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Motivation

In NOvA, T2K, DUNE, Hyper-Kamiokande (HK) muon (anti-)neutrinos are/will be
scattered off H2O, 12C or 40Ar targets.
Formfactor predictions from QCD are needed. In addition (except for H) nuclear
effects play a role (quasi-elastic scattering).
Here we address elastic scattering ν̄`p → `+n, ν`n→ `−p via charged current
interactions.
Next step: pion production νn→ `−pπ0, `−nπ+ etc.
Flavour separation for νN → νN, N ∈ {n, p} would be interesting too.
Present constraints suggest that there is maximum oscillation νµ → νe , ντ for
L/E ≈ 500 km/GeV.
NOvA: 810 km/2GeV
T2K & HK: 295 km/0.6GeV
DUNE: 1300 km/2.5GeV
Aims: resolving the neutrino mass hierarchy, constraining elements of the PMNS
(Pontecorvo-Maki-Nakagawa-Sakata) matrix, BSM physics.
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Neutrinos in the Standard Model
All fermions are massless at high energy scales.
They acquire masses via their Yukawa couplings to the Higgs.

Left-handed fermions (spin antiparallel to momentum) form doublets:
(νe , e−), (u, d), (νµ, µ−), (c, d), (ντ , τ−), (t, b). These interact weakly.
Right-handed fermions are singlets under the weak interaction.
Right-handed neutrinos can only interact gravitationally.
⇒ If they exist, right-(left-)handed (anti)neutrinos are “sterile”.
If neutrinos have no mass (i.e. they do not couple to the Higgs), right-handed
neutrinos cannot be created.
We now know that left-handed neutrinos have (very small) masses.
⇒ Chirality is not conserved.
Obviously, detecting right handed neutrinos would be difficult.

∃ extra mass terms for right-handed neutrinos (seesaw mechanism)??
Are neutrinos always left-handed and antineutrinos right-handed? Is the neutrino
its own antiparticle?
2-component Majorana spinor instead of 4-component Dirac-spinor?
⇒ neutrino-less double β-decay is possible in this case.
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Formfactors important to measure neutrino oscillations

Neutrinos |να〉 are created by weak interaction processes in a weak interaction
eigenstate of definite flavour α ∈ {e, µ, τ}.

The weak interaction violates time reversal T = CP. Therefore, weak flavour
eigenstates are no energy eigenstates |νj〉 of the time evolution operator.

Unitary PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix U:

|νj〉 =
∑
α

Uαj |να〉

⇒ Neutrino mixing in the time evolution.

Dirac neutrinos: the PMNS matrix has 4 independent entries (incl. one CP
violating phase), in analogy to the CKM (Cabibbo-Kobayashi-Maskawa) matrix
in the quark sector.
Majorana neutrinos: the PMNS matrix has 6 parameters (3 violate CP).
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~pj = pj~ez momentum of neutrino of mass mj � pj

⇒ E − pj = pj

[√
1 + m2

j /p2
j − 1

]
≈ pj [1 + m2

j /(2p2
j )− 1]≈ m2

j /(2E ).
Time evolution (L = z ≈ t)

|νj(t)〉 = exp [−i(Et − pjz)] |νj(0)〉 = exp
[
−i m2

j L/(2E )
]
|νj(0)〉

The oscillation probability between different neutrino flavours α depends both on
the entries of U and on ∆m2

jk = m2
j −m2

k :

Pα→β = |〈νβ(t)|να〉|2 =

∣∣∣∣∣∑
j

U∗αjUβje−i m2
j L/(2E)

∣∣∣∣∣
2

cosmological constraints:
m1 + m2 + m3 < 0.3 eV.

“normal” hierarchy: m1 < m2 < m3
m2 ≈ m1 + 0.0086 eV,
m3 ≈ m1 + 0.0504 eV
“inverted” hierarchy: m3 < m1 < m2

m1 ≈ m2 ≈ m3 + 0.0500 eV
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Experiments
T2K: Tokai to Super-Kamiokande,

E = 0.6 GeV, L/E ≈ 500 km/GeV.

