The potential of Padé approximations for molecular dynamics simulations

Kevin Schäfers

Numerical Challenges in Lattice QCD 2022

Molecular Dynamics step

Geometric Integration on Lie Groups

Munthe-Kaas approach

Decomposition Schemes for Lie Groups

Conclusion and Outlook

Molecular Dynamics step

Geometric Integration on Lie Groups

Munthe-Kaas approach

Decomposition Schemes for Lie Groups

Conclusion and Outlook

Hybrid Monte Carlo Method (HMC)*

HMC Algorithm

- 1. Start with a gauge field of links $[U]_i$.
- 2. Draw a field of random and fictitious momenta $[P]_i$.
- 3. Perform a Molecular Dynamics (MD) Step

$$([U]_i, [P]_i) \to ([U]_{i+1}, [P]_{i+1}) = \Phi_h([U]_i, [P]_i)$$

using a geometric integration scheme Φ_h .

4. Accept the new configuration with probability

$$\min (1, \exp(-\Delta \mathcal{H})),$$
 with $\Delta \mathcal{H} = \mathcal{H}([U]_{i+1}, [P]_{i+1}) - \mathcal{H}([U]_i, [P]_i).$

5. Proceed with step 2.

^{*}Duane et al., "Hybrid Monte Carlo"

Hybrid Monte Carlo Method (HMC)*

HMC Algorithm

- 1. Start with a gauge field of links $[U]_i$.
- 2. Draw a field of random and fictitious momenta $[P]_i$.
- 3. Perform a Molecular Dynamics (MD) Step

$$([U]_i, [P]_i) \to ([U]_{i+1}, [P]_{i+1}) = \Phi_h([U]_i, [P]_i)$$

using a geometric integration scheme Φ_h .

4. Accept the new configuration with probability

$$\min (1, \exp(-\Delta \mathcal{H})),$$
 with $\Delta \mathcal{H} = \mathcal{H}([U]_{i+1}, [P]_{i+1}) - \mathcal{H}([U]_i, [P]_i).$

5. Proceed with step 2.

^{*}Duane et al., "Hybrid Monte Carlo"

Molecular Dynamics Step - Hamiltonian EoM

separable Hamiltonian

$$\mathcal{H}\left([U],[P]\right) = E_{\mathrm{kin}}\left([P]\right) + S_G\left([U]\right)$$

with kinetic energy $E_{\rm kin}$ and Wilson gauge action S_G .

► Hamiltonian equations of motion

$$\dot{U}_{x,\mu} = \frac{\partial \mathcal{H}\left([U],[P]\right)}{\partial P_{x,\mu}} \quad \text{and} \quad \dot{P}_{x,\mu} = -\frac{\partial \mathcal{H}\left([U],[P]\right)}{\partial U_{x,\mu}}$$

► Lie group / Lie algebra problem

$$\dot{U}_{x,\mu}=iP_{x,\mu}U_{x,\mu}$$
 (Lie group ODE), $i\dot{P}_{x,\mu}=F\left([U]\right)_{x,\mu}$ (Lie algebra ODE).

Special Unitary Group SU(N)

► Links *U* situated in the Lie group

$$\mathrm{SU}(N) = \left\{ Y \in \mathbb{C}^{N \times N} \,|\, Y^{\dagger} Y = I, \, \det(Y) = 1 \right\}$$

of unitary matrices $Y \in \mathbb{C}^{N \times N}$ with determinant 1.

- ▶ Momenta *P* are traceless and Hermitian.
- lacktriangle Scaled momenta iP situated in the corresponding Lie algebra

$$\mathfrak{su}(N) = \left\{ A \in \mathbb{C}^{N \times N} \mid A^{\dagger} + A = 0, \, \operatorname{tr}(A) = 0 \right\}$$

of traceless and anti-Hermitian matrices $A \in \mathbb{C}^{N \times N}$.

Molecular Dynamics step

Geometric Integration on Lie Groups

Munthe-Kaas approach

Decomposition Schemes for Lie Groups

Conclusion and Outlook

Lie Group / Lie Algebra Problem

 Initial value problem of constrained ordinary differential equations

$$\dot{Y}(t) = A(t) \cdot Y(t),$$
 $Y(0) := Y_0,$
 $\dot{A}(t) = F(Y(t)),$ $A(0) := A_0,$

on the time interval [0,T].

