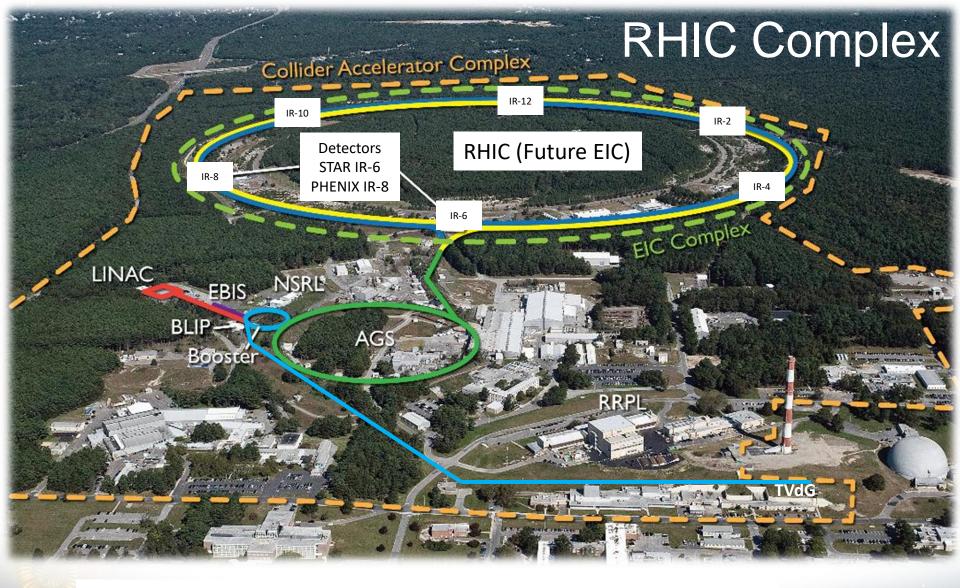
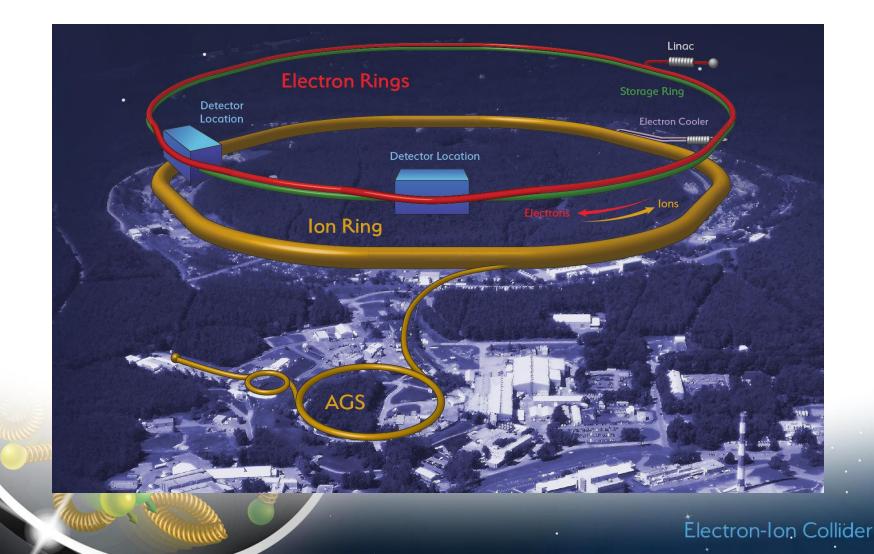
Overview of High Power RF for **Electron-Ion Collider (EIC)**

Alex Zaltsman, EIC High Power RF systems On behalf of EIS RF team CW and High Average Power RF Workshop September 2022


Electron-Ion Collider

ENERGY Office of Science



• EIC leverages \$B class investments and the highly successful RHIC program.

Electron-Ion Collider

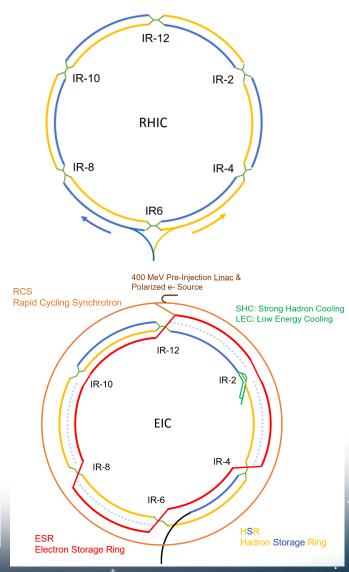
2

Electron Storage Ring (ESR), Rapid Cycling Synchrotron (RCS) and Detector

3

EIC Concept Based on a Ring-Ring Collider

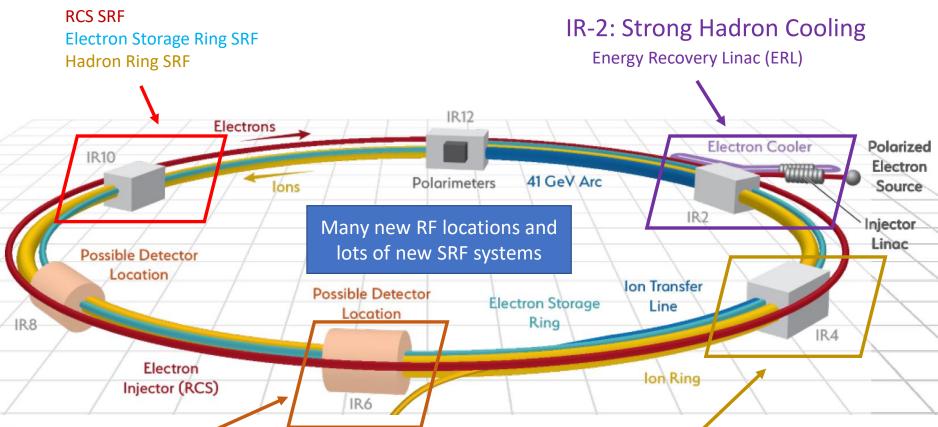
Design leverages the **existing** RHIC and its injector complex. RHIC is well maintained, operating at its peak performance (44x design Au luminosity).


