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The Distillation Method

Replace ψ → VV †ψ, where V contains the Nv lowest eigenmodes of the
3D Laplacian operator. [M. Peardon et al. (2009)]

Focus: Meson operator ψ̄Γψ
(Γ = γ5, γi ,∇i , ...) at 0 spatial
momentum.

Building blocks
• Laplacian eigenvectors V [t]
• Perambulators
τ [t1, t2] = V †[t1]D−1V [t2]

• Elementals Φ[t] = V †[t]ΓV [t]

Advantages
✓ Perambulators/elementals

have manageable sizes.
✓ Perambulators are

independent from elementals.
Disadvantages

× Nv scales with 3D physical
lattice volume.

× Many inversions required.



Developing an improvement

How to choose Nv ? Physical and numerical issues.
Too small:

• Neglects significant low energy modes. Over-smearing!

Too large:
• Expensive. Number of eigenvectors, inversions and size of matrices.

• Can include non-significant modes. Under-smearing!

Is a given Nv equally good for all states? One-for-all might not be the best choice.

• Different Γ correspond to different JPC with different spatial
properties.

• Excited states of a same JPC can also further differ.
Let’s begin with some Nv and see what we can learn...



Step 1: Calculate V [t]

Solve the sparse H.P.D eigenproblem −∇2[t]vi [t] = λi [t]vi [t] via the
Lanczos algorithm with some improvements:
✓ Chebyshev acceleration → P

(
−∇2[t]

)
vi [t] = P(λi [t])vi [t]. Improved

convergence with spread-out spectrum. [D. C. Sorensen and C. Yang (1997)]

✓ Periodic reorthogonalization. Cheaply monitor orthogonality and fix only when
necessary.[J. F. Grcar (1981)]

✓ Thick-Restart scheme. Limit memory requirements. [K. Wu and H. Simon (2000)]

✓ MR3 eigensolver for tridiagonal eigenproblem in LAPACK. O(m2) for
eigenpairs. [I. S. Dhillon and B. N. Parlett (2004)]

✓ Time parallelization. Different values of t can be analyzed simultaneously.

Further modifications are possible: Refined vectors [Z. Jia (1997)], ...



Step 2: Calculate Φ[t]

Numerical considerations:
• Γ in Dirac space → Φ[t]ijαβ = δijΓαβ. No extra cost and useful sparsity.

• Γ = HD in Space/Color/Dirac → Φ[t]ijαβ = vi [t]†D[t]vj [t]Hαβ. No
sparsity but symmetry can reduce the number of operations required.

• Parallelization in time. Same advantage as in Lanczos.

A physical consideration: Can we use the vectors in a better way?

→ Starting point: Quark distillation profile g(λ) used via ψ → VJV †ψ
with J [t]ij = δijg(λi [t]). Modulate contribution from each vector.

The major improvement comes in this step.



Step 3: Calculate τ [t1, t2]

Numerical considerations:
• Solve systems Dx (i ,α,t) = vi ,α[t]. Use your preferred solver.

• vj,β[t ′]†x (i ,α,t) can done cheaply. Unnecessary operations are avoided.

• These inner products can also be parallelized in time.
! Some considerations might lead to improvements of the solver. More

details at the end.



Towards an improved elemental

Our case: Fix Γ and study ground/excited states via a GEVP formulation.
[C. Michael & I. Teasdale (1983)] [M. Lüscher & U. Wolff (1990)] [B. Blossier et al. (2009)]

◦ Variational basis: Oa = ψ̄aΓψa with ψa = VJaV †ψ.
◦ Correlation matrix Cab(t) =

〈
Oa(t)Ōb(0)

〉
• Pruning via SVD recommended for numerical stability.

[J. Balog et al. (1999)], [F. Niedermayer et al. (2001)]

◦ Solve GEVP C(t)ue(t, t0) = ρe(t, t0)C(t0)ue(t, t0).
◦ Eigenvalues ρe(t, t0) give access to masses of the different states.
◦ Eigenvectors ue(t, t0) allow to build an operator Õe with the largest

overlap with the wanted energy eigenstate from the basis elements.