- ► First differential equation evolving on Lie group *G*.
- Second differential equation evolving on corresponding Lie algebra $\mathfrak{g}=T_IG$, the tangent space at the identity.

Desired Properties of the Integration Scheme

➤ Closure Property. Preserve the Lie group / Lie algebra structure, i.e., we demand

$$(Y_1, A_1) = \Phi_h(Y_0, A_0) \in G \times \mathfrak{g}.$$

► Time-Reversibility. We demand

$$\rho \circ \Phi_h \circ \rho \circ \Phi_h(Y_0, A_0) = (Y_0, A_0)$$

with
$$\rho := \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}.$$

▶ Volume-Preservation. We demand

$$\left| \det \frac{\partial \Phi_h \left(Y_0, A_0 \right)}{\partial \left(Y_0, A_0 \right)} \right| = 1.$$

Local Coordinates Approach*

Local Coordinates Approach

Consider $Y_0 \in G$, $\Omega_0 \in \mathfrak{g}$ and a local parameterization $\Psi: \mathfrak{g} \to G$ s.t. $Y_0 = \Psi\left(\Omega_0\right)Y_0$. One step $Y_0 \mapsto Y_1$ with step size $h:=t_1-t_0$ is defined as follows:

1. Define the auxiliary ODE for $\Omega(t)$ as

$$\dot{\Omega}(t) = d\Psi_{\Omega}^{-1} \left(A(Y(t)) \right), \quad \Omega(t_0) = \Omega_0.$$

- 2. Compute $\Omega_1 \approx \Omega(t_1)$ numerically by a numerical integration scheme Φ_h with step size $h := t_1 t_0$.
- 3. Define the numerical solution of the ODE

$$\dot{Y}(t) = A(t) \cdot Y(t)$$

at time point $t_1 = t_0 + h$ by $Y_1 = \Psi(\Omega_1) \cdot Y_0$.

^{*}Hairer, Lubich, and Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed.

Local Coordinates Approach*

Figure: The numerical solution of differential equations on Lie groups via local coordinates. The Ω_i denote the result of the method Φ_h . The solid arrows denote the integration scheme Φ_h , whereas the dotted arrows denote the local parameterization Ψ .

^{*}Hairer, Lubich, and Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed.

Choice of the local parameterization

Remark

As long as the local parameterization defines a mapping

$$\Psi: \mathfrak{g} \to G$$

and the initial value Ω_0 satisfies the consistency condition

$$\Psi(\Omega_0) = I,$$

the local coordinates approach defines an exact solution of the $\ensuremath{\mathsf{ODE}}$

$$\dot{Y}(t) = A(t) \cdot Y(t).$$

 Ψ is a local diffeomorphism near $\Omega = 0$.

Molecular Dynamics step

Geometric Integration on Lie Groups

Munthe-Kaas approach

Decomposition Schemes for Lie Groups

Conclusion and Outlook

- lacktriangle special case of the local coordinates approach with $\Psi:=\exp$
- ► The auxiliary ODE reads

$$\dot{\Omega}(t) = \sum_{k=0}^{\infty} \frac{B_k}{k!} \operatorname{ad}_{\Omega}^k(A(Y(t))), \quad \Omega(t_0) = \Omega_0 = 0,$$

- $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, \dots$
- ► $ad_{\Omega}^{0}(A) = A, \ ad_{\Omega}^{1}(A) = [\Omega, A], \ ad_{\Omega}^{2}(A) = [\Omega, [\Omega, A]], \dots$

^{*}Munthe-Kaas, "Runge-Kutta methods on Lie groups".

- lackbox special case of the local coordinates approach with $\Psi := \exp$
- ► The auxiliary ODE reads

$$\dot{\Omega}(t) = \sum_{k=0}^{\infty} \frac{B_k}{k!} \operatorname{ad}_{\Omega}^k(A(Y(t))), \quad \Omega(t_0) = \Omega_0 = 0,$$

- $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, \dots$
- ► $ad_{\Omega}^{0}(A) = A, \ ad_{\Omega}^{1}(A) = [\Omega, A], \ ad_{\Omega}^{2}(A) = [\Omega, [\Omega, A]], \dots$

^{*}Munthe-Kaas, "Runge-Kutta methods on Lie groups".

