
The potential of Padé approximations for

molecular dynamics simulations

Kevin Schäfers
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Hybrid Monte Carlo Method (HMC)∗

HMC Algorithm

1. Start with a gauge field of links [U ]i.

2. Draw a field of random and fictitious momenta [P ]i.

3. Perform a Molecular Dynamics (MD) Step

([U ]i, [P ]i) → ([U ]i+1, [P ]i+1) = Φh ([U ]i, [P ]i)

using a geometric integration scheme Φh.

4. Accept the new configuration with probability

min (1, exp(−∆H)) ,

with ∆H = H ([U ]i+1, [P ]i+1)−H ([U ]i, [P ]i).

5. Proceed with step 2.

∗Duane et al., “Hybrid Monte Carlo”
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Molecular Dynamics Step - Hamiltonian EoM

▶ separable Hamiltonian

H ([U ], [P ]) = Ekin ([P ]) + SG ([U ])

with kinetic energy Ekin and Wilson gauge action SG.

▶ Hamiltonian equations of motion

U̇x,µ =
∂H ([U ], [P ])

∂Px,µ

and Ṗx,µ = −∂H ([U ], [P ])

∂Ux,µ

▶ Lie group / Lie algebra problem

U̇x,µ = iPx,µUx,µ (Lie group ODE),

iṖx,µ = F ([U ])x,µ (Lie algebra ODE).
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Special Unitary Group SU(N)

▶ Links U situated in the Lie group

SU(N) =
{
Y ∈ CN×N |Y †Y = I, det(Y ) = 1

}
of unitary matrices Y ∈ CN×N with determinant 1.

▶ Momenta P are traceless and Hermitian.

▶ Scaled momenta iP situated in the corresponding Lie
algebra

su(N) =
{
A ∈ CN×N |A† + A = 0, tr(A) = 0

}
of traceless and anti-Hermitian matrices A ∈ CN×N .
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Lie Group / Lie Algebra Problem

▶ Initial value problem of constrained ordinary differential
equations

Ẏ (t) = A(t) · Y (t), Y (0) := Y0,

Ȧ(t) = F (Y (t)), A(0) := A0,

on the time interval [0, T ].

▶ First differential equation evolving on Lie group G.

▶ Second differential equation evolving on corresponding Lie
algebra g = TIG, the tangent space at the identity.
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Desired Properties of the Integration Scheme

▶ Closure Property. Preserve the Lie group / Lie algebra
structure, i.e., we demand

(Y1, A1) = Φh (Y0, A0) ∈ G× g.

▶ Time-Reversibility. We demand

ρ ◦ Φh ◦ ρ ◦ Φh(Y0, A0) = (Y0, A0)

with ρ :=

(
I 0
0 −I

)
.

▶ Volume-Preservation. We demand∣∣∣∣det ∂Φh (Y0, A0)

∂ (Y0, A0)

∣∣∣∣ = 1.
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Local Coordinates Approach∗

Local Coordinates Approach
Consider Y0 ∈ G, Ω0 ∈ g and a local parameterization
Ψ : g → G s.t. Y0 = Ψ(Ω0)Y0. One step Y0 7→ Y1 with step
size h := t1 − t0 is defined as follows:

1. Define the auxiliary ODE for Ω(t) as

Ω̇(t) = dΨ−1
Ω (A(Y (t))) , Ω(t0) = Ω0.

2. Compute Ω1 ≈ Ω(t1) numerically by a numerical
integration scheme Φh with step size h := t1 − t0.

3. Define the numerical solution of the ODE

Ẏ (t) = A(t) · Y (t)

at time point t1 = t0 + h by Y1 = Ψ(Ω1) · Y0.

∗Hairer, Lubich, and Wanner, Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed.
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Local Coordinates Approach∗

Y0
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Y2
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Ω2

Ω3

Ω4

Figure: The numerical solution of differential equations on Lie
groups via local coordinates. The Ωi denote the result of the
method Φh. The solid arrows denote the integration scheme Φh,
whereas the dotted arrows denote the local parameterization Ψ.

∗Hairer, Lubich, and Wanner, Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed.
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Choice of the local parameterization

Remark
As long as the local parameterization defines a mapping

Ψ : g → G

and the initial value Ω0 satisfies the consistency condition

Ψ(Ω0) = I,

the local coordinates approach defines an exact solution of the
ODE

Ẏ (t) = A(t) · Y (t).

Ψ is a local diffeomorphism near Ω = 0.
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Munthe-Kaas Approach∗

▶ special case of the local coordinates approach with
Ψ := exp

▶ The auxiliary ODE reads

Ω̇(t) =
∞∑
k=0

Bk

k!
adk

Ω(A(Y (t))), Ω(t0) = Ω0 = 0,

where Bk is the k-th Bernoulli number, and
adΩ(A) = [Ω, A] = ΩA− AΩ is the adjoint operator.

▶ B0 = 1, B1 = −1
2
, B2 =

1
6
, . . .