Oa C(t) ρe(t)/ue(t) me/Õe



Optimal meson distillation profiles
The new improvement: For a fixed Γ and energy level e one can build an
optimal elemental given by

Φ̃(Γ,e)[t] ij
αβ

= f̃ (Γ,e)(λi [t], λj [t])vi [t]†Γαβvj [t]

which includes the optimal meson distillation profile given as

f̃ (Γ,e)(λi [t], λj [t]) =
∑

k
η

(Γ,e)
k gk(λi [t])∗gk(λj [t]).

[F. Knechtli, T. Korzec, M. Peardon, J. A. Urrea-Niño, Phys. Rev. D106 (2022)]
Advantages:
✓ C(t) requires very little additional cost to build. Elementals required

come ”for free” from the standard one.

✓ f̃ (Γ,e)(λi [t], λj [t]) tells us if Nv is large enough and how to use the
Nv eigenvectors for each Γ and energy state. An answer to our physical
questions.



Applying the method
• QCD with Nf = 2 at half the physical charm quark mass.

No light quarks. Clover-improved Wilson fermions.
• 48 × 243 and 96 × 483 lattices with a ≈ 0.0658, 0.049 fm. Check

effectiveness at smaller resolutions and larger volume.
• Both local and derivative Γ. [J. J. Dudek et al. (2008)]
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2σ2
i in this work.

Suppression of large λ follows
distillation intuition.

• gi(λ) = λi was tried too.
Same result but less numerical
stability. Avoided basis bias.



Objects of interest

Meson 2-point functions:
• CV

ab(t) = −
〈
Tr

(
Φa[t]τ [t, 0]Φ̄b[0]τ [0, t]

)〉
• CS

ab(t) = CV
ab(t) +

〈
2Tr (Φa[t]τ [t, t]) Tr

(
Φ̄b[0]τ [0, 0]

)〉
. Measured exactly.

Glueball-meson 2-point function:
• CMG(t) = ⟨Tr (Φa[t]τ [t, t]) G [0]⟩

Effective masses (Simplified):

Cab(t) =
∑

k
⟨0| Ôa |k⟩ ⟨k| Ô†

b |0⟩ e−mk t ≈ ⟨0| Ôa |g⟩ ⟨g | Ô†
b |0⟩ e−mg t

ρe(t) ∝ e−met

Goal of the method: Increase overlap with wanted state and decrease
overlaps with unwanted states without much additional cost.



Coarse lattice (L ≈ 1.51 fm) with Nv = 200
Local iso-vector operators
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Fractional overlaps:
• γ5: 0.9272(3) → 0.9858(2)
• γi : 0.8743(10) → 0.9900(5)
• ϵijkγjγk : 0.77(7) → 0.93(1)

Derivative iso-vector operators
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Fractional overlaps:
• ∇i : 0.4758(7) → 0.742(2)
• γ5∇i : 0.84(1) → 0.970(5)
• Qijkγj∇k : 0.858(8) → 0.981(3)



Fine lattice (L ≈ 2.30 fm) with Nv = 325
Local iso-vector operators
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Fractional overlaps:
• γ5: 0.8765(7) → 0.9555(5)
• γi : 0.825(3) → 0.969(2)

Derivative iso-vector operators
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Fractional overlaps:
• Qijkγj∇k : 0.82(2) → 0.92(1)
• ϵijkγjBk : - → 0.91(1)



Coarse lattice iso-scalar 0−+
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Fine lattice iso-scalar 0−+
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• Mass splitting is visible in both ensembles. Standard distillation already
makes this possible.

• Optimal profile from iso-vector improves the iso-scalar too. Closeness
in mass might mean similar profiles.



Optimal Profiles: Coarse lattice
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Optimal Profiles: Fine lattice
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• f̃ (Γ,0)(λi , λj) ̸= 1 always. Improvement over orthogonal projection.
• Suppression of large λ remains. Distillation intuition still holds.
• Different profile for different Γ. Profiles are unique.
• f̃ (Γ,0)(λi , λj) at large λi , λj tells us if we have enough eigenvectors.

More systematic criterion for choosing Nv .
• Nfine

v = 325 ↔ Ncourse
v = 100. Volume scaling is a good initial guide.