- lackbox special case of the local coordinates approach with $\Psi := \exp$
- ► The auxiliary ODE reads

$$\dot{\Omega}(t) = \sum_{k=0}^{\mathbf{q}} \frac{B_k}{k!} \operatorname{ad}_{\Omega}^k(A(Y(t))), \quad \Omega(t_0) = \Omega_0 = 0,$$

- $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, \dots$
- Munthe-Kaas showed that $q \ge p-2$ is necessary to obtain a method of convergence order p.

^{*}Munthe-Kaas, "Runge-Kutta methods on Lie groups".

- lackbox special case of the local coordinates approach with $\Psi := \exp$
- ► The auxiliary ODE reads

$$\dot{\Omega}(t) = \sum_{k=0}^{q} \frac{B_k}{k!} \operatorname{ad}_{\Omega}^k(A(Y(t))), \quad \Omega(t_0) = \Omega_0 = 0,$$

- $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, \dots$
- ▶ Munthe-Kaas showed that $q \ge p-2$ is necessary to obtain a method of convergence order p.
- Truncation of the infinite series introduces a model error.

^{*}Munthe-Kaas, "Runge-Kutta methods on Lie groups".

Runge-Kutta Munthe-Kaas (RKMK) methods[†]

- RKMK methods are suitable schemes for geometric integration on Lie groups
- ▶ Symmetric partitioned RKMK methods of order $p \ge 3$ are implicit due to the symmetry condition*
 - $a_{i,j} = -a_{s+1-i,s+1-j}$.
 - \rightarrow RKMK methods of higher order are computationally infeasible.
- \blacktriangleright no conditions for volume-preserving schemes of order $p\geq 3$ found so far

^{*}Wandelt, Geometric Integration on Lie Groups and its Applications in Lattice QCD (PhD thesis)

[†]Munthe-Kaas, "Runge-Kutta methods on Lie groups"

Improvement of RKMK schemes*

▶ idea: replace exp by the Cayley transform

$$cay(A) := \left(I - \frac{1}{2}A\right)^{-1} \left(I + \frac{1}{2}A\right)$$

resulting auxiliary ODE is given by

$$\dot{\Omega} = d \operatorname{cay}_{\Omega}^{-1}(A) = \left(I - \frac{1}{2}\Omega\right) A \left(I + \frac{1}{2}\Omega\right)$$

- → no infinite series, no model error
- for higher-order schemes ($p \ge 3$), we still have the problematic symmetry condition and no conditions for volume-preservation found so far
- non-optimized implementation of the Cayley transform as fast as the exponential map

^{*}Schäfers, Analysis of Partitioned GARK Methods for Geometric Integration on Lie Groups with focus on the Cayley Transform and Lattice QCD (Master thesis)

Computation time of exp and cay in SU(2)

Figure: Comparison of the execution time of the exponential map (\times) and the Cayley transform (*) in SU(2) for different numbers of links. Implementation in MATLAB, execution time measured via function **timeit**.

Computation time of exp and exp in SU(3)

Figure: Comparison of the execution time of the exponential map (\times) and the Cayley transform (*) in SU(3) for different numbers of links. Implementation in MATLAB, execution time measured via function **timeit**. For $nlinks > 10^2$, cay is approx. 10 times faster.

Molecular Dynamics step

Geometric Integration on Lie Groups

Munthe-Kaas approach

Decomposition Schemes for Lie Groups

Conclusion and Outlook

Decomposition Schemes*

- decomposition approach: factor out the exponential propagator on such suboperators which can be represented analytically or at least in quadratures
- ightharpoonup achieved by splitting the full operator in its kinetic ${\cal A}$ and potential ${\cal B}$ parts
- then the total propagator can be decomposed as

$$e^{(\mathcal{A}+\mathcal{B})\Delta t + \mathcal{O}(\Delta t^{K+1})} = \prod_{p=1}^{P} e^{\mathcal{A}a_p \Delta t} e^{\mathcal{B}b_p \Delta t}$$

extension to force-gradient integrators (FGIs)

$$e^{(\mathcal{A}+\mathcal{B})\Delta t + \mathcal{O}(\Delta t^{K+1})} = \prod_{p=1}^{P} e^{\mathcal{A}a_p \Delta t} e^{\mathcal{B}b_p \Delta t + \mathcal{C}c_p \Delta t^3}$$

where
$$C = [B, [A, B]]$$
.

