
HMC on Manifolds

School of Physics and Astronomy

University of Edinburgh

A. D. Kennedy



Apology
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„ So lange kann ich 

auch nicht aufbleiben. “

Wolfgang Pauli
(When asked to schedule his lecture at 8 am)

« Je n’ai fait celle-ci plus 

longue que parce que 

je n’ai pas eu le loisir 

de la faire plus courte. »

Blaise Pascal



Motivation
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• Hybrid (or Hamiltonian) Monte Carlo is an 

efficient method for sampling from probability 

distributions in high-dimensional spaces

– It is widely used in lattice field theory and Bayesian 

statistics

– It is naturally defined on Riemannian manifolds

• Gauge fields live on an SU(3, ℝ) group manifold at each site

• Non-linear σ models have fields in 𝑆2 at each site

• ℂℙ𝑛 models have fields in ℂℙ𝑛 at each site

• Statisticians are interested in Stiefel manifolds 𝑉𝑘 ℝ𝑛 (the 

space of k-frames in ℝ𝑛) and the space of covariance 

matrices (symmetric positive definite matrices)



Differential

Geometry
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Differential Manifolds

• Differential manifolds 

“look like” ℝ𝑛 locally

– Have an atlas of coordinate 

charts

– Smooth structure is 

endowed by 𝐶∞ maps 

between charts

• Charts are local: we want 

to use global entities

– Coordinate transformations 

are painful

– Numerically unstable
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𝜙:𝒰 → ℝ𝑛
𝜓:𝒱 → ℝ𝑛

𝜓 ∘ 𝜙−1: 𝜙 𝒰 ∩ 𝒱 ⊆ ℝ𝑛 → 𝜓 𝒰 ∩ 𝒱 ⊆ ℝ𝑛



Curves and Functions

• Curves

– A parametric curve is a 

smooth map from a 

closed interval of ℝ into 

the manifold ℳ

• Functions 𝑓 ∈ Λ0 ℳ

– 0-forms are smooth ℝ-

valued functions over ℳ

• Smoothness will be 

implicit forthwith
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𝑐: 0,1 → ℳ𝑓:ℳ → ℝ



Tangent Vector Fields

• A vector field 𝑣 ∈ Γ ℳ
𝑣: Λ0 ℳ → Λ0 ℳ

is a linear differential operator

– It satisfies the Leibniz rule

𝑣 𝑓𝑔 = 𝑣 𝑓 𝑔 + 𝑓𝑣 𝑔 ∀𝑓, 𝑔 ∈ Λ0

• In a chart 𝑣 = σ𝑗=1
𝑛 𝑣𝑖(𝑥)

𝜕

𝜕𝑥𝑖

– The commutator [𝑢, 𝑣] of two  

vector fields is itself a vector field

• In a chart

𝑢𝑗
𝜕

𝜕𝑥𝑗
, 𝑣𝑘

𝜕

𝜕𝑥𝑗
= 𝑢𝑗

𝜕𝑣ℓ
𝜕𝑥𝑗

− 𝑣𝑗
𝜕𝑢ℓ
𝜕𝑥𝑗

𝜕

𝜕𝑥ℓ
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Fibre Bundles

• 𝑣(𝑝) lives in the tangent space 𝑇𝑝ℳ

• 𝑣 is a section of the tangent bundle 𝑇ℳ
– A fibre bundle is locally just a product 𝒰 ×
ℱ where 𝒰 ⊆ ℳ is an open set and ℱ is the 

vertical manifold

• There is a “vertical” projection 𝜋:𝒰 × ℱ → 𝒰

• For the tangent bundle the fibre is the tangent 

space ℱ = 𝑇𝑥ℳ

– It is not necessarily a global product

• Unlike a global product, there is no “horizontal” 

projection in general

• E.g., 𝑆3 is a fibre bundle with 𝑆1
fibres over 𝑆2. This is the Hopf fibration
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Niles Johnson, OSU



𝑘-Form Fields
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• 1-form fields 𝜔 live in the dual space Λ1 ℳ to the 

space of vector fields Γ(ℳ)
𝜔: Γ ℳ → Λ0 ℳ :𝑣 ↦ 𝜔(𝑣)