- High Luminosity Interaction Region(s) (IR-6)
 - $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Hadron Storage Ring 40-275 GeV (Existing)
 - Reuse parts of RHIC Yellow and Blue Rings
 - 1160 bunches via bunch splitting, up to 1A beam current
 - Beam Screen (Cu + Amorphous Carbon) Installation In-Situ
 - Injection at IR-4
 - Need strong cooling at store likely injection cooling too.

• Electron Storage Ring (2.5–18 GeV, New)

- 1160 bunches, up to 2.5A beam current
- Up to 10 MW S.R. power
- Simultaneous Swap Out/In of Replacement Bunches, 1 Hz

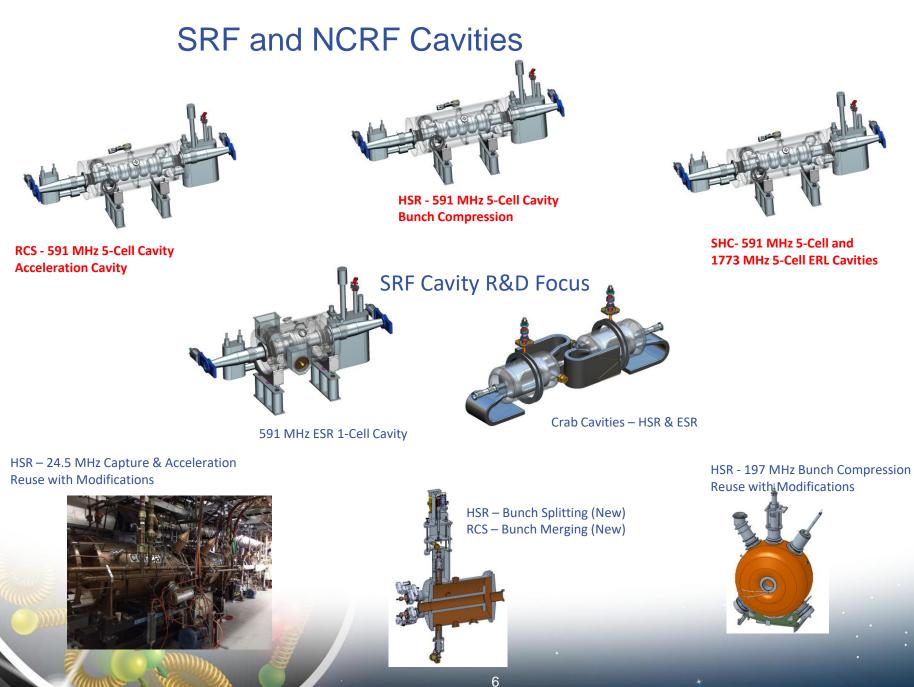
Rapid Cycling Synchrotron (New)


- 1 Hz rep rate, 100ms ramp
- 400 MeV Polarized e- Injector

Electron-Ion Collider 4

EIC Big Picture – RF Systems

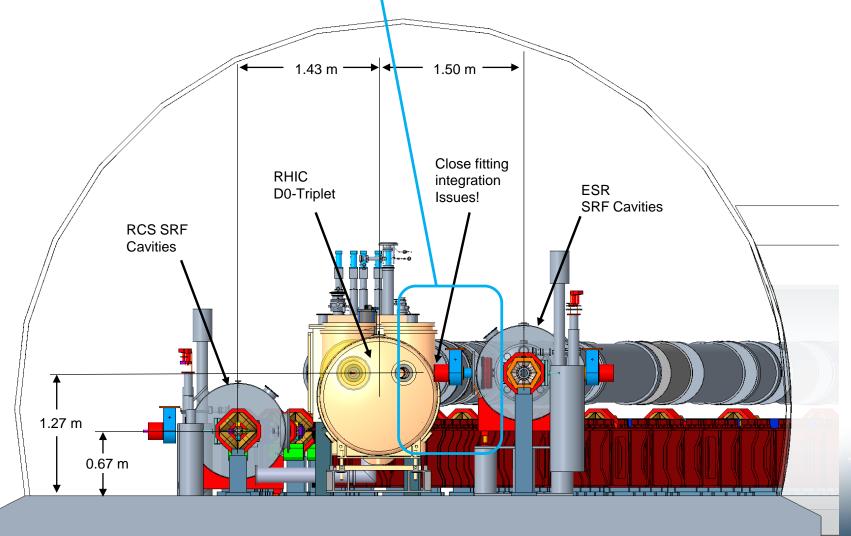
IR-10: SRF Systems


IR-6: Crab Cavity SRF Systems 197 MHz and 394 MHz Hadron Crab Cavity Systems 394 MHz Electron Crab Cavity Systems

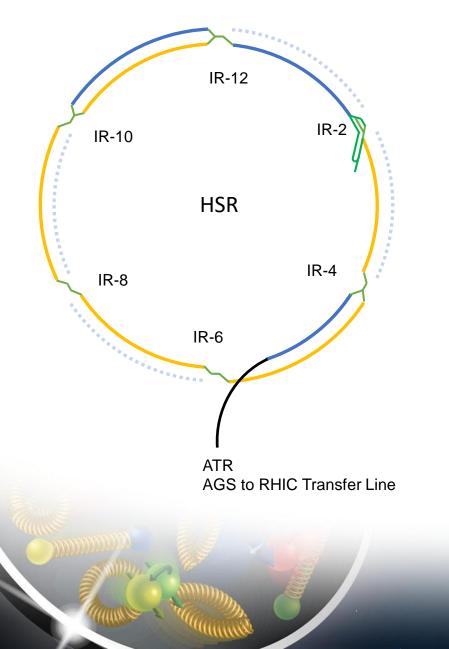
IR-4: Warm RF Systems

Current location for all RHIC RF systems Hadron RF Systems (Hadron SRF at IR-10) RCS Warm RF Systems (Bunch Merging)

