Some challenges

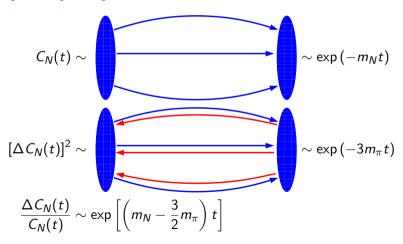
from a "mainstream" perspective,

i.e.
$$d=4$$
, $T=\mu=0$ SU($N_c=3$), $N_f\in\{2+1,1+1+1,2+1+1,1+1+1+1\}$.

- Critical slowing down with $a \rightarrow 0$ How serious is it? How much should we bother?
- Volumes $V=N_tN^3\propto (L/a)^4\propto (L/M_\pi)^4$ become large towards small a,M_π . Also \exists "master field" simulations. Rounding issues, decrease of HMC step sizes, some algorithms scale with V^2 (eigenvectors and similar objects) or with V/a^2 scaling (smearing etc.): how to beat this?
- Noise/signal issues
 Baryons, disconnected quark/gluon loops on large volumes etc.: multiscale schemes?
 Are there solutions that give many quantities at once?
- Efficient algorithms to compute n > 3-point functions. Applications: nuclear physics, $K \to \pi\pi$, quasi/pseudo-PDFs, QCD+QED etc.
- Bad communication and memory over peak FLOPs ratios on modern architectures.

One example for bad noise/signal

HW Hamber, E Marinari, G Parisi, C Rebbi, NPB225 (83) 475 (Appendix B) GP Lepage, http://inspirehep.net/record/287173



One random transparency: low mode averaging

T DeGrand, S Schäfer CPC 159 (04) 185; L Giusti et al, JHEP 0404 (04) 013.

$$\langle C_{\mathrm{LMA}}(t)
angle = \langle C_{\mathrm{low}}(t)
angle + \langle C^{\mathrm{pa}}(t) - C^{\mathrm{pa}}_{\mathrm{low}}(t)
angle .$$

 $C_{\rm low}$: contribution from low eigenmodes of $Q = \gamma_5 M$ ($Q = Q^{\dagger}$), all-to-all, averaged over the lattice volume.

 C^{pa} : standard point-to-all 2-point function.

 $C_{\text{low}}^{\text{pa}}$: low mode contribution (point-to-all), needs to be subtracted since this is already included into C^{pa} .

Exploits the translational invariance of expectation values: $\langle C_{\text{low}} \rangle = \langle C_{\text{low}}^{\text{pa}} \rangle$.

This does not affect the expectation value but may reduce the error, due to the self-averaging of the low-mode contribution.

This works very well for positive parity baryons and negative parity mesons:

GB, L Castagnini, S Collins, PoS (LATTICE2010) 096.

Works best at small quark masses. Problem: cost of eigenvectors $\propto V^2 \propto 1/M_\pi^8$.

Gunnar Bali Challenges

Wishlist (homework)

- Good ideas.
- Efficient communication-avoiding implementations with small memory footprint.
- Integrators that allow for less time spent on evaluations of fermionic force.
- Fast (incl. set-up) solver for HMC (or other MC).
- Fast solver for multi-right-hand-sides (possibly with expensive set-up).
- Efficient way of computing (approximate) eigenvectors of $\gamma_5 M$ (within above solver?).

NB: start from discretized Dirac operator $M=U\Sigma V^{\dagger}$ with U and V unitary. Singular values Σ (diagonal) are uniquely determined, U and V are not.

Eigenvectors of $Q = \gamma_5 M$ are eigenvectors of $Q^2 = M^{\dagger} M$.

Eigenvectors $|u^i\rangle$ of Q are right singular vectors of M (i.e. columns of V):

$$M\underbrace{(|u_1\rangle,\ldots,|u_{12V}\rangle)}_{V} = \underbrace{\gamma_5(\operatorname{sign}(q_1)|u_1\rangle,\ldots,\operatorname{sign}(q_{12V})|u_{12V}\rangle)}_{U}\underbrace{\operatorname{diag}(|q_1|,\ldots,|q_{12V}|)}_{\Sigma}$$