Meson distillation profiles and their applications

Francesco Knechtli, Tomasz Korzec, Michael Peardon and Juan Andrés Urrea-Niño

Numerical Challenges in Lattice QCD 2022

The Distillation Method

Replace $\psi \rightarrow V V^{\dagger} \psi$, where V contains the N_{v} lowest eigenmodes of the 3D Laplacian operator. [M. Peardon et al. (2009)]

Focus: Meson operator $\bar{\psi}\ulcorner\psi$ $\left(\Gamma=\gamma_{5}, \gamma_{i}, \nabla_{i}, \ldots\right)$ at 0 spatial momentum.

Building blocks

- Laplacian eigenvectors $V[t]$
- Perambulators

$$
\tau\left[t_{1}, t_{2}\right]=V^{\dagger}\left[t_{1}\right] D^{-1} V\left[t_{2}\right]
$$

- Elementals $\Phi[t]=V^{\dagger}[t] \Gamma V[t]$

Advantages
\checkmark Perambulators/elementals have manageable sizes.
\checkmark Perambulators are independent from elementals.
Disadvantages
$\times N_{v}$ scales with 3D physical lattice volume.
\times Many inversions required.

Developing an improvement

How to choose N_{v} ? Physical and numerical issues.
Too small:

- Neglects significant low energy modes. Over-smearing!

Too large:

- Expensive. Number of eigenvectors, inversions and size of matrices.
- Can include non-significant modes. Under-smearing!

Is a given N_{v} equally good for all states? One-for-all might not be the best choice.

- Different Γ correspond to different $J^{P C}$ with different spatial properties.
- Excited states of a same $J^{P C}$ can also further differ.

Let's begin with some N_{v} and see what we can learn...

Step 1: Calculate $V[t]$

Solve the sparse H.P.D eigenproblem $-\nabla^{2}[t] v_{i}[t]=\lambda_{i}[t] v_{i}[t]$ via the Lanczos algorithm with some improvements:
\checkmark Chebyshev acceleration $\rightarrow P\left(-\nabla^{2}[t]\right) v_{i}[t]=P\left(\lambda_{i}[t]\right) v_{i}[t]$. Improved convergence with spread-out spectrum. [D. C. Sorensen and C. Yang (1997)]
\checkmark Periodic reorthogonalization. Cheaply monitor orthogonality and fix only when necessary.[J. F. Grar (1981)]
\checkmark Thick-Restart scheme. Limit memory requirements. [K. Wu and H. Simon (2000)]
$\checkmark \mathrm{MR}^{3}$ eigensolver for tridiagonal eigenproblem in LAPACK. $\mathcal{O}\left(m^{2}\right)$ for eigenpairs. [I. S. Dhillon and B. N. Parlett (2004)]
\checkmark Time parallelization. Different values of t can be analyzed simultaneously.
Further modifications are possible: Refined vectors [z. Jia (1997)], ...

Step 2: Calculate $\Phi[t]$

Numerical considerations:

- Γ in Dirac space $\rightarrow \Phi[t]_{\alpha \beta}^{i j}=\delta_{i j} \Gamma_{\alpha \beta}$. No extra cost and useful sparsity.
- $\Gamma=\mathcal{H D}$ in Space/Color/Dirac $\rightarrow \Phi[t]_{\alpha \beta}^{i j}=v_{i}[t]^{\dagger} \mathcal{D}[t] v_{j}[t] \mathcal{H}_{\alpha \beta}$. No sparsity but symmetry can reduce the number of operations required.
- Parallelization in time. Same advantage as in Lanczos.

A physical consideration: Can we use the vectors in a better way?
\rightarrow Starting point: Quark distillation profile $g(\lambda)$ used via $\psi \rightarrow V J V^{\dagger} \psi$ with $J[t]_{i j}=\delta_{i j} g\left(\lambda_{i}[t]\right)$. Modulate contribution from each vector.

The major improvement comes in this step.

Step 3: Calculate $\tau\left[t_{1}, t_{2}\right]$

Numerical considerations:

- Solve systems $D x^{(i, \alpha, t)}=v_{i, \alpha}[t]$. Use your preferred solver.
- $v_{j, \beta}\left[t^{\prime}\right]^{\dagger} x^{(i, \alpha, t)}$ can done cheaply. Unnecessary operations are avoided.
- These inner products can also be parallelized in time.
! Some considerations might lead to improvements of the solver. More details at the end.