Electron-Ion Collider


5

Electron-Ion Collider


IR-10 Tunnel: Cryomodule Space Allocation

• Space constraints will contribute to the challenge for the integrated coupler/cryomodule design.

allunnig

Proton (Hadron) Store for Collisions

- Depending on operating mode, may require up to a 1:2:4 bunch splitting.
 - Thus, the h=630 (49 MHz) and h=1260 (98 MHz) RF systems.
- After bunch splitting, need to compress bunches to desired store bunch length.
 - 5x shorter than RHIC.
 - Adiabatic compression first with h=2520 (197 MHz) and then with h=7560 (591 MHz).
- Then fill the ESR.

8

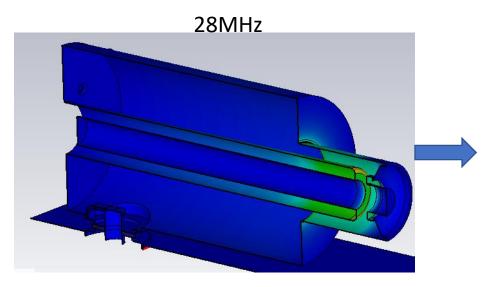
Proton (Hadron) RF System Summary

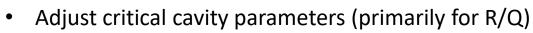
Table 6.67: EIC Hadron Ring RF System Parameters.

Parameter	Capture & Acceleration	Bunch Split 1	Bunch Split 2	Store 1	Store 2
Harmonic number	315	630	1260	2520	7560
RF nrequency [MHz]	24.6	49.3	98.5	197.1	591.1
Installed voltage [MV]	0.6	0.6	0.6	6.0	20.0
Number of cavities	2	2	2	6	1
Voltage per cavity [MV]	0.3	0.3	0.3	1.0	20.0
Cavity type	NCRF	NCRF	NCRF	NCRF	SRF
Cavity geometry ^a	QWR	QWR	QWR	Reentrant	Elliptical
Cavity $R/Q[\Omega_{ckt}]$	61	65	65	162	251
Cavity Q_0	16E3	19E3	14E3	44E3	2.3E10

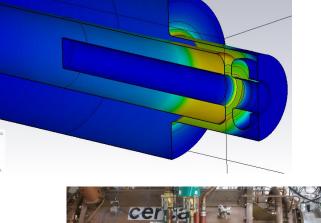
^a QWR = Quarter Wave Resonator

Proton (Hadron) RF System Summary


Cavities & Cryomodule


Capture and Acceleration

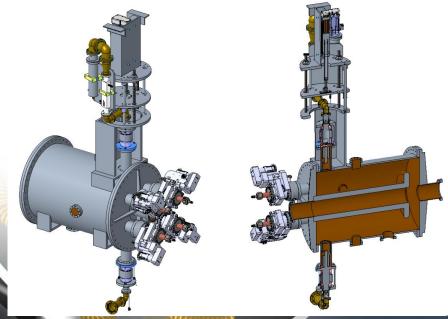
- 2x 24.6 MHz Cavities
 - Reuse (modify) RHIC 28 MHz Cu ¼ wave cavities, 300 kV each.
- 1:2:4 Bunch Splitting • 2x 49.2 MHz and 2x 98.5 MHz Cavities
 - New Cu bunch splitter cavities
- Store 1 Bunch Compression • 6x 197 MHz Cavities
- Store 2 Bunch Compression
- Reuse RHIC 197 MHz Cu re-entrant style cavities, up to 1 MV each.
 591 MHz SRF 5-cell Elliptical Cavity Cryomodules with SiC Beam Line Absorbers (BLAs)
 - Standard Toshiba 70 kW power coupler we have experience with.
 - Second highest HOM power (~3 kW) after ESR (~40kW)
- High Power Amplifiers
 - 591 MHz: 75 kW Solid State Amplifiers (same modular unit type as ESR)
 - Hadron RF systems historically use strong, direct RF feedback. Likely to continue.
 - Solid state amplifiers in the ring we have experience with this (at least with hadron secondaries).


Electron-Ion Collide

28MHz Cavity & Amplifier Upgrades

- Increase high order mode damper load power handling
- Upgrade fundamental power coupler
- Design a new ferroelectric tuner or upgrade the current ferrite tuner's range
- Refurbish critical Power Amplifiers (PA) components
- Replace drive chain with new Rad-Hard GaN amplifier platform