– They are sections of the cotangent bundle 𝑇∗ℳ

• A 𝑘-form field 𝛽 ∈ Λ𝑘 ℳ is a totally antisymmetric 

multilinear map

𝛽: Γ ℳ ⊗𝑘 → Λ0 ℳ : 𝑣1, … , 𝑣𝑘 ↦ 𝛽 𝑣1, … , 𝑣𝑘
• There is an associative antisymmetric wedge product

𝛼 ∧ 𝛽 = −1 𝑗𝑘 𝛽 ∧ 𝛼 for 𝛼 ∈ Λ𝑗 ℳ ,𝛽 ∈ Λ𝑘 ℳ

𝛼 ∧ 𝛽 ∧ 𝛾 = 𝛼 ∧ 𝛽 ∧ 𝛾 = 𝛼 ∧ 𝛽 ∧ 𝛾



Exterior Calculus
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• Exterior derivatives map 𝑑: Λ𝑘(ℳ) → Λ𝑘+1(ℳ)

– 𝑑 𝛼 ∧ 𝛽 = 𝑑𝛼 ∧ 𝛽 + −1 𝑗 𝛼 ∧ 𝑑𝛽 (antiderivation)

– 𝑑2 = 0;  central rôle in the de Rahm cohomology and 

the Chevalley—Eilenberg complex

• 𝑑𝑓 𝑣 = 𝑣𝑓 ∀𝑓 ∈ Λ0 ℳ ,𝑣 ∈ Γ(ℳ)

• 𝑑𝛼 𝑢, 𝑣 = 𝑢𝛼 𝑣 − 𝑣𝛼 𝑢 − 𝛼 𝑢, 𝑣 ∀𝛼 ∈ Λ1(ℳ), 𝑢, 𝑣 ∈ Γ(ℳ)

– 𝑑2𝑓 𝑢, 𝑣 = 𝑢 𝑑𝑓 𝑣 − 𝑣 𝑑𝑓 𝑢 − 𝑑𝑓 𝑢, 𝑣
= 𝑢 ∘ 𝑣 − 𝑣 ∘ 𝑣 𝑓 − 𝑢, 𝑣 𝑓 = 0

• 𝑑𝜔 𝑢, 𝑣, 𝑤 = 𝑢𝜔 𝑣,𝑤 + 𝑣𝜔 𝑤, 𝑢 + 𝑤𝜔 𝑢, 𝑣
− 𝜔 𝑢, 𝑣 , 𝑤 − 𝜔 𝑣,𝑤 , 𝑢 − 𝜔 𝑤, 𝑢 , 𝑣

∀𝜔 ∈ Λ2 ℳ , 𝑢, 𝑣, 𝑤 ∈ Γ(ℳ)

– 𝑑2𝛼 𝑢, 𝑣, 𝑤 = 𝛼 𝑢, 𝑣 , 𝑤 + 𝑣,𝑤 , 𝑢 + 𝑤, 𝑢 , 𝑣 = 0

using the Jacobi identity (for commutators)



Symplectic

Geometry



Symplectic Manifolds
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• A symplectic manifold admits a fundamental non-

degenerate closed 2-form field 𝜔
– Such manifolds must be even dimensional

– Darboux theorem: Locally, there is always a chart with 

coordinates (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛) in which 𝜔 = σ𝑗=1
𝑛 𝑑𝑝𝑗 ∧ 𝑑𝑞𝑗

• The cotangent bundle 𝑇∗ℳ is usually symplectic

– Phase space over ℳ

– Liouville form 𝜗 = σ𝑗=1
𝑛 𝑝𝑗 𝑑𝑞𝑗

– Fundamental 2-form 𝜔 = 𝑑𝜗 is then automatically closed

– This is well-defined if the cotangent bundle is a global product

• We will see examples where this is not true later, time permitting



Hamiltonian Vector Fields
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• For 𝐴 ∈ Λ0(ℳ) there is a corresponding Hamiltonian vector field
መ𝐴 ∈ Ham ℳ ⊂ Γ(ℳ) such that for any vector field 𝑢 we have 

𝑑𝐴 𝑢 = 𝜔( መ𝐴, 𝑢)