Towards an improved elemental

Our case: Fix Γ and study ground/excited states via a GEVP formulation.
[C. Michael \& I. Teasdale (1983)] [M. Lüscher \& U. Wolff (1990)] [B. Blossier et al. (2009)]

- Variational basis: $\mathcal{O}_{a}=\bar{\psi}_{a} \Gamma \psi_{a}$ with $\psi_{a}=V J_{a} V^{\dagger} \psi$.
- Correlation matrix $C_{a b}(t)=\left\langle\mathcal{O}_{a}(t) \overline{\mathcal{O}}_{b}(0)\right\rangle$
- Pruning via SVD recommended for numerical stability.
[J. Balog et al. (1999)], [F. Niedermayer et al. (2001)]
- Solve GEVP $C(t) u_{e}\left(t, t_{0}\right)=\rho_{e}\left(t, t_{0}\right) C\left(t_{0}\right) u_{e}\left(t, t_{0}\right)$.
- Eigenvalues $\rho_{e}\left(t, t_{0}\right)$ give access to masses of the different states.
- Eigenvectors $u_{e}\left(t, t_{0}\right)$ allow to build an operator $\tilde{\mathcal{O}}_{e}$ with the largest overlap with the wanted energy eigenstate from the basis elements.

Optimal meson distillation profiles

The new improvement: For a fixed Γ and energy level e one can build an optimal elemental given by

$$
\tilde{\Phi}^{(\Gamma, e)}[t]_{i j}=\tilde{f}^{(\Gamma, e)}\left(\lambda_{i}[t], \lambda_{j}[t]\right) v_{i}[t]^{\dagger} \Gamma_{\alpha \beta} v_{j}[t]
$$

which includes the optimal meson distillation profile given as

$$
\tilde{f}^{(\Gamma, e)}\left(\lambda_{i}[t], \lambda_{j}[t]\right)=\sum_{k} \eta_{k}^{(\Gamma, e)} g_{k}\left(\lambda_{i}[t]\right)^{*} g_{k}\left(\lambda_{j}[t]\right)
$$

[F. Knechtli, T. Korzec, M. Peardon, J. A. Urrea-Niño, Phys. Rev. D106 (2022)]
Advantages:
$\checkmark C(t)$ requires very little additional cost to build. Elementals required come "for free" from the standard one.
$\checkmark \tilde{f}^{(\Gamma, e)}\left(\lambda_{i}[t], \lambda_{j}[t]\right)$ tells us if N_{v} is large enough and how to use the N_{v} eigenvectors for each 「 and energy state. An answer to our physical questions.

Applying the method

- QCD with $N_{f}=2$ at half the physical charm quark mass.

No light quarks. Clover-improved Wilson fermions.

- 48×24^{3} and 96×48^{3} lattices with $a \approx 0.0658,0.049 \mathrm{fm}$. Check effectiveness at smaller resolutions and larger volume.
- Both local and derivative Г. [J. J. Dudek et al. (2008)]

- $g_{i}(\lambda)=e^{-\frac{\lambda^{2}}{2 \sigma_{i}^{2}}}$ in this work. Suppression of large λ follows distillation intuition.
- $g_{i}(\lambda)=\lambda^{i}$ was tried too. Same result but less numerical stability. Avoided basis bias.

Objects of interest

Meson 2-point functions:

- $C_{a b}^{V}(t)=-\left\langle\operatorname{Tr}\left(\Phi_{a}[t] \tau[t, 0] \bar{\Phi}_{b}[0] \tau[0, t]\right)\right\rangle$
- $C_{a b}^{S}(t)=C_{a b}^{V}(t)+\left\langle 2 \operatorname{Tr}\left(\Phi_{a}[t] \tau[t, t]\right) \operatorname{Tr}\left(\bar{\Phi}_{b}[0] \tau[0,0]\right)\right\rangle$. Measured exactly.

Glueball-meson 2-point function:

- $C_{M G}(t)=\left\langle\operatorname{Tr}\left(\Phi_{a}[t] \tau[t, t]\right) G[0]\right\rangle$

Effective masses (Simplified):

$$
\begin{aligned}
C_{a b}(t) & =\sum_{k}\langle 0| \hat{\mathcal{O}}_{a}|k\rangle\langle k| \hat{\mathcal{O}}_{b}^{\dagger}|0\rangle e^{-m_{k} t} \approx\langle 0| \hat{\mathcal{O}}_{a}|g\rangle\langle g| \hat{\mathcal{O}}_{b}^{\dagger}|0\rangle e^{-m_{g} t} \\
\rho_{e}(t) & \propto e^{-m_{e} t}
\end{aligned}
$$

Goal of the method: Increase overlap with wanted state and decrease overlaps with unwanted states without much additional cost.