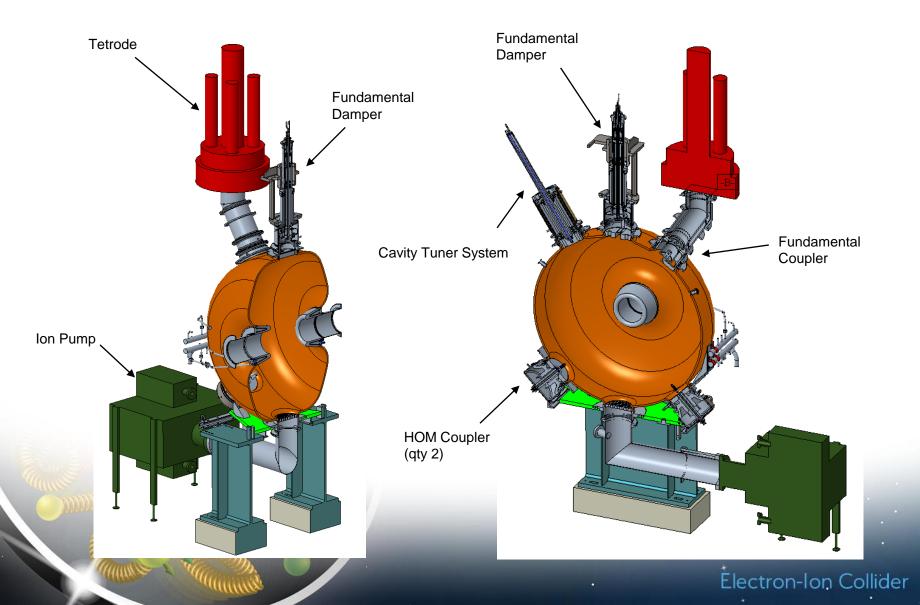
24.6MHz



Electron-Ion Collider

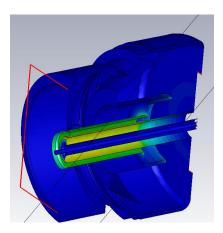
HSR bunch splitter

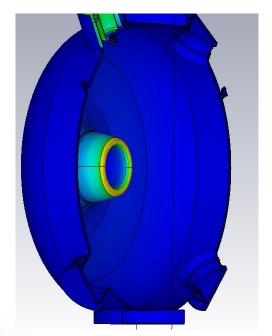
- QWRs that split 290 bunches in HSR into 580 and finally 1160 bunches. H=315 + abort gap
- The 49.2MHz cavity produces as much as 7kW HOM power, and for 98.5MHz it is 20kW.
- Minimum detune required: 10.4kHz for 49.2MHz cavity, and 18.2kHz for 98.5MHz cavity.


The conceptual design view of 49.2MHz splitter cavity. The 98.5MHz cavity will be a direct scale from the 49.2MHz cavity.

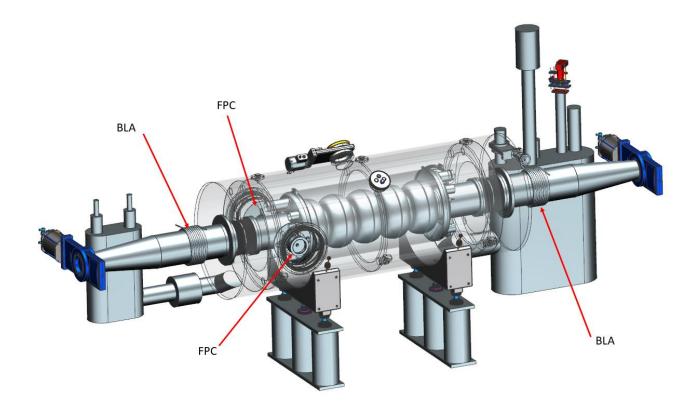
Design parameters	of	the	49.2MHz	and
98.5MHz cavities.				

Parameter	49.2 MHz Cavity	98.5 MHz Cavity
Diameter [mm]	800	400
Length [mm]	1600	800
Gap [mm]	117	58.5
Beampipe radius [mm]	85	42.5
Thickness of nose cone [mm]	55.8	27.9
Radius of capacitor disk [mm]	253.2	126.6
Thickness of capacitor disk [mm]	50	25
Radius of corner blending [mm]	10	5
Frequency [MHz]	49.2	98.5
R/Q [Acc. Def.]	130.7	130.7
$E_{\rm acc}$ [MV/m]	2.6 @ 300 kV	6.0 @ 350 kV
$E_{\rm max}$ [MV/m]	4.5 @ 300 kV	10.4 @ 350 kV
Q0	$1.9 imes10^4$	$1.36 imes10^4$
$R_{\rm sh}\left[\Omega ight]$	$2.48 imes10^6$	$1.77 imes 10^6$
RF power loss [kW]	36 @ 300 kV	70 @ 350 kV

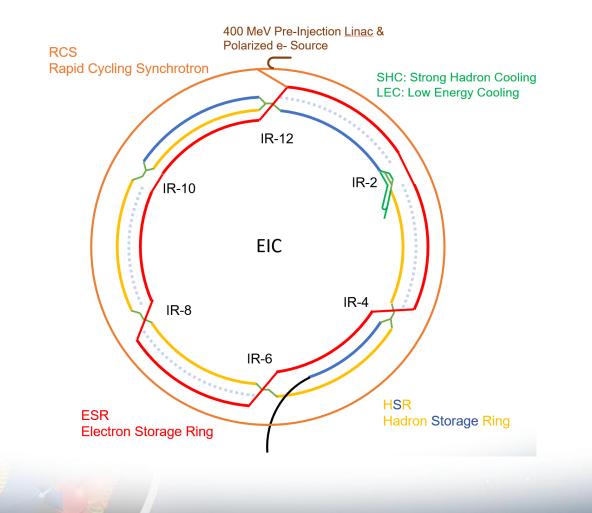

Hadron 197 MHz RF Cavity System Assembly


197MHz Cavity & Amplifier Upgrades

- Increase high order mode damper load power handling
- Upgrade fundamental power coupler windows
- Refurbish critical PA components
- Replace drive chain with new Rad-Hard GaN amplifier platform