– This may be expressed as 𝑑𝐴 = 𝑖 ෠𝐴𝜔

• For HMC we define the Hamiltonian function 𝐻 = 𝑇 + 𝑉 on a 

cotangent bundle

– 𝑉 only depends on 𝜋 𝑥 , the position in the base manifold

– In simple cases 𝑇 only depends on the “vertical” position in the fibre 

(the momentum)

• This is not true in general, as we shall soon see

– The integral curves of the Hamiltonian Hamiltonian vector field ෡𝐻 are 

the classical trajectories

– We may build symplectic integrators using the Hamiltonian vector 

fields ෠𝑇 and ෠𝑉



Example — Pendulum

• Base manifold 𝑆1
• Fibre ℝ

• Cotangent bundle 

𝑇∗ℳ = 𝑆1 × ℝ

• Hamiltonian

𝐻 =
1

2
𝑝2 + sin(2𝜋𝑞)
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Hamiltonian Flow

• Energy contours

• Hamiltonian Hamiltonian 

vector field

෡𝐻 = 𝑝
𝜕

𝜕𝑞
− 2𝜋 cos 2𝜋𝑞

𝜕

𝜕𝑝

• Integral curves

𝑐: 𝑡 ↦ 𝑞 𝑡 , 𝑝(𝑡)

• Hamilton’s equations

ሶ𝑐 = ෡𝐻𝑐
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HMC
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• The HMC Markov chain has its fixed-point distribution

∝ 𝑒−𝐻 𝑞,𝑝 = 𝑒−𝑇 𝑞,𝑝 𝑒−𝑉 𝑞

– Momentum refreshment is a momentum Gibbs sampler (heatbath) that 

samples from the momentum distribution 𝑒−𝑇(𝑞,𝑝)

– On the cotangent space of a Riemannian manifold with metric 𝑔

𝑇 𝑞, 𝑝 =
1

2
𝑔−1(𝑝, 𝑝)

• We require a Riemannian metric, 𝑔 > 0, for this distribution to be normalizable

• The marginal distribution of 𝑞 values is proportional to

∫ 𝑑𝑛𝑝 𝑒−
1
2
𝑔−1 𝑝,𝑝 𝑒−𝑉 𝑞 ∝ det 𝑔(𝑞) 𝑒−𝑉 𝑞

– If 𝑔 is a constant, as it is on Lie groups and homogeneous spaces, then 

the factor of det 𝑔(𝑞) is immaterial, but on a general Riemannian 

manifold it is the natural measure

• It is invariant under isometries



Poisson

Geometry



Historical Remark

« … quelques remarques 

sur la plus profonde 

découverte de M. Poisson, 

mais qui, je crois, n’a pas 

été bien comprise ni par 

Lagrange, ni par les 

nombreux géomètres qui 

l’ont citée, ni par son auteur 

lui-même. »

Carl Gustav Jacob Jacobi
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Poisson Brackets
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• The Poisson bracket of the 0-forms (functions) 𝐴 and 𝐵 is

