

Dual Klystron Driven Storage Ring RF System at Advanced Light Source

Qiang Du, Benjamin Flugstad, Angel Jurado, Gilbert Palafox, Michael Betz, Massimiliano Vinco, Kenneth Baptiste*

September 14, 2022

12th CW and High Average Power RF Workshop, CERN, Geneva, Switzerland

*KMBaptiste@lbl.gov

Table of contents

01

02

Overview of RF systems in the Advanced Light Source Storage Ring RF system Upgrade Project

03

Low Level RF controls and Machine Protection Systems

04

High power RF system operation

- Klystron gain optimization
- Cavity phase control

ALS: 1.9 GeV 500mA synchrotron Light Source since 1993, with 4th gen upgrade underway (ALS-U).

Overview of RF systems in the Advanced Light Source

ALS-Upgrade Project

Storage Ring RF System

Two 300kW Klystrons Driving Two Cavities

Two Klystrons with waveguide matrix

500 MHz RF Cavities

ALS Storage Ring RF Parameters

	ALS SR 1.9GeV	ALS-U SR 2.0GeV	
Cavity RF Frequency	499.64	500.394	MHz
Number of Cavities	2	2	
$\frac{R}{Q}$ (ea)	4.9	4.9	MΩ
Cavity voltage	671	300	kV
eta	2.9	10.6	
Energy loss per trun	329	347	keV
BM Beam Power	141	125	kW
ID Beam Power	42	35	kW
3HC Beam Power	7.3	13.8	kW
Parasitic Beam Power	2.9 (est.)	2.6 (est.)	kW
Total Beam Power	192.9	176.4	kW
Cavity Power(no beam)	46	9.2	kW
Cavity Power(beam)	142.5	97.4	kW
Waveguide Loss	9.2 (est.)	< 3 (est.)	kW
High Power Amplifier	294.0	197.5	kW

Storage Ring RF System Upgrade Timeline

Storage Ring RF RSS/PSS System Operation Modes

- 1. Operational Mode:
 - a. RF Power to Cavities
 - b. Beam operations Enabled
- 2. High Power RF Test mode:
 - a. RF Power to Cavities
 - b. Beam operations Disabled
- 3. RF Test with Access Mode:
 - a. RF Power to Cavities
 - b. Beam operations Disabled
 - c. RF peak power < 35 kW
- 4. RF Power to Test Load:
 - a. RF Power to Test Loads
 - b. Beam operations Disabled

Dual Klystron Driven Storage Ring RF System at Advanced Light Source | BERKELEY LAB

Storage Ring RF Waveguide Modes

_

_

. . . .

1.	Dua	Klystron Drive	:	
	•	Klystron 1	\rightarrow	Cavity 1
	•	Klystron 2	\rightarrow	Cavity 2
2.	Klys	tron 1 Drive:		
	•	Klystron 1	\rightarrow	Magic T
	٠	Magic T	\rightarrow	Cavity 1 🕂 2
3.	Klys	tron 2 Drive:		
	•	Klystron 2	\rightarrow	Magic T
	•	Magic T	\rightarrow	Cavity 1 🕂 2
4.	Klys	tron 1 Test:		
	•	Klystron 1	\rightarrow	Test Load
	•	Klystron 2	\rightarrow	Short
5.	Klys	tron 2 Test:		
	•	Klystron 1	\rightarrow	Short
	•	Klystron 2	\rightarrow	Test Load
6.	Cavi	ty Measuremer	nts:	
	•	Test Port 1	\rightarrow	Cavity 1
	•	Test Port 2	\rightarrow	Cavity 2
	•	Klystron 1	\rightarrow	Test Load
	•	Klystron 2	\rightarrow	Magic T 📑 Short
	•	No HVPS		

8

Cavity 1

Dual Klystron Drive waveguide matrix

Water wedge load:

LCW system upgraded for Ferrite RF loads

Normal operation is between 89.5 to 90.3 gpm Complete open return is between 119 to 120 gpm Complete open return and supply is between 149 to 150 gpm.

RF Safety Procedures

Non-Ionizing Radiation Protection, and RF Leak detections for all 5 waveguide modes

- Non-Ionizing Radiation Survey Procedure
 - dual mode only, one klystron at a time

Adv Light Source Title: Bldg. 6 — ALS	anced , Storage Ring System RF L	g RF, 330kW – 500 eakage (Non-Ionizi	0MHz High Pe	Number: RF 02-75 Revision: Rev. 1 Issue Date: July 30, Review Period: 3 ye Supercedes Issues: ower Amplifier & Tran) Survey Procedure	2012 ears Rev. 0 nsmission Lir
Section where u Acc Type of Procedu	used: (List all se elerator Oper ure: (Administrat	ctions/groups that will u ations, Electronics live / Technical)	use this procedu Maintenance	re) (EM), and RF Section	ons
			initedi		
Prepared by	Date	Reviewed by	Date	Approved by	Date
Prepared by Ken Baptiste	Date	Reviewed by Jim Julian	Date	Approved by Slawomir Kwiatk	Date owski
Prepared by Ken Baptiste	Date	Reviewed by Jim Julian Max Vinco	Date	Approved by Slawomir Kwiatk	Date owski
Prepared by Ken Baptiste Revision Log: No. Date Affe	gs. Type of Change	Reviewed by Jim Julian Max Vinco	Date Brief Descri	Approved by Slawomir Kwiatk	Date owski

In compliance with the ALS ALARA policy, the Bidg. 6 — ALS, Storage Ring RF, 330kW – 500MHz High Power Amplifier waveguide transmission line joints, all sources of microwave non-ionizing radiation, must be inspected for mechanical and RF tightness after every modification or disassembly. This procedure supplies the necessary information for a methodical, safe inspection and survey.