Spatial Profiles

Spatial profile can be recovered:
• Ψ(γ5,e)(x⃗) = 1

Nt

∑
t ||Tr

(
γ5V [t]Φ̃(γ5,e)[t]V [t]†

)
ϕ0||2

• Ψ(γ5∇1,e)(x⃗) = 1
Nt

∑
t ||Tr

(
γ5V [t]Φ̃(γ5∇1,e)[t]V [t]†

)
ϕ0||2

with ϕ0 a 3D point source. Profiles dictate spatial structure.
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• Spatial behavior of state can be visualized.
• Finite-volume effects can be monitored.



Charmonium-Glueball mixing

To keep in mind:
• Iso-scalar meson operators require disconnected pieces in correlation

function. Feasable thanks to distillation.
• Glueballs are hard to find in un-quenched QCD. Optimal operators must

be found via GEVP
• 3D Wilson loops with different shapes and windings. [C. J. Morningstar

& M. Peardon, (1999)] [B. Berg & A. Billoire, (1983)]

• Different smearing schemes and levels:
• 3D-HYP [A. Hasenfratz & F. Knechtli, (2001)]
• 3D improved APE [B. Lucini et al. (2004)]



Scalar channel

0++ → Γ = I, f̃ (λi , λj) = 1
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Pseudo-Scalar channel

0−+ → Γ = γ5, f̃ (γ5,0)(λi , λj)
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• CMG(t) =
〈
Tr

(
Φ(Γ)[t]τ [t, t]

)
G (RPC )(0)

〉
.

• Correlators normalized at fixed time in physical units.
• Noise is dominated by the glueball. Glueballs require more statistics than

mesons.



Why f̃ (λi , λj) = 1 for 0++?
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• There is a lighter iso-scalar state. Consistent with a scalar glueball.

• Significant mass difference → Profiles might also be very different.
Unlike the 0−+ case.



About the perambulators...

We solve Dx (i ,α,t) = vi ,α[t] for x (i ,α,t) but we only need VV †x (i ,α,t):

x (i,α,t) =
Nt−1∑
t1=0

3∑
β=0

Nv∑
j=1

τ [t1, t]jiβαvj,β[t1] +
Nt−1∑
t1=0

3∑
β=0

3L3∑
j=Nv +1

τ [t1, t]jiβαvj,β[t1]

There are things we know, want, don’t know and don’t want.
→ We want a very small piece of the solution but we invest effort in
finding all of it.
Additionally:

• RHS are sparse → V is block diagonal in time and spin.
• Solutions are D†D-orthogonal.

Can we build a better solver taking all of these considerations into
account?



Conclusions
Optimal meson distillation profiles can:
✓ significantly reduce excited state contamination at no extra

inversion cost.
✓ serve as an additional degree of freedom for a GEVP formulation.
✓ reveal additional spatial information of the states of interest.
✓ be used for meson-glueball mixing.
✓ be applied to hadron operators and stochastic distillation.

and will be applied in an Nf = 3 + 1 ensemble with physical charm quark
mass.

We improved the construction of the elementals. Can we do the same for
the perambulators?

• We need only a small part of the solutions.
• The linear systems have some interesting properties.



Thank you for your attention!



Fractional overlap
Correlation function: Ground state + Excited state contamination

C(t) = 2c0e−m0
T
2 cosh

((T
2 − t

)
m0

)
+ B1(t)

Normalized correlator:

C ′(t) = C(t)
C(t0) =

( 1 + B2(t)
1 + B2(t0)

) cosh
((

T
2 − t

)
m0

)
cosh

((
T
2 − t0

)
m0

)
B2(t) = B1(t)em0

T
2

2c0 cosh
((

T
2 − t

)
m0

)
At mass plateau B1(t) is 0 and the fractional overlap can be fitted:

AG = 1
1 + B2(t0)



First excited state

Optimal Profiles: Coarse lattice
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Optimal Profiles: Fine lattice
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• A node appears for the first excited state.
• Same observations as for the ground state regarding the advantages

of the different profiles.
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• Inclusion of profiles grants access to excited states.
• Comparison to standard distillation requires using multiple Γ

operators.



The spin-exotic 1−+
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• The ϵijkγkBk operator with the optimal profile has the best overlap
with the eigenstate.