𝐴, 𝐵 = −𝜔 መ𝐴, ෠𝐵
– By the following algebraic manipulations 

• መ𝐴 𝐵 = 𝑑𝐵 መ𝐴 = 𝜔 ෠𝐵, መ𝐴 = 𝐴, 𝐵

• 𝜔 መ𝐴, ෠𝐵 , መ𝐶 = −𝜔 መ𝐶, መ𝐴, ෠𝐵 = −𝑑𝐶 መ𝐴, ෠𝐵 = − መ𝐴, ෠𝐵 𝐶

• መ𝐴, ෠𝐵 𝐶 = መ𝐴 ෠𝐵 − ෠𝐵 መ𝐴 𝐶 = መ𝐴 𝐵, 𝐶 − ෠𝐵 𝐴, 𝐶 = 𝐴, 𝐵, 𝐶 − 𝐵, 𝐴, 𝐶

•
𝑑𝜔 መ𝐴, ෠𝐵, መ𝐶 =

− መ𝐴 𝐵, 𝐶 − ෠𝐵 𝐶, 𝐴 − መ𝐶 𝐴, 𝐵

− 𝜔 መ𝐴, ෠𝐵 , መ𝐶 − 𝜔 ෠𝐵, መ𝐶 , መ𝐴 − 𝜔 መ𝐶, መ𝐴 , ෠𝐵

= 3 𝐴, 𝐵, 𝐶 + 𝐵, 𝐶, 𝐴 + 𝐶, 𝐴, 𝐵 = 0

– they form non-trivial Lie algebra

𝐴, 𝐵, 𝐶 + 𝐵, 𝐶, 𝐴 + 𝐶, 𝐴, 𝐵 = 0

– Moreover, Hamiltonian vector fields are closed under 

commutation መ𝐴, ෠𝐵 = ෣𝐴,𝐵 since

• መ𝐴, ෠𝐵 𝐶 = − 𝐶, 𝐴, 𝐵 = 𝐴, 𝐵 , 𝐶 = ෣𝐴,𝐵 𝐶



Structure-preserving maps
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• Morphisms are called

– Continuous for topological spaces

– Smooth for differential manifolds

– Symplectic or canonical transformations for 

Symplectic manifolds

• Isomorphisms of these structures are called

– Homeomorphisms for topological spaces

– Diffeomorphisms for differential manifolds

– Symplectomorphisms for symplectic manifolds

– Ichthyomorphisms for Poisson manifolds

• For people who like multilingual puns



BCH and Shadow Hamiltonians
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• The Baker—Campbell —Hausdorff formula is a formal expression 

for the product of matrix exponentials

𝑒𝑋 ⋅ 𝑒𝑌 = exp 𝑋 + 𝑌 +
1

2
𝑋, 𝑌 +

1

12
𝑋, 𝑋, 𝑌 − 𝑌, 𝑋, 𝑌 +⋯

• Since ෠𝑋, ෠𝑌 = ෣𝑋,𝑌 this gives ෣𝑒𝑋 ⋅ 𝑒𝑌 = 𝑒 ෩𝐻 with the Shadow 

Hamiltonian

෩𝐻 = exp ෠𝑋 + ෠𝑌 +
1

2
෠𝑋, ෠𝑌 +

1

12
෠𝑋, ෠𝑋, ෠𝑌 − ෠𝑌, ෠𝑋, ෠𝑌 + ⋯

– For ෠𝑋, ෠𝑌 = 𝒪 𝛿𝜏 this is an asymptotic expansion

• As (symmetric) symplectic integrators are products of such 

exponentials they are the geodesics of the Shadow Hamiltonian

Hamiltonian vector field ෡෩𝐻
– Thus ෩𝐻 is a constant of motion, and as 𝐻 = ෩𝐻 + 𝒪 𝛿𝜏𝑛 the energy 𝐻 is 

approximately conserved even for long trajectories



Historical Remark

“Metropolis was boss of 

the computer 

laboratory. We never 

had a single scientific 

discussion with him.”

Marshall Rosenbluth
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Symmetric Symplectic Integrators
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• The key idea of HMC is that we may 

approximate Hamiltonian trajectories using 

symmetric symplectic integrators

– The simplest example is the leapfrog (Störmer—

Verlet) integrator

exp
𝛿𝜏

2
෠𝑉 exp 𝛿𝜏 ෠𝑇 exp

𝛿𝜏

2
෠𝑉

𝜏/𝛿𝜏

= exp ෡𝐻 + 𝒪 𝛿𝜏2 𝜏

• This equation follows from the BCH formula

• This is used to suggest a candidate update for 

the Metropolis algorithm

– The acceptance probability is min 1, 𝑒−𝛿𝐻



Riemannian

Geometry



Connections
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• A connection on a manifold is bilinear map

∇: Γ ℳ × Γ ℳ → Γ ℳ

• It is a derivation, so it satisfies

ቋ
∇𝑓𝑢𝑣 = 𝑓∇𝑢𝑣

∇𝑢 𝑓𝑣 = 𝑢𝑓 𝑣 + 𝑓∇𝑢𝑣
∀𝑢, 𝑣 ∈ Γ ℳ , 𝑓 ∈ Λ0(ℳ)