Also NOvA, L/E ≈ 400 km/GeV, DUNE L/E ≈ 520 km/GeV, HK(=T2K).

Muon neutrino beam: proton on nucleus → pions and kaons → µ+νµ or µ−ν̄µ.

Near and far detectors.

Nµ
far(Eν) = Nµ

near(Eν)× [flux(L)]× [detector]× [1−
∑
β

Pµ→β(Eν)]

Eν has to be reconstructed from the momentum of the detected charged lepton.

Trivial for νµ + n→ µ− + p if the initial momenta of n and of νµ are known.
But. . .
The neutrino beam is not monochromatic but has a momentum distribution.
The nucleon is bound in a nucleus and has |pFermi| ∼ 200MeV.
The lepton momentum reconstruction is often incomplete.
Misidentification of inelastic scattering as elastic scattering.
Monte-Carlo simulation needs input regarding the differential cross section.
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Formfactors (FFs)
ν`n→ `−p goes via the V −A current. The non-perturbative matrix elements that
enter dσ/dΩ can be decomposed in terms of four FFs.
Kinematics: qµ = p′µ − pµ, Q2 = −qµqµ ≥ 0, p′2 = p2 = m2

N ≈ m2
n ≈ m2

p.

〈p(p′)|ūγµd(0)|n(p)〉 = ūp(p′)
[
F1(Q2)γµ + F2(Q2)

2mN
σµνqµ

]
un(p),

〈p(p′)|ūγµγ5d(0)|n(p)〉 = ūp(p′)
[
GA(Q2)γµ + GP̃(Q2)

2mN
qµ
]
γ5un(p).

Note that 〈p|ūΓd |n〉 = 〈p|(ūΓu − d̄Γd)|p〉 if mu = md , eu = ed (isospin limit).

Dirac (vector) FF F1, Pauli FF F2, axial FF GA, induced pseudoscalar FF GP̃ .

F1 and F2 are relatively well-known (using isospin symmetry) from lepton-proton
and lepton-neutron/deuteron scattering (but not their slope at Q2 = 0!).

gA = GA(0) is well determined from β-decay. GA(Q2) information from neutrino
scattering and (indirectly) through exclusive pion electroproduction e−p → π−νp.

Using GA(0.88m2
µ) ≈ gA, F1 and F2 as input, GP̃(0.88m2

µ) can be determined from
muon capture µ−p → νµn in muonic hydrogen.
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PCAC and PPD relations
The impact of GP̃(Q2) on the cross section is suppressed by a factor
m2
`/m2

N ≈ 0.01 for ` = µ. Therefore, it is only relevant for very small Q2, where
this formfactor is large (e.g., at the muon capture point).

We define the pseudoscalar FF:
〈p(p′)|ūiγ5d(0)|n(p)〉 = ūp(p′)GP(Q2)iγ5un(p).

Abbreviations to be used: Aµ = ūγµγ5d , P = ūiγ5d .

Consequence of the PCAC relation, i.e. the axial Ward-Takahashi identity
(∂µAµ = 2mudP and ūNγµγ5uN = 2mN ūN iγ5uN):

2mNGA(Q2) = 2mudGP(Q2)− Q2

2mN
GP̃(Q2).

With complete non-perturbative order-a improvement, this relation will receive
O(a2Λ2, a2Q2, a2mud Λ, . . .) lattice spacing corrections.

Current algebra gives the Pion pole dominance (PPD) relation

GP̃(Q2) ≈ 4m2
N

M2
π + Q2 GA(Q2).

Unless M2
π = 0, also in the continuum this relation is only approximate. 8 / 29



Lattice calculation

Ideally, one would compute the FFs directly from QCD via lattice simulation,
without additional assumptions.

