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The Distillation Method

Replace 1) — VVTy), where V contains the N, lowest eigenmodes of the
3D Lap|aCIan Operator. [M. Peardon et al. (2009)]

Focus: Meson operator @Zﬁb
(I =~s,7i, Vi, ...) at 0 spatial
momentum.

Building blocks
¢ Laplacian eigenvectors V/|t]

® Perambulators
T[tl, 1.'2] = VT[tl]D_l V[tg]
® Elementals ®[t] = VI[t]TV[t]

Advantages

Perambulators/elementals
have manageable sizes.

Perambulators are
independent from elementals.

Disadvantages

x N, scales with 3D physical
lattice volume.

x Many inversions required.



Developing an improvement

How to choose NV? Physical and numerical issues.
Too small:
® Neglects significant low energy modes. Over-smearing!
Too large:
° Expensive. Number of eigenvectors, inversions and size of matrices.
® Can include non-significant modes. Under-smearing!
Is a given N, equally good for all states? One-for-all might not be the best choice.
e Different I' correspond to different JPC with different spatial
properties.
* Excited states of a same J”C can also further differ.

Let's begin with some N, and see what we can learn...



Step 1: Calculate V[t]

Solve the sparse H.P.D eigenproblem —V?2[t]v;[t] = \;[t]v;[t] via the
Lanczos algorithm with some improvements:
Chebyshev acceleration — P (—V?2[t]) vi[t] = P(\i[t])vi[t]. Improved
convergence with spread-out spectrum. [D. C. Sorensen and C. Yang (1997)]

Periodic reorthogonalization. Cheaply monitor orthogonality and fix only when

necessary.[J. F. Grecar (1981)]
Thick-Restart scheme. Limit memory requirements. [K. Wu and H. Simon (2000)]

MR3 eigensolver for tridiagonal eigenproblem in LAPACK. O(m?) for

eigenpairs. [I. S. Dhillon and B. N. Parlett (2004)]
Time parallelization. Different values of t can be analyzed simultaneously.

Further modifications are possible: Refined vectors z i (1997)), ...



Step 2: Calculate ®[t]

Numerical considerations:

® [ in Dirac space — (D[t]gyﬁ = 6UFa5. No extra cost and useful sparsity.

e [ =HD in Space/Color/Dirac — CD[t]ZB = vi[t]"D[t]v;[t]Hap. No
sparsity but symmetry can reduce the number of operations required.

® Parallelization in time. Same advantage as in Lanczos.

A physical consideration: Can we use the vectors in a better way?

— Starting point: Quark distillation profile g(\) used via ¢ — VJV1y)
with J[t]u = (5,Jg()\,[t]) Modulate contribution from each vector.

The major improvement comes in this step.



Step 3: Calculate 7[ty, to]

Numerical considerations:
® Solve systems Dx(ient) — V,"a[t]. Use your preferred solver.
° ijg[tl]TX(i’a’t) can done cheaply. Unnecessary operations are avoided.
® These inner products can also be parallelized in time.

I Some considerations might lead to improvements of the solver. More
details at the end.



Towards an improved elemental

Our case: Fix I and study ground/excited states via a GEVP formulation.
[C. Michael & I. Teasdale (1983)] [M. Liischer & U. Wolff (1990)] [B. Blossier et al. (2009)]

o Variational basis: O, = 1,1, with 1, = VJ,V .

o Correlation matrix Cyp(t) = <Oa(t)(§b(0)>

® Pruning via SVD recommended for numerical stability.
[J. Balog et al. (1999)], [F. Niedermayer et al. (2001)]

o Solve GEVP C(t)ue(t, to) = pe(t, to) C(to)ue(t, to).
o Eigenvalues pe(t, ty) give access to masses of the different states.

o Eigenvectors ue(t, to) allow to build an operator O. with the largest
overlap with the wanted energy eigenstate from the basis elements.
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Optimal meson distillation profiles

The new improvement: For a fixed [ and energy level e one can build an
optimal elemental given by

09Nt 5 = FOIN. W Tasvle]

which includes the optimal meson distillation profile given as
~ r %
FEOOE, ) = S 0 D aenile])* ge(\[t])-
k

[F. Knechtli, T. Korzec, M. Peardon, J. A. Urrea-Nifio, Phys. Rev. D106 (2022)]
Advantages:
v C(t) requires very little additional cost to build. Elementals required
come "for free” from the standard one.
v FTE(\i[t], Ajlt]) tells us if N, is large enough and how to use the
N, eigenvectors for each I and energy state. An answer to our physical

questions.



g(A)

Applying the method

e QCD with Nf = 2 at half the physical charm quark mass.

No light quarks. Clover-improved Wilson fermions.

e 48 x 243 and 96 x 483 lattices with a ~ 0.0658,0.049 fm. Check

effectiveness at smaller resolutions and larger volume.

® Both local and derivative . [, J. budek et al. (2008)]
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5, 2
o gi(\)=e 297 in this work.
Suppression of large \ follows
distillation intuition.
® gi(\) = A was tried too.
Same result but less numerical
stability. Avoided basis bias.



Objects of interest

Meson 2-point functions:

o CY(t) = = (Tr (®a[t]r[t, 01®s[0]7[0, ]) )

o C3(t) = Ch(t) + (2Tr (®,[t]7[t. t]) Tr (P5[0]7[0,0])). Measured exactly.
Glueball-meson 2-point function:

* Cuma(t) = (Tr(®a[t]r[t, t]) G[0])
Effective masses (Simplified):

Can(t) = D (0] O, |K) (k| Of 0y e=™ ~ (0] s |g) (g| O} |0) e~ mst
k

pe(t) xx e

Goal of the method: Increase overlap with wanted state and decrease
overlaps with unwanted states without much additional cost.