^{*}Omelyan, Mryglod, and Folk, "Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations"

Model errors in state-of-the-art schemes?

Störmer-Verlet Method

$$A_{1/2} = A_0 + \frac{h}{2}F(Y_0),$$

$$Y_1 = \exp(hA_{1/2})Y_0,$$

$$A_1 = A_{1/2} + \frac{h}{2}F(Y_1).$$

- ► Time-reversible and volume-preserving numerical integration scheme of convergence order p=2
- ▶ RKMK scheme, as well as decomposition scheme

Model errors in state-of-the-art schemes?

Störmer-Verlet Method

$$A_{1/2} = A_0 + \frac{h}{2} F(Y_0),$$

$$Y_1 = \exp\left(\Omega_0 + h \cdot d \exp_{\Omega_0}^{-1}(A_{1/2})\right) Y_0,$$

$$A_1 = A_{1/2} + \frac{h}{2} F(Y_1).$$

- ► Time-reversible and volume-preserving numerical integration scheme of convergence order p=2
- ▶ RKMK scheme, as well as decomposition scheme
- ► Solution of the auxiliary ODE is hidden as the argument inside the exponential map

Model errors in state-of-the-art schemes?

Störmer-Verlet Method

$$A_{1/2} = A_0 + \frac{h}{2}F(Y_0),$$

$$Y_1 = \exp\left(\Omega_0 + h \cdot d \exp_{\Omega_0}^{-1}(A_{1/2})\right)Y_0,$$

$$A_1 = A_{1/2} + \frac{h}{2}F(Y_1).$$

- ► Time-reversible and volume-preserving numerical integration scheme of convergence order p=2
- ▶ RKMK scheme, as well as decomposition scheme
- Solution of the auxiliary ODE is hidden as the argument inside the exponential map
- ▶ Do we introduce a model error of order 2?

Problems of a possible model error

Composition Schemes

Let Φ_h be a one-step scheme of order p. If

$$\gamma_1 + \ldots + \gamma_s = 1$$
 and $\gamma_1^{p+1} + \ldots + \gamma_s^{p+1} = 0$,

then the composition scheme $\Phi_h = \Phi_{\gamma_s h} \circ \ldots \circ \Phi_{\gamma_1 h}$ is at least of order p+1.

- common procedure to obtain symplectic and time-reversible Lie group integrators of higher order
- ► Example: using the Störmer–Verlet method as the basic scheme with $\gamma_1 = \gamma_3 = \frac{1}{2 \sqrt[3]{2}}$, $\gamma_2 = 1 2\gamma_1$ leads to Yoshida's scheme of order 4.
- integration error of order 4; if model error of order 2 → overall error of order 2 ½
- remedy: increase truncation index q suitably

- ► In decomposition schemes, the update of the Lie group elements consists of Lie-Euler steps.
- As every Lie-Euler step is an own local coordinates step, i.e., we always start with $\Omega_0=0$, the right-hand side $d\exp_{\Omega}^{-1}(A)$ of the auxiliary ODE will only be evaluated at time point t_0 .
- ► Thus, the auxiliary ODE reads

$$\dot{\Omega}(t) = d \exp_{\Omega_0}^{-1}(A)$$

- ► In decomposition schemes, the update of the Lie group elements consists of Lie-Euler steps.
- As every Lie-Euler step is an own local coordinates step, i.e., we always start with $\Omega_0=0$, the right-hand side $d\exp_{\Omega}^{-1}(A)$ of the auxiliary ODE will only be evaluated at time point t_0 .
- ► Thus, the auxiliary ODE reads

$$\dot{\Omega}(t) = \sum_{k=0}^{\infty} \frac{B_k}{k!} \operatorname{ad}_{\Omega_0}^k(A)$$

- ► In decomposition schemes, the update of the Lie group elements consists of Lie-Euler steps.
- As every Lie-Euler step is an own local coordinates step, i.e., we always start with $\Omega_0=0$, the right-hand side $d\exp_{\Omega}^{-1}(A)$ of the auxiliary ODE will only be evaluated at time point t_0 .
- ► Thus, the auxiliary ODE reads

$$\dot{\Omega}(t) = A - \frac{1}{2}[\Omega_0, A] + \frac{1}{12}[\Omega_0, [\Omega_0, A]] + \dots$$