Apart from attaining meaningful statistical errors, this requires taking the following
limits:
I Continuum limit: a2 → 0.
I Infinite volume limit: L = Nsa→∞. Due to the mass gap, these effects are

exponential ∼ exp(−LMπ), however, large Ns become necessary at small Mπ

and at small a. ChPT → FVE are most relevant at small Q2

(better not to normalize wrt gA = GA(0)).
I Physical point: Results must be extra-/interpolated to physical quark masses

or, equivalently, physical pion and kaon masses.
I Extrapolation to infinite Euclidean time separations, where the ground state

dominates.
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Spectral decomposition

In our case Wick contractions give only
connected diagrams (isospin limit).

if

t it =0τ

pp =0

C2pt(p, t) = (Z p
1 )2 e−EN (p)t

[
1 +

∑
k>1

(
Z p

k
Z p

1

)2

e−∆Ek (p)t

]
,

C3pt(p′ = p, τ, t) = (Z p
1 )2 〈1|A|1〉e−EN (p)t

[
1 +

∑
k>1

Z p
k

Z p
1

〈k|A|N〉
〈1|A|1〉

(
e−∆Ek (p)(t−τ) + e−∆Ek (p)τ)

+
(

Z p
k

Z p
1

)2 〈k|A|k〉
〈1|A|1〉 e

−∆Ek (p)t

]
.

For simplicity, above q = 0.
〈1|A|1〉 is the (purely real or imaginary) Euclidean matrix element of interest for the
nucleon ground state |1〉 = |N〉, Zk ∝ 〈Ω|N |k〉 = Z∗k are the so-called overlap factors and
∆Ek = Ek − E1 with E1 = EN .
2pt-function: excited state suppression with δ2

k = Z 2
k /Z 2

1 .
3pt-function: suppression only with δk〈k|A|1〉/〈1|A|1〉. What if one 〈k|A|1〉 is large?
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Excited state pollution
The signal decreases exponentially, noise/signal increases exponentially with the
source-sink separation time. So one cannot achieve arbitrarily large separations
between source, current and sink.

“Smearing” enables the construction of an “interpolator” ŌN that creates a
combination of energy eigenstates, ŌN |Ω〉 = c1|N〉+ c2|N ′〉+ · · · , with
|c1| � |ck | ∀ k > 1. Then all δk are small.
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t
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R i(p′ = p = 0)

t = 1.4 fm
t = 1.3 fm
t = 1.2 fm
t = 1.1 fm
t = 1.0 fm
t = 0.9 fm
t = 0.8 fm
t = 0.7 fm

smeared
local Example of a ratio of 3pt-

over 2pt-functions for gA:
A fit gives gA = 1.166(13)
for this particular ensemble
(a ≈ 0.098 fm, Mπ ≈ 429MeV).

Problem with the axial current: it can couple well to pions since
〈Ω|Aµ|π+(q)〉 = i

√
2Fπqµ. Matrix elements “〈Nπ|Aµ|N〉” may be enhanced!
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Neutrino-nucleus scattering
This also happens in experiment. Our interpolators do not couple to ∆, i.e. Nπ
with spin 3/2, but they couple to P-wave Nπ with spin 1/2.

07/07/16

Minerba Betancourt

Quasi-elastic scattering (QE)

Resonance production (RES)

Deep Inelastic scattering (DIS) 

14

neutrino 

J. A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)

T2K NOvA

DUNE

After understanding excited states in N → N, one should also compute axial and
vector N → Nπ transition formfactors.
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Origin of N → Nπ pollution in the axial formfactors
Chiral perturbation theory (ChPT) tree-level diagrams:

O

O O O

Top diagram:
∼ GA for O = Aµ
= 0 for O = P

Bottom centre diagram:
∼ GP̃ +excited states for O = A4
∼ GP +excited states for O = P

Other diagrams: only contribute to the excited states.

In ChPT these contributions are enhanced by a factor mN/Mπ for A4 relative to
the ground state but also present in Aj .

ChPT predicts the dominant Nπ energy level (all momentum transferred to π at
tree-level) and the coupling. 13 / 29



Nπ excited state contributions
[Bär,1906.03652,1812.09191]: Nπ contributions to a combination R4 of CO

3pt and
C2pt for O = A4 in leading one-loop order of SU(2) covariant ChPT.

[Bär,1907.03284]

R4 vs. τ/a − tf /(2a)

tf →∞: R4 → const..