Coarse lattice (L ~ 1.51 fm) with N, = 200

Local iso-vector operators
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Fractional overlaps:
® ~5: 0.9272(3) — 0.9858(2)
® ~;: 0.8743(10) — 0.9900(5)
® €jikYj vk 0.77(7) — 0.93(1)
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Derivative iso-vector operators
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Fractional overlaps:
® V;: 0.4758(7) — 0.742(2)
® 5V 0.84(1) — 0.970(5)
® Q7 Vk: 0.858(8) — 0.981(3)



Fine lattice (L ~ 2.30 fm) with N, = 325
Derivative iso-vector operators

Local iso-vector operators
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Fractional overlaps:

® ~s5: 0.8765(7) — 0.9555(5)

° i 0.825(3) — 0.969(2)

Fractional overlaps:

® Quy Vi 0.82(2) — 0.92(1)
€ijkjBi: - — 0.91(1)



Coarse lattice iso-scalar 0~
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® Mass splitting is visible in both ensembles. Standard distillation already

makes this possible.
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e QOptimal profile from iso-vector improves the iso-scalar t00. Closeness

in mass might mean similar profiles.
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Optimal Profiles: Coarse lattice
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Optimal Profiles: Fine lattice
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L4 ?(F,O)()\i’ )\j) 75 1 always. Improvement over orthogonal projection.

® Suppression of large X\ remains. Distillation intuition still holds.

e Different profile for different I'. Profiles are unique.

° ?(r,o)()\h Aj) at large \j, Aj tells us if we have enough eigenvectors.

More systematic criterion for choosing N, .

i N\':i"e = 325 & N\c;‘ourse = 100. Volume scaling is a good initial guide.




Spatial Profiles

Spatial profile can be recovered:
o WORO(R) = 4 55, Tr (15 VIS0 VIE]') ol

o WOsVL(R) = 52| Tr (4 V[ OCT1O[ V[H]T) o

with ¢g a 3D point source. Profiles dictate spatial structure.
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® Spatial behavior of state can be visualized.

® Finite-volume effects can be monitored.



Charmonium-Glueball mixing

To keep in mind:
® [so-scalar meson operators require disconnected pieces in correlation
function. Feasable thanks to distillation.

® Glueballs are hard to find in un-quenched QCD. Optimal operators must
be found via GEVP
® 3D Wilson loops with different shapes and windings. [C. J. Morningstar
& M. Peardon, (1999)] [B. Berg & A. Billoire, (1983)]

—

‘T\l\> L el =l o

® Different smearing schemes and levels:

® 3D-HYP [A. Hasenfratz & F. Knechtli, (2001)]
® 3D improved APE [B. Lucini et al. (2004)]



Scalar channel
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Pseudo-Scalar channel
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* Cu(t) = (Tr (¢O¢]r[t, 1]) 6F™)(0)).
® Correlators normalized at fixed time in physical units.

® Noise is dominated by the glueball. Glueballs require more statistics than

mesons.




Why (A, \j) = 1 for 072

16 t lIso-vector, Stoch. }  Iso-scalar, Stoch.
t Iso-vector, f(A;,A) =1 t Iso-scalar, fiA;,A) =1
1.4 +  Iso-vector, #"9(A;, A)) ¥ Iso-scalar, f"9(A;, )
1.2 v .
** ** * e " Txe = e v
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® There is a lighter iso-scalar state. Consistent with a scalar glueball.
e Significant mass difference — Profiles might also be very different.

Unlike the 0~ case.



About the perambulators...

We solve Dx(h@t) = v; ,[¢] for x(*?) but we only need VVTx(it):

" Ni—1 3 Ny N:—1 3 313 B
Z DDt vl + 32 D0 > rl el vislnl
=0 5=0j=1 t1=0 =0 j=N,+1

There are things we know, want, don’'t know and don't want.

— We want a very small piece of the solution but we invest effort in
finding all of it.

Additionally:

® RHS are sparse — V is block diagonal in time and spin.
® Solutions are DT D-orthogonal.

Can we build a better solver taking all of these considerations into
account?



Conclusions

Optimal meson distillation profiles can:

significantly reduce excited state contamination at no extra
inversion cost.

serve as an additional degree of freedom for a GEVP formulation.
reveal additional spatial information of the states of interest.
be used for meson-glueball mixing.
be applied to hadron operators and stochastic distillation.
and will be applied in an N = 3 4+ 1 ensemble with physical charm quark
mass.
We improved the construction of the elementals. Can we do the same for
the perambulators?
® We need only a small part of the solutions.

® The linear systems have some interesting properties.



Thank you for your attention!



Fractional overlap
Correlation function: Ground state + Excited state contamination

T
C(t) = 2COe*mo% cosh ((2 — t> mo) + Bl(l’)
Normalized correlator:

o C()
cl= C(to) <

LBt ) <o ((z 1) m)
1+ Bx(t0)/ cosh ((% - to) mo>

_ By (t)e™?
Ba(t) 2¢p cosh ((% — t) mg)

At mass plateau Bi(t) is 0 and the fractional overlap can be fitted:

1

Ag=—
¢ 1—|—82(t0)



Optimal Profiles: Coarse lattice
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Optimal Profiles: Fine lattice
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® A node appears for the first excited state.

® Same observations as for the ground state regarding the advantages

of the different profiles.
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® |nclusion of profiles grants access to excited states.

e Comparison to standard distillation requires using multiple
operators.
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The spin-exotic 17"
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® The € v(Bx operator with the optimal profile has the best overlap
with the eigenstate.