▶ ad0
Ω(A) = A, ad1

Ω(A) = [Ω, A], ad2
Ω(A) = [Ω, [Ω, A]], . . .

▶ Munthe-Kaas showed that q ≥ p− 2 is necessary to
obtain a method of convergence order p.

▶ Truncation of the infinite series introduces a model
error.

∗Munthe-Kaas, “Runge-Kutta methods on Lie groups”.
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Runge-Kutta Munthe-Kaas (RKMK) methods†

▶ RKMK methods are suitable schemes for geometric
integration on Lie groups

▶ Symmetric partitioned RKMK methods of order p ≥ 3 are
implicit due to the symmetry condition∗

ai,j = −as+1−i,s+1−j.
→ RKMK methods of higher order are computationally
infeasible.

▶ no conditions for volume-preserving schemes of order
p ≥ 3 found so far

∗Wandelt, Geometric Integration on Lie Groups and its Applications in Lattice
QCD (PhD thesis)

†Munthe-Kaas, “Runge-Kutta methods on Lie groups”
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Improvement of RKMK schemes∗

▶ idea: replace exp by the Cayley transform

cay(A) :=

(
I − 1

2
A

)−1(
I +

1

2
A

)
▶ resulting auxiliary ODE is given by

Ω̇ = dcay−1
Ω (A) =

(
I − 1

2
Ω

)
A

(
I +

1

2
Ω

)
→ no infinite series, no model error

▶ for higher-order schemes (p ≥ 3), we still have the
problematic symmetry condition and no conditions for
volume-preservation found so far

▶ non-optimized implementation of the Cayley transform as
fast as the exponential map

∗Schäfers, Analysis of Partitioned GARK Methods for Geometric Integration on Lie
Groups with focus on the Cayley Transform and Lattice QCD (Master thesis)
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Computation time of exp and cay in SU(2)
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Figure: Comparison of the execution time of the exponential map
(×) and the Cayley transform (∗) in SU(2) for different numbers of
links. Implementation in MATLAB, execution time measured via
function timeit.
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Computation time of exp and cay in SU(3)
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Figure: Comparison of the execution time of the exponential map
(×) and the Cayley transform (∗) in SU(3) for different numbers of
links. Implementation in MATLAB, execution time measured via
function timeit. For nlinks > 102, cay is approx. 10 times faster.

K. Schäfers, Numerical Challenges in Lattice QCD 2022 16



Molecular Dynamics step

Geometric Integration on Lie Groups

Munthe-Kaas approach

Decomposition Schemes for Lie Groups

Conclusion and Outlook
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Decomposition Schemes∗

▶ decomposition approach: factor out the exponential
propagator on such suboperators which can be
represented analytically or at least in quadratures

▶ achieved by splitting the full operator in its kinetic A and
potential B parts

▶ then the total propagator can be decomposed as

e(A+B)∆t+O(∆tK+1) =
P∏

p=1

eAap∆teBbp∆t

▶ extension to force-gradient integrators (FGIs)

e(A+B)∆t+O(∆tK+1) =
P∏

p=1

eAap∆teBbp∆t+Ccp∆t3

where C = [B, [A,B]].
∗Omelyan, Mryglod, and Folk, “Symplectic analytically integrable decomposition

algorithms: classification, derivation, and application to molecular dynamics, quantum
and celestial mechanics simulations”
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Model errors in state-of-the-art schemes?

Störmer–Verlet Method

A1/2 = A0 +
h

2
F (Y0),

Y1 = exp
(
hA1/2

)
Y0,

A1 = A1/2 +
h

2
F (Y1).

▶ Time-reversible and volume-preserving numerical
integration scheme of convergence order p = 2

▶ RKMK scheme, as well as decomposition scheme

▶ Solution of the auxiliary ODE is hidden as the
argument inside the exponential map

▶ Do we introduce a model error of order 2?

K. Schäfers, Numerical Challenges in Lattice QCD 2022 19
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Problems of a possible model error

Composition Schemes
Let Φh be a one-step scheme of order p. If

γ1 + . . .+ γs = 1 and γp+1
1 + . . .+ γp+1

s = 0,

then the composition scheme Φ̃h = Φγsh ◦ . . . ◦Φγ1h is at least
of order p+ 1.

▶ common procedure to obtain symplectic and
time-reversible Lie group integrators of higher order

▶ Example: using the Störmer–Verlet method as the basic
scheme with γ1 = γ3 =

1

2− 3√2
, γ2 = 1− 2γ1 leads to

Yoshida’s scheme of order 4.
▶ integration error of order 4; if model error of order 2

→ overall error of order 2  
▶ remedy: increase truncation index q suitably
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Special property of decomposition schemes

▶ In decomposition schemes, the update of the Lie group
elements consists of Lie-Euler steps.

▶ As every Lie-Euler step is an own local coordinates step,
i.e., we always start with Ω0 = 0, the right-hand side
d exp−1

Ω (A) of the auxiliary ODE will only be evaluated at
time point t0.