2.0 SCOPE

The object of this survey is to locate, record, and correct any RF leaks found at low power levels before proceeding to high power levels and to record the measurements. The inspection and survey shall be done by one person from the RF group or two qualified persons from the EM or Accelerator Operations sections, as noted in procedure ALS 02-01.

The HPA system is comprised of a High Power Klystron Tube, waveguide transmission line components, and two RF cavities. The HPA's output power will be dissipated into the combination of RF water loads and two cavities with minimal reflections during beam operations, but without beam some RF energy will be reflected. While operating the HPA system, ionizing radiation will be produced by the klystron, vacuum switches and ignitrons in the crowbar cabinet and the RF cavilies located in the SR tunnel. Refer to the procedure for surveying lonizing radiation, RF 02-77, Ref. [8].

- Personnel Safety System Interface and Ionizing Radiation Protective System
 - 5 waveguide modes

1.0 PURPOSE

To provide a procedure that tests the ability of the storage ring (SR) RF system to react correctly by turning off Klystron RF drive(s) depending on the mode when the personnel safety system (PSS) indicates an ionizing radiation hazard.

2.0 SCOPE

Using rigorous preliminary preparation and a prescribed checklist, trained personnel assure that the necessary protective interlocks are functioning correctly under a variety of different system configurations.

The procedures in this document tests the ability of the ALS Personnel Radiation Protection System to shut down the Storage Ring RF (SRRF) Klystron amplifier RF drive or drives, depending on the mode, in response to a loss of continuity of line A or line B or both lines of the radiation protection system.

The systems of all of the four key selectable modes available on the *Personnel* Safety System (PSS) *Chassis* are tested. The four PSS modes are:

- 1) OPERATIONAL stored electron beam possible
- 2) RF TEST no electron beam with high power RF in the cavities
- RF TEST WITH ACCESS no electron beam, RF cavity power restricted to 30 kW, personnel access available.
- RF TEST DUMMY LOAD no electron beam, no RF cavity power, personnel access available.

PLC Control Network

Automated RF turn-on process, interlocks, based on waveguide mode

Phase IIB: Replace Crowbar w/HV Dis-Con SW & PLC Controls, Install Klystron Site #1 (2014 Shutdown)

HV Dis-Con SW Block Diagram

Dual Klystron Driven Storage Ringresistersterster at Advanced Light Source | BERKELEY LAB

HV Dis-connect switch with PLC control

Filter/Crowbar Cabinet Replaced w/HV Dis-Con SW, PLC Controls, Kly Site #1 Completed 6/2014

HV Dis-Con SW IGBT Switch Receiver chassis

Dual Klystron Driven Storage Ring RF System at Advanced Light Source | BERKELEY LAB

Klystron Site #1

Filter Cabinet and PLC Controls

PLC Controls

HV Dis-Con Switch Performance

20

Digital Low-Level RF system

Operational since 2017.3

- System configuration:
 - 42 RF chan. → ADCs

 - Non-IQ synch. sampling
 - up to 24 bits, (fault) waveforms
 - 4 FPGA, interconnected
 - UDP, PLC interfaces
- 4 feedback loops:
 - 2 amplitude, 2 phase loops
 - depends on waveguide mode
- Fast RF interlocks
 - 42 RF power interlock
 - 16 ARC interlock
 - Mode dependent, PLC settable

Digital Low Level RF System

Fast RF interlock

Dual Klystron Driven	Storage Ring RF	System at A	Advanced Light	Source	BERKELEY LAB
J	5 5	5	0	1	

Interlock Type	Latency (µs)
RF Power (Lab)	1.45
RF Power (ALS)	< 3
ARC Detector	< 2
600 400 200	SRRF:LLRF1:Cav1Cel:FaultAWF SRRF:LLRF1:Cav2Cel:FaultAWF

0

Fault waveforms: e.g. Cavity Cell amp / phase 22

Automatic system configurations for multi-mode operation

Integrated mechanical, LLRF, PLC, EPICS configurations for multi-mode high power RF

Tested balanced klystron gain by equal cavity powers

Insertion Device gaps closed at full beam load (500 mA)

Tested different Klystron gains by unbalanced cavity powers

Dual Klystron Drive Cavity Phase Control

Independent LLRF control of two klystron loops (total 4)

- Automated RF turn-on process in all waveguide modes
- Auto RF phase settings:
 - Dual Drive & Single Drive modes;
 - Beam based phase feedback;
- Tuned phase offset between 2 cavities for optimal synchrotron tune;

Thank You