- ► In decomposition schemes, the update of the Lie group elements consists of Lie-Euler steps.
- As every Lie-Euler step is an own local coordinates step, i.e., we always start with $\Omega_0=0$, the right-hand side $d\exp^{-1}_{\Omega}(A)$ of the auxiliary ODE will only be evaluated at time point t_0 .
- ► Thus, the auxiliary ODE reads

$$\dot{\Omega}(t) = A - \frac{1}{2} [\Omega_0, A] + \frac{1}{12} [\Omega_0, [\Omega_0, A]] + \dots$$

- ► In decomposition schemes, the update of the Lie group elements consists of Lie-Euler steps.
- As every Lie-Euler step is an own local coordinates step, i.e., we always start with $\Omega_0=0$, the right-hand side $d\exp_{\Omega}^{-1}(A)$ of the auxiliary ODE will only be evaluated at time point t_0 .
- ► Thus, the auxiliary ODE reads

$$\dot{\Omega}(t) = A - \frac{1}{2}[\mathbf{0}, A] + \frac{1}{12}[\mathbf{0}, [\mathbf{0}, A]] + \dots$$

- ► In decomposition schemes, the update of the Lie group elements consists of Lie-Euler steps.
- As every Lie-Euler step is an own local coordinates step, i.e., we always start with $\Omega_0=0$, the right-hand side $d\exp_{\Omega}^{-1}(A)$ of the auxiliary ODE will only be evaluated at time point t_0 .
- ► Thus, the auxiliary ODE reads

$$\dot{\Omega}(t) = A$$

- ► In decomposition schemes, the update of the Lie group elements consists of Lie-Euler steps.
- As every Lie-Euler step is an own local coordinates step, i.e., we always start with $\Omega_0=0$, the right-hand side $d\exp_{\Omega}^{-1}(A)$ of the auxiliary ODE will only be evaluated at time point t_0 .
- ► Thus, the auxiliary ODE reads

$$\dot{\Omega}(t) = A$$

- As the right-hand side becomes independent of Ω , there is **no model error** introduced.
- ► Hence composition schemes work.

Benefits of decomposition schemes

- Decomposition schemes and their compositions
 - ightharpoonup only evaluating the auxiliary ODE at Ω_0
 - \blacktriangleright auxiliary ODE for $\Psi=\exp$ reduces to $\dot{\Omega}(t)=d\exp^{-1}_{\Omega_0}(A)=A$
- ► Lie group methods of Runge-Kutta type
 - usually include evaluations of the auxiliary ODE at internal stages $\bar{\Omega}_i \neq 0$
 - \blacktriangleright for $\Psi=\exp$, we need a suitable truncation of the auxiliary ODE
 - \blacktriangleright to obtain a scheme of order $p\geq 3,$ commutators have to appear in the truncated ODE

Benefits of decomposition schemes

- Decomposition schemes and their compositions
 - ightharpoonup only evaluating the auxiliary ODE at Ω_0
 - auxiliary ODE for $\Psi = \exp$ reduces to $\dot{\Omega}(t) = d \exp_{\Omega_0}^{-1}(A) = A$
- ► Lie group methods of Runge-Kutta type
 - usually include evaluations of the auxiliary ODE at internal stages $\bar{\Omega}_i \neq 0$
 - for $\Psi = \exp$, we need a suitable truncation of the auxiliary ODE
 - ▶ to obtain a scheme of order $p \ge 3$, commutators have to appear in the truncated ODE
 - ⇒ Decomposition schemes are benefitial.

Padé approximations for decomposition schemes

- ► As there is no model error, the use of Padé approximations can be motivated by possible speed-up
- ▶ It holds $d\text{cay}_{\Omega_0}^{-1}(A) = A$ and $\text{cay}(tA) \exp(tA) = \mathcal{O}(t^3)$ → in all schemes up to order 2, we can just replace the exponential map by the Cayley transform

Störmer-Verlet with exp and cay

Figure: Numerical approximation error of $\langle |\Delta \mathcal{H}| \rangle$ for the Störmer-Verlet method using $\exp{(*)}$ and $\exp{(*)}$ for different step sizes. $\langle |\Delta \mathcal{H}| \rangle$ along a trajectory with length 1 is computed from pure gauge field simulations in SU(3) that are comprised of 5000 trajectories on a lattice of size 32×32 .