Coarse lattice $(L \approx 1.51 \mathrm{fm})$ with $N_{v}=200$

Local iso-vector operators

Fractional overlaps:

- $\gamma_{5}: 0.9272(3) \rightarrow 0.9858(2)$
- $\gamma_{i}: 0.8743(10) \rightarrow 0.9900(5)$
- $\epsilon_{i j k} \gamma_{j} \gamma_{k}: 0.77(7) \rightarrow 0.93(1)$

Derivative iso-vector operators

Fractional overlaps:

- $\nabla_{i}: 0.4758(7) \rightarrow 0.742(2)$
- $\gamma_{5} \nabla_{i}: 0.84(1) \rightarrow 0.970(5)$
- $\mathbb{Q}_{i j k} \gamma_{j} \nabla_{k}: 0.858(8) \rightarrow 0.981(3)$

Fine lattice $(L \approx 2.30 \mathrm{fm})$ with $N_{v}=325$

Local iso-vector operators

Fractional overlaps:

- $\gamma_{5}: 0.8765(7) \rightarrow 0.9555(5)$
- $\gamma_{i}: 0.825(3) \rightarrow 0.969(2)$

Derivative iso-vector operators

Fractional overlaps:

- $\mathbb{Q}_{i j k} \gamma_{j} \nabla_{k}: 0.82(2) \rightarrow 0.92(1)$
- $\epsilon_{i j k} \gamma_{j} \mathbb{B}_{k}:-\rightarrow 0.91(1)$

Coarse lattice iso-scalar 0^{-+}

Fine lattice iso-scalar 0^{-+}

- Mass splitting is visible in both ensembles. Standard distillation already makes this possible.
- Optimal profile from iso-vector improves the iso-scalar too. Closeness in mass might mean similar profiles.

Optimal Profiles: Coarse lattice

Optimal Profiles: Fine lattice

- $\tilde{f}(\Gamma, 0)\left(\lambda_{i}, \lambda_{j}\right) \neq 1$ always. Improvement over orthogonal projection.
- Suppression of large λ remains. Distillation intuition still holds.
- Different profile for different Γ. Profiles are unique.
- $\tilde{f}(\Gamma, 0)\left(\lambda_{i}, \lambda_{j}\right)$ at large λ_{i}, λ_{j} tells us if we have enough eigenvectors. More systematic criterion for choosing N_{v}.
- $N_{v}^{\text {fine }}=325 \leftrightarrow N_{v}^{\text {course }}=100$. Volume scaling is a good initial guide.

Spatial Profiles

Spatial profile can be recovered:

- $\psi\left(\gamma_{5}, e\right)(\vec{x})=\frac{1}{N_{t}} \sum_{t}\left\|\operatorname{Tr}\left(\gamma_{5} V[t] \tilde{\Phi}^{\left(\gamma_{5}, e\right)}[t] V[t]^{\dagger}\right) \phi_{0}\right\|^{2}$
- $\Psi^{\left(\gamma_{5} \nabla_{1}, e\right)}(\vec{x})=\frac{1}{N_{t}} \sum_{t}\left\|\operatorname{Tr}\left(\gamma_{5} V[t] \tilde{\Phi}^{\left(\gamma_{5} \nabla_{1}, e\right)}[t] V[t]^{\dagger}\right) \phi_{0}\right\|^{2}$
with ϕ_{0} a 3D point source. Profiles dictate spatial structure.

- Spatial behavior of state can be visualized.
- Finite-volume effects can be monitored.