• ∇𝑢𝑣 is the covariant derivative of 𝑣 with respect to 𝑢

– In a chart ∇𝜕𝑗𝜕𝑘 = Γ𝑗𝑘
ℓ 𝜕ℓ with the notation 𝜕ℓ =

𝜕

𝜕𝑥ℓ

– Γ𝑗𝑘
ℓ are Christoffel symbols

• The torsion of the connection is

𝑇 𝑢, 𝑣 = ∇𝑢𝑣 − ∇𝑣𝑢 − 𝑢, 𝑣



Riemannian Manifolds
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• A Riemannian manifold has the additional structure of a positive 

definite metric tensor

𝑔: Γ ℳ × Γ ℳ → Λ0 ℳ
– At each point 𝑞 ∈ ℳ and vectors 𝑢 ≠ 𝑣 ∈ 𝑇𝑞ℳ we have 𝑔 𝑢, 𝑣 > 0

• This defines the norm 𝑣 = 𝑔 𝑣, 𝑣 of a vector 𝑣 ∈ 𝑇𝑞ℳ

• The length of a curve 𝑐: 𝑎, 𝑏 → ℳ is defined to be

ℓ 𝑐 = න

𝑎

𝑏

𝑑𝑡 ሶ𝑐 𝑡 = න

𝑎

𝑏

𝑑𝑡 𝑔 ሶ𝑐 𝑡 , ሶ𝑐 𝑡

– Where ሶ𝑐: 𝑎, 𝑏 → Γ ℳ is the tangent 

to the curve, ሶ𝑐 = ቚ
𝑑

𝑑𝑡 𝑐
, and ሶ𝑐 𝑡 is thus 

the tangent vector at parameter 𝑡
• We say it is the tangent at 𝑐(𝑡), but this may 

be ambiguous for a self-intersecting curve

𝑐 𝑡 = 𝑐(𝑡′)

ሶ𝑐 𝑡 ≠ ሶ𝑐(𝑡′)



Metric Connections
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• On a Riemannian manifold a metric connection

obeys
𝑢𝑔 𝑣,𝑤 = 𝑔 ∇𝑢𝑣,𝑤 + 𝑔(𝑣, ∇𝑢𝑤)

• There is a unique torsion-free Levi-Civita

connection
– It is given by the Koszul formula

2𝑔 ∇𝑢, 𝑣, 𝑤 =
𝑔 𝑣,𝑤 + 𝑣𝑔 𝑤, 𝑢 − 𝑤𝑔 𝑢, 𝑣

−𝑔 𝑢, 𝑣, 𝑤 + 𝑔 𝑣, 𝑤, 𝑢 + 𝑔(𝑤, 𝑢, 𝑣 )

– In a chart Christoffel symbols are

Γ𝑖𝑗
𝑘 =

1

2
𝑔𝑘ℓ 𝜕𝑖𝑔𝑗ℓ + 𝜕𝑗𝑔𝑖ℓ − 𝜕ℓ𝑔𝑖𝑗



Geodesics
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• The distance 𝑑(𝑞, 𝑞′) between two nearby 

points 𝑞, 𝑞′ ∈ ℳ is the length of the shortest 

curve connecting them
– Such curves satisfy the geodesic equation ∇ ሶ𝑐 ሶ𝑐 = 0 and are 

called minimal geodesics

– In a chart the geodesic equation is ሷ𝑐 + Γ𝑖𝑗
𝑘 ሶ𝑐𝑖 ሶ𝑐𝑗 = 0

• This provides ℳ with a metric consistent with 

its topology

– Not all points need be connected by a single 

geodesic



Riemannian Hamiltonian Systems
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• The natural kinetic energy 𝑇 ∈ Λ0 𝑇∗ℳ is

𝑇 𝑞, 𝑝 = 1
2 𝑔

−1(𝑝, 𝑝)