Störmer-Verlet with exp and cay

Figure: CPU time versus accuracy for Störmer–Verlet using $\exp(*)$ and $\exp(\times)$. These values are measured in pure gauge field simulations in SU(3) on a lattice of size 32×32 .

Padé approximations for decomposition schemes

- ► Force-gradient integrators cannot use the Cayley transform as the force-gradient term changes
- ightharpoonup Remedy: the Padé approximation of index (2,2)

pade2(A) :=
$$\left(I - \frac{1}{2}A + \frac{1}{12}A^2\right)^{-1} \left(I + \frac{1}{2}A + \frac{1}{12}A^2\right)$$

has the same force-gradient term s.t. the use of this local parameterization works for all FGIs of order 4

5-stage force-gradient scheme*

$$\Delta_{5C}(h) = e^{\frac{1}{6}h\hat{\mathcal{B}}}e^{\frac{1}{2}h\hat{\mathcal{A}}}e^{\frac{2}{3}h\hat{\mathcal{B}} - \frac{1}{72}h^3\mathcal{C}}e^{\frac{1}{2}h\hat{\mathcal{A}}}e^{\frac{1}{6}h\hat{\mathcal{B}}}$$

with force-gradient term $C = \{B, \{A, B\}\}$ with $\{,\}$ defining Lie brackets.

We approximate $\mathcal C$ via Taylor expansion as proposed by Yin and Mawhinney[†].

[†]Yin and Mawhinney, "Improving dwf simulations: The force gradient integrator and the möbius accelerated dwf solver"

^{*}Omelyan, Mryglod, and Folk, "Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations"

FGI of order 4 - exp vs. pade2

Figure: Numerical approximation error of $\langle |\Delta \mathcal{H}| \rangle$ for the Störmer-Verlet method using exp (*), cay (\times) and pade2 (\circ) for different step sizes. $\langle |\Delta \mathcal{H}| \rangle$ along a trajectory with length 1 is computed from pure gauge field simulations in SU(3) that are comprised of 1000 trajectories on a lattice of size 32×32 .

Solving problems of Padé approximations for SU(3)

 Problem: Padé approximations only define local parameterizations

$$\Psi: \mathfrak{su}(3) \to \mathrm{U}(3),$$

i.e., it only holds $|\det(\Psi(A))| = 1$ for $A \in \mathfrak{su}(3)$.

► Way out using modification

$$\tilde{\Psi}(A) := \frac{1}{\sqrt[3]{\det \Psi(A)}} \cdot \Psi(A)$$

which is equivalent to

$$\tilde{\Psi}(A) := e^{i\theta} \cdot \Psi(A)$$

with

$$\theta := \frac{2}{3} \tan^{-1} \left(\frac{\Re(\det(\Psi(A))) - 1}{\Im(\det(\Psi(A)))} \right).$$

Molecular Dynamics step

Geometric Integration on Lie Groups

Munthe-Kaas approach

Decomposition Schemes for Lie Groups

Conclusion and Outlook

Conclusion

- Decomposition schemes are consistent with the theorem of Munthe-Kaas
- ► (De-)composition schemes suitable tool for construction of explicit geometric integration methods for Lie groups that do not introduce a model error
- ▶ Padé approximations of the exponential map lead to a possible speed-up of (de-)composition schemes

Outlook

- Acceleration of the MD step by using Padé approximations of the exponential map
- ► Investigate force-gradient integrators using Padé approximations of the exponential map
- ► Parameter tuning of (non-gradient and force-gradient) decomposition schemes w.r.t. different objective functions
- Investigation of alternative approaches
 - ► Crouch-Grossman methods*
 - Celledoni-Marthinsen-Owren methods†
 - Bazavov commutator-free Lie group integrators[‡]

^{*}Crouch and Grossman, "Numerical integration of ordinary differential equations on manifolds"

[†]Celledoni, Marthinsen, and Owren, "Commutator-free Lie group methods"

[‡]Bazavov, "Commutator-free Lie group methods with minimum storage requirements and reuse of exponentials"