Charmonium-Glueball mixing

To keep in mind:

- Iso-scalar meson operators require disconnected pieces in correlation function. Feasable thanks to distillation.
- Glueballs are hard to find in un-quenched QCD. Optimal operators must be found via GEVP
- 3D Wilson loops with different shapes and windings. [C. J. Morningstar \& M. Peardon, (1999)] [B. Berg \& A. Billoire, (1983)]

- Different smearing schemes and levels:
- 3D-HYP [A. Hasenfratz \& F. Knechtli, (2001)]
- 3D improved APE [B. Lucini et al. (2004)]

Scalar channel

$$
0^{++} \rightarrow \Gamma=\mathbb{I}, \tilde{f}\left(\lambda_{i}, \lambda_{j}\right)=1
$$

Pseudo-Scalar channel

$0^{-+} \rightarrow \Gamma=\gamma_{5}, \tilde{f}\left(\gamma_{5}, 0\right)\left(\lambda_{i}, \lambda_{j}\right)$

- $C_{M G}(t)=\left\langle\operatorname{Tr}\left(\Phi^{(\Gamma)}[t] \tau[t, t]\right) G^{\left(R^{P C}\right)}(0)\right\rangle$.
- Correlators normalized at fixed time in physical units.
- Noise is dominated by the glueball. Glueballs require more statistics than mesons.

Why $\tilde{f}\left(\lambda_{i}, \lambda_{j}\right)=1$ for 0^{++}?

- There is a lighter iso-scalar state. Consistent with a scalar glueball.
- Significant mass difference \rightarrow Profiles might also be very different. Unlike the 0^{-+}case.

About the perambulators...

We solve $D x^{(i, \alpha, t)}=v_{i, \alpha}[t]$ for $x^{(i, \alpha, t)}$ but we only need $V V^{\dagger} X^{(i, \alpha, t)}$:

$$
x^{(i, \alpha, t)}=\sum_{t_{1}=0}^{N_{t}-1} \sum_{\beta=0}^{3} \sum_{j=1}^{N_{v}} \tau\left[t_{1}, t\right]_{\beta \alpha}^{j i} v_{j, \beta}\left[t_{1}\right]+\sum_{t_{1}=0}^{N_{t}-1} \sum_{\beta=0}^{3} \sum_{j=N_{v}+1}^{3 L^{3}} \tau\left[t_{1}, t\right]_{\beta \alpha}^{j i} v_{j, \beta}\left[t_{1}\right]
$$

There are things we know, want, don't know and don't want.
\rightarrow We want a very small piece of the solution but we invest effort in finding all of it.
Additionally:

- RHS are sparse $\rightarrow V$ is block diagonal in time and spin.
- Solutions are $D^{\dagger} D$-orthogonal.

Can we build a better solver taking all of these considerations into account?

Conclusions

Optimal meson distillation profiles can:
\checkmark significantly reduce excited state contamination at no extra inversion cost.
\checkmark serve as an additional degree of freedom for a GEVP formulation.
\checkmark reveal additional spatial information of the states of interest.
\checkmark be used for meson-glueball mixing.
\checkmark be applied to hadron operators and stochastic distillation.
and will be applied in an $N_{f}=3+1$ ensemble with physical charm quark mass.

We improved the construction of the elementals. Can we do the same for the perambulators?

- We need only a small part of the solutions.
- The linear systems have some interesting properties.

Thank you for your attention!

Fractional overlap

Correlation function: Ground state + Excited state contamination

$$
C(t)=2 c_{0} e^{-m_{0} \frac{T}{2}} \cosh \left(\left(\frac{T}{2}-t\right) m_{0}\right)+B_{1}(t)
$$

Normalized correlator:

$$
\begin{aligned}
C^{\prime}(t) & =\frac{C(t)}{C\left(t_{0}\right)}=\left(\frac{1+B_{2}(t)}{1+B_{2}\left(t_{0}\right)}\right) \frac{\cosh \left(\left(\frac{T}{2}-t\right) m_{0}\right)}{\cosh \left(\left(\frac{T}{2}-t_{0}\right) m_{0}\right)} \\
B_{2}(t) & =\frac{B_{1}(t) e^{m_{0} \frac{T}{2}}}{2 c_{0} \cosh \left(\left(\frac{T}{2}-t\right) m_{0}\right)}
\end{aligned}
$$

At mass plateau $B_{1}(t)$ is 0 and the fractional overlap can be fitted:

$$
A_{G}=\frac{1}{1+B_{2}\left(t_{0}\right)}
$$

First excited state

Optimal Profiles: Coarse lattice

Optimal Profiles: Fine lattice

- A node appears for the first excited state.
- Same observations as for the ground state regarding the advantages of the different profiles.

- Inclusion of profiles grants access to excited states.
- Comparison to standard distillation requires using multiple 「 operators.

The spin-exotic 1^{-+}

- The $\epsilon_{i j k} \gamma_{k} \mathbb{B}_{k}$ operator with the optimal profile has the best overlap with the eigenstate.