– The Hamiltonian vector field ෠𝑇 in a Darboux chart is

෠𝑇𝜇

෠𝑇𝜎
=

𝜕𝑇

𝜕𝑝𝜇

−
𝜕𝑇

𝜕𝑞𝜎

=

𝑔𝜇𝜈𝑝𝜈

−
1

2

𝜕𝑔𝜇𝜈

𝜕𝑞𝜎
𝑝𝜇𝑝𝜈

• For the integral curve c = 𝑄, 𝑃 we have ሶ𝑐 = ሶ𝑄, ሶ𝑃 = ห෠𝑇
𝑐

ሶ𝑄𝜇 = ෠𝑇𝜇 = 𝑔𝜇𝜈𝑃𝜈 ሶ𝑃𝜎 = ෠𝑇𝜎 = −
1

2

𝜕𝑔𝜇𝜈

𝜕𝑞𝜎
𝑃𝜇𝑃𝜈



Details…
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• Since

𝑔𝜇𝜈𝑔
𝜈𝜌 = 𝛿𝜇

𝜌
⇒
𝜕𝑔𝜇𝜈

𝜕𝑞𝜎
𝑔𝜈𝜌 + 𝑔𝜇𝜈

𝜕𝑔𝜈𝜌

𝜕𝑞𝜎
= 0 ⇒

𝜕𝑔𝛼𝜌

𝜕𝑞𝜎
= −𝑔𝛼𝜇

𝜕𝑔𝜇𝜈

𝜕𝑞𝜎
𝑔𝜈𝜌

• and 𝑃𝜎 = 𝑔𝜎𝜈 ሶ𝑄𝜈 we may write Hamilton’s equations in 

second-order form

ሶ𝑃𝜎 = ሶ𝑔𝜎𝜈 ሶ𝑄𝜈 + 𝑔𝜎𝜈 ሷ𝑄𝜈 =
1

2

𝜕𝑔𝜎𝛽

𝜕𝑞𝛼
+
𝜕𝑔𝜎𝛼
𝜕𝑞𝛽

ሶ𝑄𝛼 ሶ𝑄𝛽 + 𝑔𝜎𝜈 ሷ𝑄𝜈

= −
1

2

𝜕𝑔𝜇𝜈

𝜕𝑞𝜎
𝑔𝜇𝛼 ሶ𝑄𝛼𝑔𝜈𝛽 ሶ𝑄𝛽 =

1

2

𝜕𝑔𝛼𝛽

𝜕𝑞𝜎
ሶ𝑄𝛼 ሶ𝑄𝛽

ሷ𝑄𝜇 = −
1

2
𝑔𝜇𝜎

𝜕𝑔𝜎𝛽

𝜕𝑞𝛼
+
𝜕𝑔𝛼𝜎
𝜕𝑞𝛽

−
𝜕𝑔𝛼𝛽

𝜕𝑞𝜎
ሶ𝑄𝛼 ሶ𝑄𝛽 = −Γ𝛼𝛽

𝜇 ሶ𝑄𝛼 ሶ𝑄𝛽
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• The projection 𝜋(c) of 𝑐 onto the base manifold ℳ
satisfies the geodesic equation

ሷ𝑄𝜇 + Γ𝛼𝛽
𝜇 ሶ𝑄𝛼 ሶ𝑄𝛽 = 0

– at least locally; the existence of global geodesics is a more 

subtle issue (c.f., the Hopf—Rinow theorem)

• The update step exp: Ham 𝑇∗ℳ → 𝑇∗ℳ×𝑇∗ℳ: ෠𝑇 ↦ e ෠𝑇

on a Hamiltonian manifold corresponds to following a 

geodesic

– This is called the exponential map

– This is hard to do exactly in general

– But in most applications 𝑔 is “constant”



Lie Groups
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• A Lie group 𝒢 is a manifold with a 

group structure

– Left action 𝑔: 𝒢 → 𝒢: ℎ ↦ 𝑔ℎ

• Induced maps

– 𝑔∗: Λ0 𝒢 → Λ0 𝒢 : 𝑓 ↦ 𝑔∗𝑓
𝑔∗𝑓 ℎ = 𝑓 𝑔ℎ

– 𝑔∗: Γ 𝒢 → Γ 𝒢 : 𝑣 ↦ 𝑔∗𝑣
𝑔∗𝑣 𝑓 = 𝑣 𝑔∗𝑓
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• This allows us to define left-

