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Agenda

* Benchmarking of GEANT4 and IRSYN.
* Options for Detector Dipole

* Plans for the future (Absorber and Masks)



GEANT4

* GEANT4 utilizes the Runge-Kutta method for integration in order to track
particle trajectories in magnetic fields.

* GEANT4 utilizes a Monte Carlo model to simulate synchrotron radiation.

IRSYN

* IRSYN integrates the particle trajectory from the magnetic field using
time-reversal velocity verlet method.

* IRSYN utilizes a Monte Carlo model to simulate synchrotron radiation.
(developed by Helmut B).

* IRSYN has been benchmarked against previous synchrotron radiation
calculations made by B. Nagorny.



Comparison of Results with GEANT4 and IRSYN

* Below is a comparison of the power distribution found in the IR for the
new 10 degree optics using the two codes.

* All measurements are in Watts unless otherwise marked.

DL QL3 (0] QL1 Total

(kW)

GEANT4 397.40 5029.78 3968.90 233.36 235.64 3979.92 5016.71 397.40 18.87
Robs Code  410.74 4937.52  4082.75 219.06 239.8 4153.31 5159.28 406.22 19.63

* These results show promise in the two codes as methods of reliably calculating
synchrotron light.

* Since both codes utilize Monte Carlo methods, statistical deviations are expected
and experienced.



Photon development
in terms of Z*

- Photon creation structure makes it clear that
the quadrupoles dominate photon creation for
the 10 degree RR optics, in terms of number,
critical energy, and energy.
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*All Plots done by R. Appleby with IRSYN and ROOT
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*All Plots done by R. Appleby with IRSYN and ROOT



| Photons at IP |

Photons at IP

Transverse Slices
of Photon development in Z*

* Photons from the dipole are shown in Red.

* Photons from the quadrupoles are shown in
Black.

* Shows how the spread of the photonsinY is
dominated by the quadrupoles.
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*All Plots done by R. Appleby with IRSYN and ROOT



New 10 Degree Option

* The new option has shorter quadrupoles. These quads are used as
effective dipoles. This gives us less effective dipole length in the detector
region.

* The new option contains a smaller crossing angle (1 mrad) which requires
more bending to achieve.

* The result of these two changes is that higher dipole fields must be used
to achieve the desired separation (*50 mm) at the entrance of the
downstream proton quadrupoles.



Two Options
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* In the above diagram two options are presented. Both options obtain a separation of ~50 mm of the interacting proton
beam and electron beam at the entrance of the downstream proton quadrupoles.
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SR Characteristics using GEANT4 Simulations

Characteristic Detector Dipole No Detector Dipole

E [GeV] 60 60
| [mA] 100 100
Detector Dipole Length* [m] 5 0
B [T] 0.021 0.026
Binitia™* [mrad] 32.03 34.01
Bcrossing™* [mrad] 1 1
Ec [keV] 183.69 188.34
Eu[keV] 56.56 57.99
P [kW] 26.16 29.28
Separation®** [mm] 50.05 49.84

*Length is total amount of dipole within the 12 m detector
**0 is the angle between the electron and proton momentum vectors
*** The separation is the displacement between the proton and electron centroids at the proton quadrupole entrance



Absorber Design

* We need to design an absorber to remove
synchrotron light from the beam pipe.

* We will model the absorber after the one used in
Hera which was able to absorb ~30 kW.

* We need to compare the critical energies
experienced at Hera with those predicted for the
LHeC to know whether we can compare to Hera.

* The absorber should have a cone like shape to help

dissipate the heat and to keep photons from
backscattering into the detector.

Mask Design
_ Detector

* Once the backscattering from the absorber
has been simulated we will be able to optimize
mask placement to limit synchrotron light from
entering the detector.
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Conclusions

* The GEANTA4 results agree with the IRSYN results.
* The quadrupoles dominate the generation of synchrotron radiation.

* The option without a dipole in the detector region is attractive however causes
an increase in the power of 10.66 %.

» Backscattering still needs to be simulated for collimator design.

* We need to analyze critical energies experienced at Hera to know whether
comparing it to the LHeC is meaningful.

* The shape of the absorber still needs to be optimized.