Data: [RQCD,1810.05569]:
Mπ ∼ 150 MeV, a = 0.07 fm,
tf = 1.06 fm, p′ = 0,
|q| = 2π/(64a)

Nπ contamination

-��� -��� ��� ��� ���

-���

���

���

���

t ⇡ 1.06 fm

M⇡ ⇡ 150 MeV

|~q| =
2⇡

L

M⇡L ⇡ 3.47

Bali et. al.,  
arXiv:1810.05569

 from

ChPT ( no fit ! )

‣ ChPT reproduces the almost linear time dependence

‣  Very good agreement for all times !  
Expected: Reproduce the slope in the middle of the plot (if at all…)

ChPT works much better than expected.  Why ???

CA4
3pt(p′=0,p=−q, tf , τ) = CA4

3pt,N(q, tf , τ) + CA4
3pt,Nπ(q, tf , τ) = O

(
Mπ

mN

)
+O (1)

In this channel N(0)π(−q)→ N(0) is enhanced, relative to N(−q)→ N(0).

Maybe correct lattice data by subtracting the expectation? Problem: systematics.
14 / 29



Instead: simultaneous fit to different channels
D200 CLS ensemble: Mπ ∼ 200 MeV, a = 0.064 fm.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Q2 [GeV2]

−0.5

0.0

0.5

1.0

1.5

∆
E

[G
eV

]

D200

∆ENπ

∆E ′Nπ

∆E3pt

∆E ′3pt

∆E2pt

∆ENπ ≈ Eπ(−q) + EN(0)− EN(−q)

∆E ′Nπ ≈ Eπ(q) + EN(−q)− EN(0)

since p′ = 0 and p = −q.

Include Nπ levels of tree-level ChPT leads to reasonable χ2/d.o.f (|q| = 2π/(64a).)
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Ai ‖ Γi ‖ ~q

−10 −5 0 5 10

τ/a− tf/2a

−0.2

0.0

0.2

0.4

0.6

A4,Γi ‖ ~q

−10 −5 0 5 10

τ/a− tf/2a

6

8

10

12

14

P,Γi ‖ ~q

The yellow result respects the known PCAC relation (up to lattice artefacts). 15 / 29



PCAC and PPD relations at a non-vanishing lattice spacing

0.0 0.2 0.4 0.6 0.8 1.0

Q2 + m2
π [GeV2]

0.4

0.6

0.8

1.0

1.2

r P
C

A
C

N202 mπ = 411 MeV

N203 mπ = 345 MeV

N200 mπ = 284 MeV

D200 mπ = 201 MeV

E250 mπ = 130 MeV

0.0 0.2 0.4 0.6 0.8 1.0

Q2 + m2
π [GeV2]

0.4

0.6

0.8

1.0

1.2

r P
P

D

N202 mπ = 411 MeV

N203 mπ = 345 MeV

N200 mπ = 284 MeV

D200 mπ = 201 MeV

E250 mπ = 130 MeV

Crosses: using the excited state gap from the two-point function.

Circles: simultaneous fit to all 3pt-functions, including A4.

The simultaneous fit was carried out with a free second excited state gap on either
side and
I fixing ∆ENπ and ∆E ′Nπ from the non-interacting levels,
I fitting these energies from the 3pt-function data.

The difference is included in the systematic error of the final result.
Note that GA(Q2), extracted from Ai alone via a naive fit, is only marginally
different. However, the effect on GP̃ and GP is huge at small Q2 and M2

π.
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Results: PCAC and PPD relations in the continuum limit
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r P
P
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!2P
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Right: PCAC is imposed.

rPCAC =
2mudGP(Q2) + Q2

2mN
GP̃(Q2)

2mNGA(Q2) = 1, rPPD = M2
π + Q2

4m2
N

GP̃(Q2)
GA(Q2) ≈ 1.

Violations of the pion pole dominance relation are very small.
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Results: physical point, continuum limit
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Black points are experimental values for gA = GA(0) and
gP = mµ/(2mN)GP̃(0.88m2

µ) at the muon capture point.

Straight lines are the slopes at Q2 = 0: the axial radius is parametrization
dependent and smaller for dipole fits.