invariant vector fields

𝑣 = 𝑔∗𝑣

– These are “constant” in a 

natural way

– They are not constant in any 

chart

• Every such field is determined 

by its value at the origin

ቚ𝑣
𝑔
= ቚ𝑔∗𝑣

1

– The space of left-invariant 

fields has dimension dim 𝒢

• The commutator of two left-

invariant vector fields is itself 

left-invariant

𝑒𝑗 , 𝑒𝑘 = 𝑐𝑗𝑘
𝑖 𝑒𝑖

– 𝑐𝑗𝑘
𝑖 are structure constants

– The space of left-invariant 

vector fields is the Lie algebra 𝔤

– Maurer—Cartan forms are duals 

of left-invariant 1-forms

𝜃𝑖 𝑒𝑗 = 𝛿𝑗
𝑖

– These satisfy the Maurer—

Cartan equations

𝑑𝜃𝑖 = −
1

2
𝑐𝑗𝑘
𝑖 𝜃𝑗 ∧ 𝜃𝑘
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• There is a left-invariant Liouville form 𝜗 ∈ Λ1 𝑇∗𝒢

𝜗 = ෍

𝑗=1

dim 𝒢

𝑝𝑗𝜃
𝑗

• This gives the left-invariant fundamental form

𝜔 = 𝑑𝜗 = ෍

𝑗=1

dim 𝒢

𝑑𝑝𝑗 ∧ 𝜃
𝑗 + 𝑝𝑗𝑑𝜃

𝑗 = ෍

𝑗=1

dim 𝒢

𝑑𝑝𝑗 ∧ 𝜃
𝑗 − 𝑐𝑘ℓ

𝑗
𝑝𝑗𝜃

𝑗 ∧ 𝜃ℓ

• Most Lie groups admit a pseudo-Riemannian metric

– For matrix groups 𝑔 𝑢, 𝑣 = −tr 𝑈 𝑢 ⋅ 𝑈 𝑣 where 𝑈: 𝔤 → GL(𝑛)

is a representation of the Lie algebra 𝔤

– This induces a metric for a connected compact Lie group in 

terms of minimal geodesics (the exponential map)



HMC on

Lie Groups
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• Global quantities are nice, but how to represent them in a 

computer?

• For numerical computations we would like to express global 

quantities in global coordinates

• This may be done by embedding the manifold in a higher-

dimensional Euclidean space

– This is always possible by the Whitney embedding theorem which 

states that any manifold ℳ may be embedded in ℝ𝑛 with n ≥ 2dimℳ

• For matrix Lie groups we may use the obvious embeddings

SO 𝑛, ℝ ↪ GL(𝑛,ℝ) ↪ ℝ𝑛2

SU 𝑛 ↪ GL(𝑛, ℂ) ↪ ℂ𝑛
2

– This has the nice property that group multiplication is matrix 

multiplication

– Moreover, the exponential map becomes a matrix exponential
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• The embedding is just the defining representation

𝑈: SU 𝑛 ↪ ℂ𝑛
2

– We may consider this as a collection of component maps

𝑈𝑎𝑏: SU 𝑛 → ℝ:𝑔 ↦ 𝑈𝑎𝑏(𝑔)

– The matrix generators are 𝑇𝑖 = ȁ𝑒𝑖𝑈 1

– Using left-invariance we have 𝑒𝑖𝑈 𝑔 = 𝑈 𝑔 ⋅ 𝑇𝑖

– We write 𝑈: 𝔰𝔲 𝑛 ↪ ℂ𝑛
2

following the usual abuse of notation

• The computation of ෠𝑉 is an application of the chain rule

෠𝑉 = − 𝑒𝑖𝑉
𝜕

𝜕𝑝𝑖
; ቚ𝑈 ෠𝑉

𝑔
= −tr 𝜕𝑉𝑈 ⋅ 𝑈 𝑔 ⋅ 𝑇𝑖 𝑔

𝑖𝑗𝑇𝑗

– with 𝑉 = 𝑉𝑈 ∘ 𝑈 and  𝜕𝑉𝑈 𝑎𝑏 =
𝜕𝑉𝑈

𝜕𝑈𝑏𝑎

• note the implicit transpose!
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• The following table summaries the Hamiltonian 