▶ Thus, the auxiliary ODE reads

Ω̇(t) = d exp−1
Ω0
(A)

▶ As the right-hand side becomes independent of Ω, there
is no model error introduced.

▶ Hence composition schemes work.
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Benefits of decomposition schemes

▶ Decomposition schemes and their compositions
▶ only evaluating the auxiliary ODE at Ω0

▶ auxiliary ODE for Ψ = exp reduces to
Ω̇(t) = d exp−1

Ω0
(A) = A

▶ Lie group methods of Runge-Kutta type
▶ usually include evaluations of the auxiliary ODE at

internal stages Ω̄i ̸= 0
▶ for Ψ = exp, we need a suitable truncation of the

auxiliary ODE
▶ to obtain a scheme of order p ≥ 3, commutators have to

appear in the truncated ODE
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Padé approximations for decomposition schemes

▶ As there is no model error, the use of Padé
approximations can be motivated by possible speed-up

▶ It holds dcay−1
Ω0
(A) = A and cay(tA)− exp(tA) = O(t3)

→ in all schemes up to order 2, we can just replace the
exponential map by the Cayley transform
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Störmer-Verlet with exp and cay
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Figure: Numerical approximation error of ⟨|∆H|⟩ for the Störmer-Verlet method
using exp (∗) and cay (×) for different step sizes. ⟨|∆H|⟩ along a trajectory with
length 1 is computed from pure gauge field simulations in SU(3) that are comprised of
5000 trajectories on a lattice of size 32× 32.
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Störmer-Verlet with exp and cay
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Figure: CPU time versus accuracy for Störmer–Verlet using exp (∗)
and cay (×). These values are measured in pure gauge field
simulations in SU(3) on a lattice of size 32× 32.
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Padé approximations for decomposition schemes

▶ Force-gradient integrators cannot use the Cayley
transform as the force-gradient term changes

▶ Remedy: the Padé approximation of index (2, 2)

pade2(A) :=

(
I − 1

2
A+

1

12
A2

)−1(
I +

1

2
A+

1

12
A2

)
has the same force-gradient term s.t. the use of this local
parameterization works for all FGIs of order 4
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5-stage force-gradient scheme∗

∆5C(h) = e
1
6
hB̂e

1
2
hÂe

2
3
hB̂− 1

72
h3Ce

1
2
hÂe

1
6
hB̂

with force-gradient term C = {B, {A,B}} with {, } defining
Lie brackets.
We approximate C via Taylor expansion as proposed by Yin
and Mawhinney†.

†Yin and Mawhinney, “Improving dwf simulations: The force gradient integrator
and the möbius accelerated dwf solver”

∗Omelyan, Mryglod, and Folk, “Symplectic analytically integrable decomposition
algorithms: classification, derivation, and application to molecular dynamics, quantum
and celestial mechanics simulations”
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FGI of order 4 - exp vs. pade2
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Figure: Numerical approximation error of ⟨|∆H|⟩ for the Störmer-Verlet method
using exp (∗), cay (×) and pade2 (◦) for different step sizes. ⟨|∆H|⟩ along a
trajectory with length 1 is computed from pure gauge field simulations in SU(3) that
are comprised of 1000 trajectories on a lattice of size 32× 32.
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Solving problems of Padé approximations for SU(3)

▶ Problem: Padé approximations only define local
parameterizations

Ψ : su(3) → U(3),

i.e., it only holds |det(Ψ(A))| = 1 for A ∈ su(3).
▶ Way out using modification

Ψ̃(A) :=
1

3
√
detΨ(A)

·Ψ(A)

which is equivalent to

Ψ̃(A) := eiθ ·Ψ(A)

with

θ :=
2

3
tan−1

(
ℜ(det(Ψ(A)))− 1

ℑ(det(Ψ(A)))

)
.
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Conclusion

▶ Decomposition schemes are consistent with the theorem
of Munthe-Kaas

▶ (De-)composition schemes suitable tool for construction
of explicit geometric integration methods for Lie groups
that do not introduce a model error

▶ Padé approximations of the exponential map lead to a
possible speed-up of (de-)composition schemes
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Outlook

▶ Acceleration of the MD step by using Padé
approximations of the exponential map

▶ Investigate force-gradient integrators using Padé
approximations of the exponential map

▶ Parameter tuning of (non-gradient and force-gradient)
decomposition schemes w.r.t. different objective functions

▶ Investigation of alternative approaches
▶ Crouch-Grossman methods∗

▶ Celledoni-Marthinsen-Owren methods†

▶ Bazavov commutator-free Lie group integrators‡

∗Crouch and Grossman, “Numerical integration of ordinary differential equations
on manifolds”

†Celledoni, Marthinsen, and Owren, “Commutator-free Lie group methods”
‡Bazavov, “Commutator-free Lie group methods with minimum storage

requirements and reuse of exponentials”
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