
projected subproblem

Theorem (Hutterer, Ramlau, and S.)

Tz =y with T : X — Y (Hilbert spaces) with y°, ||y — y6}|y < 9.
Treating the projected subproblem with any regularization method
is itself a reqularization method; i.e., as § — 0, xfn —zt =Tty.
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Augmented steepest descent for the normal equations

1
2
3
4
5

Given: U € X* representing U

Set ro =y — Txg

Compute “QR-factorization” (Gram-Schmidt) 7U = CR

U+ UR!

Z(l) = (To, C)y

T < 20+ Uz

7 1+ rog— Cz(M)

8 while STOPPING-CRITERIA do
IT*ril5,

I(Iy=@)T*Tr4ll5,

10 W = (TT*r,C)y,

=]

9 oy =

11 T 4 x+ o T*r — o;Uw
12 r<r—o;TT*r + a;Cw
13 end
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Augmented Landweber for the normal equations

1
2
3
4
5
6

Given: U € X* representing U, a > 0

Set rg =y — T'xg

Compute “QR-factorization” (Gram-Schmidt) T7U = CR
U« UR™!

Z(l) = (7"0, C)y

T xo+ Uz

7 r 19 — Cz(V)

8 while STOPPING-CRITERIA do

9 W = (TT*r,C)y,

10 z — x+aT*r — aUw
11 r<r—aolT*r +aCw
12 end
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