The axial radius is uninteresting for neutrino scattering! Even the electric charge
radius of the proton is not very well known from charged lepton scattering.

Results look fine but we would like to confirm this picture, improve on the method
and extend the work to pion production.
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Problem with A4 and P

Forward limit q = 0 but moving frame p′ = p = êi , |êi | = 2π/L ≈ 525MeV.

Spatial and temporal axial currents.

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
t
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R i

R 4

R i

R 4

Ratio should give gA at t � τ � 0.

Pseudoscalar current.

0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
t
2  [fm]

2

1

0
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t = 1.1 fm
t = 1.0 fm
t = 0.8 fm
t = 0.6 fm

t = 1.2 fm
t = 1.1 fm
t = 1.0 fm
t = 0.8 fm
t = 0.6 fm

Ratio has to vanish for the ground state.

As expected by ChPT, there are large excited state contributions in A4 and P!
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Inclusion of 5-quark interpolators to resolve Nπ states
I Compute 2- and 3-point functions including 5-quark interpolators ONπ.
I ONπ must be projected onto Oh or little group irrep G1 to give spin 1/2.
I Project ONπ on the neutron (n) isospin (I = −Iz = 1/2):

O(n)
Nπ = 1√

3 Onπ0 −
√

2
3 Opπ− .

I Solve GEVP to obtain eigenvectors corresponding to the physical N and Nπ
states.

I Use these to construct p J−

−−→ n 3-point functions.
I In progress: also construct 3-point functions for pion production.

CJ ,pπ
−

3pt (p′, t; q, τ) = P+
i 〈 Opπ− (p′, t) J−(q, τ) Ōp(p, 0) 〉

−→ 12 Wick contractions

CJ ,nπ
0

3pt (p′, t; q, τ) = P+
i 〈 Onπ0 (p′, t) J−(q, τ) Ōp(p, 0) 〉

−→ 16 Wick contractions

We neglect 3-point functions of the type 〈ONπJ ŌNπ〉 as their contribution is
strongly suppressed (see below).
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Topologies for p J−−−→ n + π0
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Topologies for p J−−−→ p + π−
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∼ e−EN te−Eπ(t−τ)

corresponds to tree-level ChPT prediction!
[arXiv:1911.13150 (RQCD)]



GEVP for the 2-point functions
2-point function matrix Cij(p, t) = 〈Oi (p, t) Ōj(p, 0)〉, Oi ∈ {ON ,ΦON ,ONπ,ΦONπ}.
Φ indicates quark smearing.
Here we only consider the 2× 2 sub-matrix constructed from ΦON and ΦONπ.
GEVP: C(t)V (t, t0) = C(t0)V (t, t0)Λ(t, t0), V (t, t0) = (v1(t, t0), v2(t, t0)).
Λ(t, t0) = diag(λ1(t, t0), λ2(t, t0)), λα(t, t0) ≈ dα(t0)e−Eαt ,

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t t0 a [fm]

1000
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1400
1600
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2200
2400
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2800

Eef
f  [

M
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N(0) (0) (0)

1
2

E eff
α = ln( λα(t)

λα(t+a) )

t0 = 2a, p = 0.
Similarly for p 6= 0.

E eff
2 is very close to

non-interacting Nπ
P-wave energy.

Possible interpretation: v1 ∼ N, v2 ∼ Nπ.
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GEVP eigenvectors
Restframe
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Little |Nπ〉 in ŌN |Ω〉 and little |N〉 in ŌNπ|Ω〉!
(Quantitative statements depend on interpolator basis used. Here: both smeared.)
Therefore, Nπ is not visible in 〈Ω|ON(t)ŌN(0)|Ω〉 2-point function.
All topologies (A, B, C, D) are important for the determination of the eigenvectors.
In the 〈Ω|ONπ(t)J (t)ŌN(0)|Ω〉 3-point functions, D can be the dominant
contribution (momentum of current directly tranferred to the π).

24 / 29



GEVP-projected correlation functions
We had

C(p, t)vα(p, t; t0) = C(p, t0)vα(p, t; t0)λα(p, t; t0).