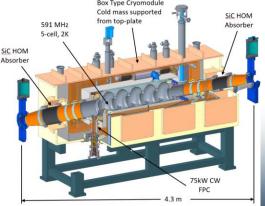
Électron-Ion Collider¹



591 MHz SRF 5-cell Elliptical Cavity Cryomodules with SiC BLAs

70 kW solid state amplifier

RCS

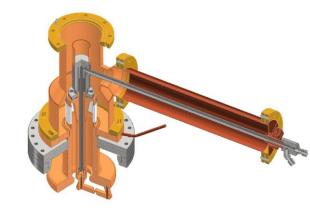


Électron-Ion Collider ¹⁶

RCS RF Systems

- 3 Cryomodules
 - 591 MHz, 2K, 5-cell elliptical cavity, single cavity cryomodule with SiC BLAs.
 - Standard Toshiba 70 kW power coupler we have experience with.
- 3 High Power Amplifiers
 - 2x 28nC bunches @ (2MV/turn (accel) 38 MeV/turn (SR) = 175 kW to the beam.
 - 75 kW modular SSPA
 - Utilizes a single cabinet of the much larger ESR high power amplifier type configured with fewer modules for lower power requirement.
- 3 NCRF Bunch Merging Cavities (4 => 2 => 1 Bunch Merge at 400 MeV injection or 1 GeV porch)
 - 296 MHz: 2x reentrant style @ 650 kV. PA 70 kW
 - 148 MHz: 1x reentrant style @ 700 kV. PA 70 kW

Nx (N >= 1) NCRF Multi-Harmonic QWR Injection Kicker


RCS Parameters

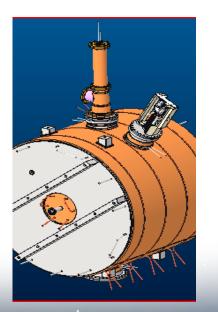
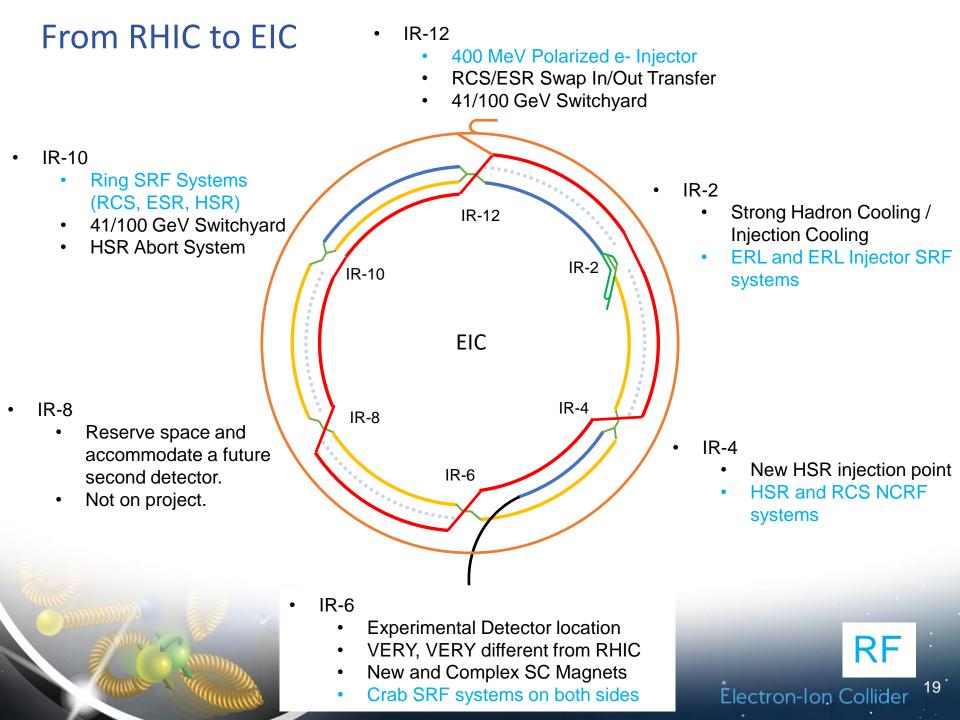
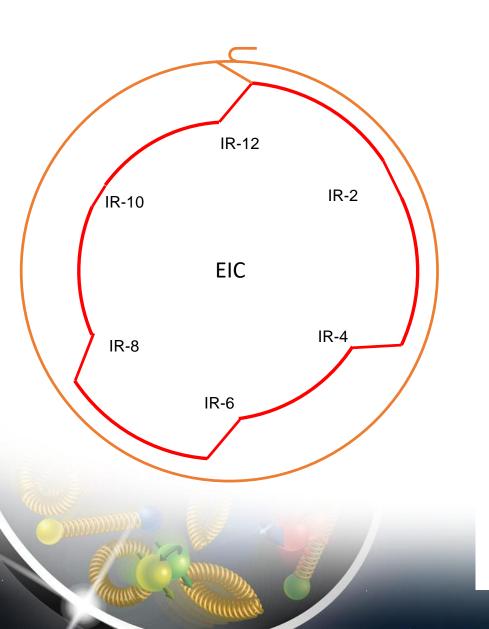

RCS Bunch Merge RF

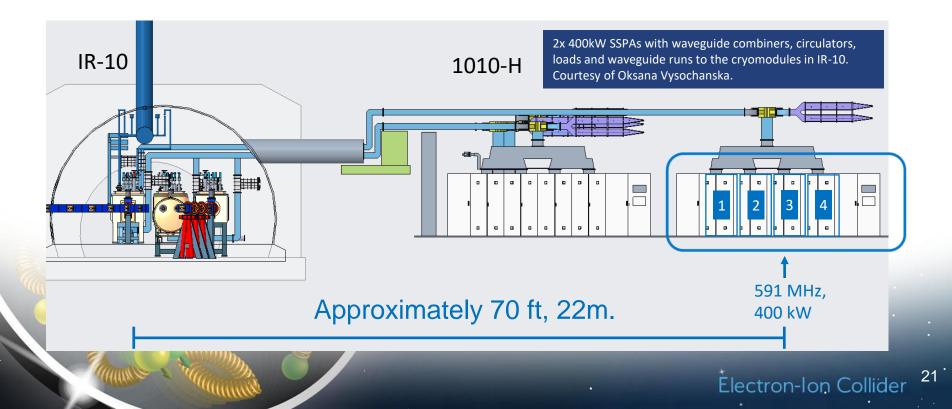
Table 6.66: Operating Parameters for the NCRF Bunch Merging Cavities.