system on a Lie group 𝒢

– The cotangent bundle (phase space) is 𝑇∗𝒢 = 𝒢 × 𝔤 in 

this case, where 𝔤 = 𝑇1
∗𝒢 is the Lie algebra

Hamiltonian System 𝒢 × 𝔤 GL 𝑛 × ℂ𝑛
2

Position 𝑔 ∈ 𝒢 𝑈 ∈ 𝑈 𝒢 ⊆ GL 𝑛 ⊂ ℂ𝒏
𝟐

Generators ቚ𝑒𝑖 𝑈(𝑔)
𝑔=1

∈ 𝔤 𝑇𝑖 = ቚ𝜕𝑈 𝑒𝑖
1
∈ ℂ𝒏

𝟐

Momentum 𝑝 = ቚ𝑝𝑖𝑒𝑖
1
∈ 𝔤 𝑃 = 𝑝𝑖𝑇𝑖 ∈ ℂ

𝒏𝟐

Potential energy 𝑉: 𝒢 → ℝ 𝑉 = 𝑉𝑈 ∘ 𝑈; 𝑉U: ℂ
𝒏𝟐 → ℝ

Kinetic energy 𝑇 𝑝 = 1
2 𝑔 𝑝, 𝑝 𝑇 = 𝑇𝑈 ∘ 𝑈; 𝑇𝑈 𝑃 = −

1
2 tr 𝑃

2
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• A homogeneous space is acted upon 

transitively by a Lie group

– ∀𝑥, 𝑦 ∈ ℳ there is a 𝑔 ∈ 𝒢 such that 𝑥 = 𝑔𝑦

• The action need not be free

– Unlike for the group acting on itself

– The stabilizer subgroup 𝒮𝑦 of 𝑦 ∈ ℳ is

𝑆𝑦 = 𝑔: 𝑥 = 𝑔𝑦 ⊆ 𝒢

• The stabilizer subgroups of different points are isomorphic, 

𝒮𝑦 ≅ 𝒮, but not equal in general

– We find that ℳ ≅ 𝒢/𝒮
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• Weinstein and Marsden introduced the Hamiltonian 

Reduction Τℳ ∕𝒩
– This defines “quotient phase space” over the quotient manifold 

Τℳ 𝒩 induced from the cotangent bundle over ℳ

– This allows us to construct a natural phase space over

• Spheres 𝑆𝑛 = 𝑆𝑂(𝑛 + 1)/𝑆𝑂(𝑛)

• Complex projective spaces ℂℙ𝑛 = 𝑆𝑈(𝑛 + 1)/𝑆(𝑈 1 × 𝑈 𝑛 )

• Oriented Grassmannians ෪𝐺𝑟 𝑘, 𝑛 = 𝑆𝑂(𝑛)/(𝑆𝑂 𝑘 × 𝑆𝑂 𝑛 − 𝑘 )

– and many others

• For details see Alessandro Barp, A D Kennedy, and Mark Girolami, 

“Hamiltonian Monte Carlo on Symmetric and Homogeneous 

Spaces via Symplectic Reduction”, arXiv:1903.02699 (2019)
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• The recipe is

– Set the conserved momenta corresponding to 𝒩 to 

zero

• The conserved momenta correspond to the “momentum 

map”

• If the momenta in 𝒩 are non-zero then there are additional 

“magnetic forces”

– “Centrifugal forces” may be a better name

– Follow the Hamiltonian trajectories in 𝑇∗ℳ

– Sample points in Τℳ 𝒩 by “forgetting” the part 

in 𝒩
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• Examples

– If  𝑞 is a matrix in the defining representation of ℳ =
𝑆𝑂(𝑛 + 1) and the representation of 𝒩 = 𝑆𝑂(𝑛) is 

embedded in the lower right block, then a point in 𝑆𝑛 is 

obtained by taking the first column of 𝑞

– For ℂℙ𝑛 the first column of a matrix defining 

representation of 𝑆𝑈(𝑛 + 1) provides a suitable point up 

to a phase

• This is typical of projective spaces

– For Grassmannians we can may extract the points in the 

quotient using Plücker coordinates (ratios of 

determinants)
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