GEVP-improved correlation functions for α, β ∈ {N,Nπ}:

Cα
2pt(p, t) = vαi (p, t; t0)Cij(p, t)vαj (p, t; t0)

Cαβ
3pt (p, t,q, τ ; Pk ;J ) = vαi (p′, t; t0)C3pt

ij (p′, t,q, τ ; Pk ;J )vβj (p, t; t0)

|vN
2 | and |vNπ

1 | are small, however, ChPT predicts an enhancement of N J−→ Nπ
for some polarizations and currents J .
We neglect terms ∼ |vN

2 |2 (small2). Also no enhancement expected from ChPT!
→ no need to compute 〈Ω|ONπ(t)J (0)ŌNπ|Ω〉.

Improved nucleon matrix elements can be obtained as

〈N(p′)|J (q)|N(p)〉 ←
CNN

3pt (p′, t,q, τ ; Pk ;J )
CN

2pt(p′, t)

√
CN

2pt(p′, τ)CN
2pt(p′, t)CN

2pt(p, t − τ)
CN

2pt(p, τ)CN
2pt(p, t)CN

2pt(p′, t − τ)
.
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Results in the forward limit (moving frame)
J = A4, p′ = p = êz (q = 0).

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
t
2  [fm]
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R 4 = gA?

t = 1.1 fm
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t = 0.8 fm
t = 0.7 fm
t = 0.6 fm
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standard ratio
GEVP ratio
standard ratio

Light green band is gA from Az with p′ = êz , dark green band from p′ = p = 0.
Large contribution from D: 〈N(êz )π(0)|A4(0)|N(êz )〉, 〈N(êz )|A4(0)|N(êz )π(0)〉.
Note that 〈N|A4|Nπ〉 ∼ 〈N|N〉〈Ω|A4|π〉 = 〈N|N〉

√
2EπFπ.

26 / 29



Results in the forward limit 2 (moving frame)
J = P, p′ = p = êz (q = 0).

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
t
2  [fm]
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t = 1.1 fm
t = 1.0 fm
t = 0.9 fm

t = 0.8 fm
t = 0.7 fm
t = 0.6 fm

GEVP ratio
standard ratio
GEVP ratio
standard ratio

Light green band illustrates the expectation for the ground state (zero!).
Again large contribution from D (for the same reason as for A4):
〈N(êz )π(0)|P(0)|N(êz )〉, 〈N(êz )|P(0)|N(êz )π(0)〉 are big.
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... and with momentum transfer
J = Az ,A4, p′ = 0 (q = −p = êz)
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Prediction of RAz/RA4 = EN +mN
pz

≈ 4.7 consistent with the data!

GA from RPi
Ai

(qj 6=i ) and GP , GP̃ extracted from GEVP-improved ratio satisfy
PCAC and PPD relation up to O(a2) effects.
This can also be achieved without the GEVP, using a ChPT inspired fit ansatz.
In the moving frame no excitations can be detected within our uncertainty.
In the rest frame (large τ), contaminations from higher excitations are still present.
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Summary
I We have determined the axial formfactor in the range of momentum transfers

that is relevant for long baseline neutrino experiments.
I Using this result can improve our understanding of nuclear effects and help to

entangle different processes, ultimately leading to higher precision.
I A problem in the determination of the induced pseudoscalar and pseudoscalar

formfactors is the enhancement of Nπ states. This cannot be eliminated by
“smearing”: also the most ideal nucleon interpolator will couple to Nπ!
Once this was understood, all formfactors could be determined reliably.

I The PCAC relation between the formfactors is satisfied in the continuum limit.
It is still slightly violated at a > 0. Violations of pion pole dominance are
found to be below a few per cent at physical quark masses.

I We further confirmed this picture by explicitly computing axial N → Nπ
matrix elements, also using five-quark interpolators. This (and the
determination of transition formfactors) is in progress.

I The chiral effective theory provides good guidance for understanding the
couplings of interpolators and currents to excited states.

I It would be great to reduce noise over signal for baryonic n-point functions!
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