Parameter	Bunch Merge 1	Bunch Merge 2
RF frequency [MHz]	295.5	147.8
Harmonic number	3780	1890
Installed voltage [MV]	1.3	0.7
Number of cavities	2	1
Cavity R/Q	170	170
Cavity Q ₀	41000	50000
Maximum cavity voltage [MV]	0.65	0.7
Cavity power dissipation [kW]	30.3	28.8
Coupling Beta	1	1
Coupling Q _{ext}	41000	50000
Cavity loaded half bandwidth [kHz]	7.2	3.0

RCS Fundamental RF



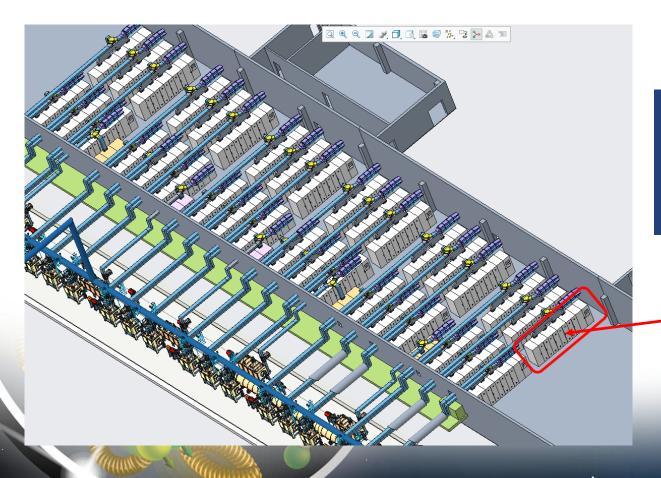
High Average RF Power - ESR Synchrotron Radiation

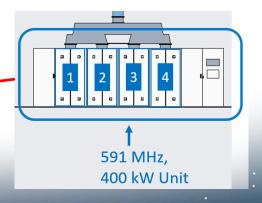


• ESR

- Very high beam current up to 2.5A DC.
 - 18 GeV: 0.225 A
 - 5-10 GeV: 2.5 A
- Very high synchrotron radiation loss:
 - 18 GeV: 36.95 MeV per turn
 - 10 GeV: 3.52 MeV per turn
 - 5 GeV: 0.95 MeV per turn
- Very high synchrotron radiation power:
 - 18 GeV:
- 10 GeV: 8.8
- 5 GeV: 2.4 MW
- Design for 10 MW maximum
- Plus:
 - Cavity HOM power: 600kW 800kW
 - Ring Resistive Wall and Geometric Impedance: 500 kW – 1MW
 - A little overhead power would be nice.
- 14 MW installed power.
 - Very large SSA installation.

Electron Storage Ring RF Power

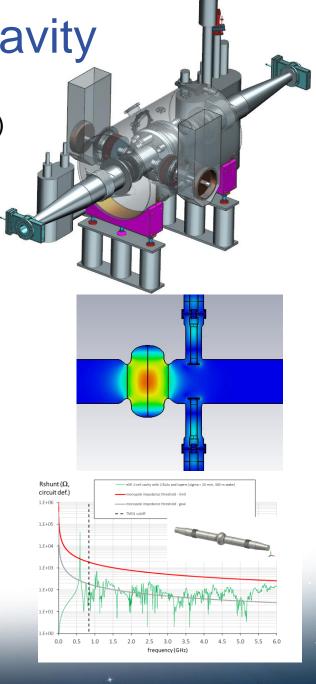

- 34 High Power RF Amplifiers
 - 13.6 MW total installed power 400kW solid state amplifiers (4x cabinets of 100kW ea. + DC power + controls)
 - Solid state has become competitive on cost, power density, space.
 - Additional advantages w.r.t. safety (low voltage), modularity, commonality, future proofing.
- Cavities have dual 400 kW CW FPCs


ESR RF System.

RF1010 Support Building with ~14 MW total SSA based high power RF, interface to IR-10 and IR-10 cryomodule layout.**

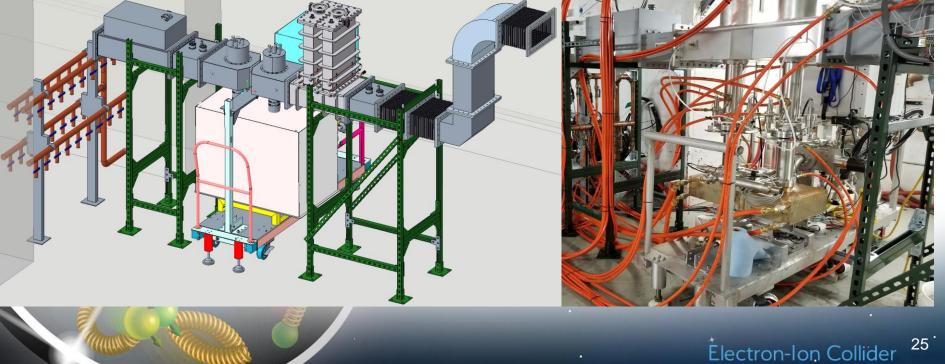
 Remarkable power densities becoming realistic for solid state power across the digital TV broadcast frequencies.

** This layout is a conceptual layout to explore the space requirements for up to 18x single cell 591 MHz ESR cryomodules. Up to 18 cryomodules fit in the available IR space. The SSA power density leads to reduced building space needs.

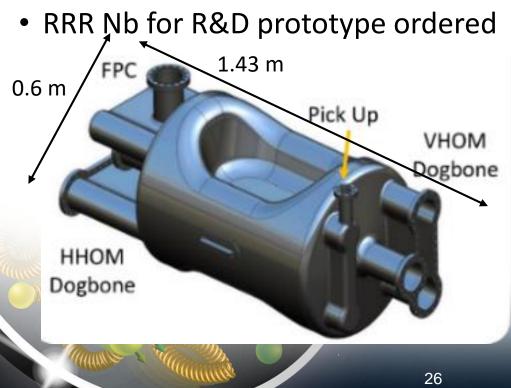


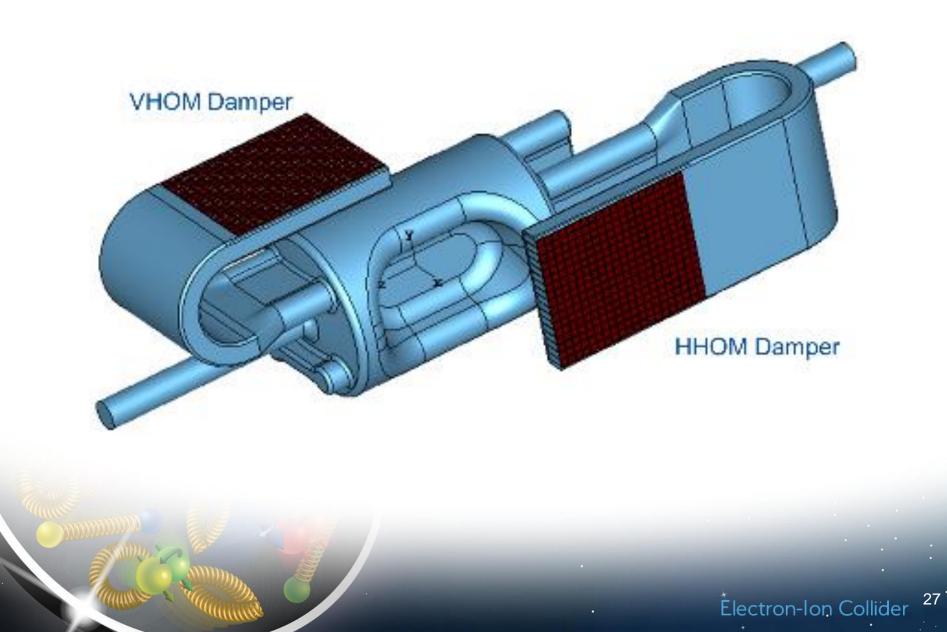
Electron-Ion Collider Buildings - RF B1010

ESR 591 MHz Single Cell Cavity


- 591 MHz Single Cell Cavity for ESR (Design Baseline)
 - 68MV, 17 Cav, 2.5A Beam, 10 MW SyncRad
 - Baseline symmetric cavity EM optimization completed
 - Low R/Q
 - Strong coupling
 - Strong HOM damping
 - Alternative asymmetric design under optimization
 - Space saving, possible lower impedance
 - Thermal-mechanical analysis ongoing
 - Large tuning range, 2x400kW FPC

500 kW CW, Variable Qext Couplers


- Use fixed 500 kW CW coupler design.(25% safety margin)
- Vary Q_{ext} using waveguide tuner section.
- High Power FPC Review June 2021


HSR 197 MHz RFD Crab Cavity

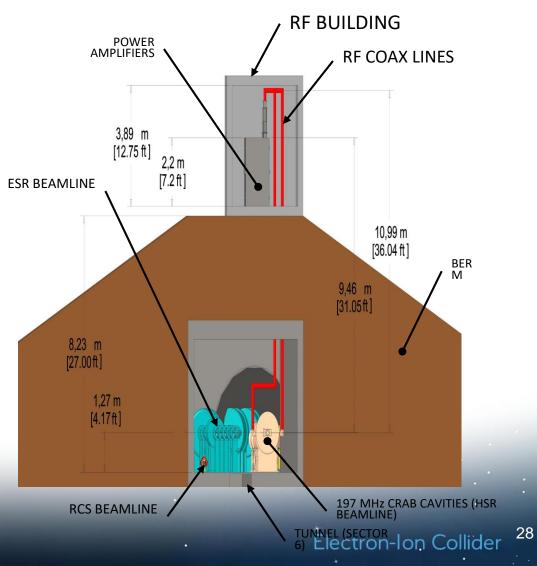
- Down-selected to RFD after Critical Decision 1 (CD-1).
 - Alternative design was DQW.
- 197 MHz Cavity EM design optimization complete
- 394 MHz cavity EM design optimization underway (not a simple scaling)

Property	Bare	Cavity			
Operating frequency	197.0				
1 st HOM [MHz]	347				
$E_{\rm p}/E_{\rm t}^{*}$	2.3	87			
$B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]	5.	19			
$B_{\rm p}/E_{\rm p}$ [mT/(MV/m)]	1.3	81			
<i>G</i> [Ω]	97	7.2			
<i>R</i> /Q [Ω]	1161.4				
$R_{\rm t}R_{\rm s}$ [Ω^2]	1.13	.13×10 ⁵			
<i>V</i> _t [MV]	8.5	11.5			
E _p [MV/m]	32.1	43.4			
<i>B</i> _p [mT]	58.0	78.4			
Total V _t [MV]	3	4			
No. of cavities	4	3			
Cavity Length [mm] (iris-to-iris)	92	12			
Cavity Diameter [mm]	58	8.7			
Pole Length [mm]		20			
Electro	on-Ion Col	lider			

197 MHz Crab Cavity with Waveguide Dampers

Crab cavities

The transverse impedance of the fundamental mode in the 197MHz HSR crab cavities is high. (33.6 GQ/m with 1.75e6 FPC Q_{ext})


A high gain (~300 effective quality factor) low delay (~380ns) RF feedback is needed to suppress the instabilities driven by this mode.

Power amplifiers are placed in the RF building right on top of the ring for low delay, high feedback gain is also needed.

Solid state, RAD hardened, low group delay amplifier to place in the ring???

Possible?

6 o'clock IR

RCS, HSR and SHC ERL RF Systems

Different RF systems which nonetheless provide opportunity to leverage design commonality.

• Systems all require high installed voltage.

- HSR with 6cm bunch length requires minimum 20MV.
- RCS with 100ms ramp (~2 MeV/turn) and high sync energy loss per turn (~38 MeV at 18 GeV).
- ERL at 150 MeV minimize required linac tunnel length.

• Systems all require strong HOM damping.

- HSR with up to 1A beam and 6cm rms bunch length hadrons have no intrinsic damping, avoid coupled bunch instabilities.
- RCS with only two bunches, but 28nC per bunch still must control long range wakes.
- ERL with 100 mA beam, 1nC per bunch maintain dE/E = 1E-4 and maximize BBU threshold.

EIC RF Systems (By Type & Number)

RF System	Sub System	Freq [MHz]	Туре	Location	# Cavities
Electron Storage Ring	Fundamental	591	SRF, 1-cell	IR-10	17
Rapid Cycling Synchrotron	Fundamental	591	SRF, 5-cell	IR-10	3
	Bunch Merge 1	295	NCRF, Reentrant	IR-4 or IR-10	2
	Bunch Merge 2	148	NCRF, Reentrant	IR-4 or IR-10	1
Hadron Ring	Capture / Accel	24.6	NCRF, QWR	IR-4	2
	Bunch Split 1	49.2	NCRF, QWR	IR-4	2
	Bunch Split 2	98.5	NCRF, QWR	IR-4	2
	Store 1	197	NCRF, Reentrant	IR-4	6
	Store 2	— 591	SRF, 5-cell	IR-10	1
Strong Hadron Cooling	Inj. Bunch Comp.	197	NCRF, Reentrant	IR-2	1
	Inj. Booster	197	NCRF, Reentrant	IR-2	6
	Inj. Linearization	591	NCRF, Reentrant	IR-2	1
	ERL Fundamental	L 591	SRF, 5-cell	IR-2	8
	ERL Third Harmonic	1773	SRF, 5-cell	IR-2	3
Crab Cavity	Hadron	197	SRF, DQW/RFD	IR-6	8 (4 CM)
	Hadron/Electron	394	SRF, DQW/RFD	IR-6	6

					Cavity	Cavity	FPCs per	r FPCs per	SSAs per	r FPC	
WBS Name	Location	n Frequency	SRF/NCRF	F Type	Voltage	Total Qty		System	System		SSA Powe
Wb5 Nume	Location	(MHz)	JAT	1,160	(MV)		Cavity	5950011	39300	(kW)	(kW)
RCS RF Systems		(····-,			(,						
RCS H1 RF System	IR-10	591	SRF	Elliptical, 5-cell	20.0	3	1	3	3	75	75
RCS Bunch Merge 1 RF System		295	NCRF	Reentrant	0.7	2	1	2	2	75	40
RCS Bunch Merge 2 RF System		148	NCRF	Reentrant	0.7	1	1	1	1	75	40
Electron Storage Ring RF Systems											
eSR H1 RF System	IR-10	591	SRF	Elliptical, 1-cell	4.0	17	2	34	34	500	400
Hadron RF Systems											
HR Capture and Acceleration RF System		24.5	NCRF	QWR	0.3	2	1	2	2	Tetrode/Loop	
HR Bunch Split 1 RF System		49	NCRF	QWR	0.3	2	1	2	2	75	75
HR Bunch Split 2 RF System		98	NCRF	QWR	0.3	2	1	2	2	75	75
HR Storage 2 RF System		197	NCRF	Reentrant	1.0	7	1	7	7	Tetrode/Loop	
HR Storage 2 RF System	IR-10	591	SRF	Elliptical, 5-cell	20.0	1	1	1	1	75	75
Crab Cavity Systems											
Crab Cavity HSR H1 RF System		197	SRF	RFD		8	1	8	8	75	75
Crab cavity HSR H2 RF System		394	SRF	RFD or WOW		4	1	4	4	75	75
Crab cavity ESR RF System	IR-6	394	SRF	RFD or WOW		2	1	2	2	75	75
Energy Recovery Linac (ERL)											
ERL H1 Cryomodule		591	SRF	Elliptical, 5-cell		8	2	16	16	75	50
ERL H3 Cryomodule		1773	SRF	Elliptical, 5-cell		3	2	6	6	10	20
ERL Injector H1		197	NCRF	Reentrant	0.9	7	1	7	7	Tetrode/Loop	•
ERL Injector H3	IR-2	591	NCRF	Reentrant	0.6	1	1	1	1	75	50
						70		98	98		
						46		74	74		
	1					24		24	24		

Manuel Manual

Electron-Ion Collider

Summary

- Over 100 solid state amplifiers
- Over 15 MW of RF power
- Wide range of power levels
- Majority is 591 MHz
- Possibility of developing radiation hardened solid state amplifier to place next to crab cavities in the tunnel

Electron-Ion Collide

• Very challenging project helped with very close collaboration with JLAB that is working great.