

Overview of High-Power Ferrite Devices and Key Considerations for the Design, Operation and High-Power Testing of Ferrite Circulators

Dr.-Ing. Carsten Weil, AFT microwave GmbH, Backnang

CWRF 2022, CERN, Geneva

Outline

- 1. Introduction of AFT
- 2. Basics of microwave ferrites
- 3. Circulators & other ferrite devices and their use in high-power RF
- 4. About the term "Isolation" in an RF distribution system
- 5. High-power design aspects and power handling requirements
- 6. High-power test set-up, test procedure, safety interlocks, arc detection
- 7. Summary

Who we are

AFT is a leading manufacturer of high-performance passive microwave components and subsystems based on own ferrite ceramics and thin-film technology.

Protection & reliability for MW systems "from milliWatt to MegaWatt"

Where we come from

- 1950: AEG Telefunken: ferrite & circulator activities started
- 1993: Advanced Ferrite Technology (AFT) established as spin-off from Bosch ANT
- 2001: Take-over of thin-film technology from Bosch/Marconi & Siemens
- 2005: AFT microwave GmbH, move to new factory building
- Today: About 55 employees in Backnang, Germany
 - We have developed from prototyping to serial production.

3

AFT MICrowave

High-Power Products

TCUs

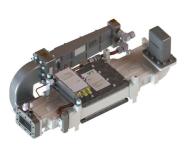
Arc Detectors

Circulators

3-port and 4-port

Loads

Ferrite, Water, SiC


Directional Couplers

plers AFC Modules


Isolator Assemblies

FFT- Power Variators

Ferrite Phase Shifters

Microwave Ferrites

Our Markets

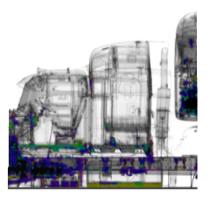
Science

Particle Accelerators

Med-Tec

Radiation Therapy

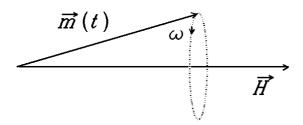
Radar/SatCom


Commercial & Defense

Industry

Cargo scan, NDT, sterilization, drying, plasma

Our circulators & loads have supported the reliable operation of particle accelerators in major research facilities - all over the world & from the very first beginning.

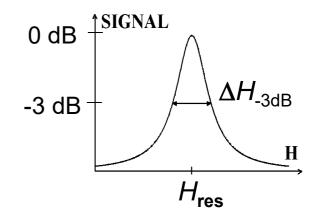

Large Scale Projects 2010 ff.

Year	Quantity	Product	Customer, Country		
2021	28	Circulator 905MHz 1MW/s 00kW Wr1150	ORNL SNS, USA		
	20	Circulator 805MHz 1MWp 90kW Wr1150			
2021	4	Circulator 352MHz 600kWcw WR2300	CEA, FRA		
2021	4	Ferrite Load 352MHz 600kWcw WR2300	CEA, FRA		
2020	5	Circulator 500MHz 140kWcw WR1800	Elettra, ITA		
2020	10	Ferrite Load 500MHz 140kWcw WR1800	Elettra, ITA		
2019/2020	5	Circulator 352MHz 3MWp 150kW WR2300	ESS Bilbao		
2019/2020	6	Ferrite Load 352MHz 3MWp 150kW WR2300	ESS Bilbao		
2019/2020	6	Ferrite Load 352MHz 1.5MWp 75kW WR2300HH	ESS Bilbao		
2019	2	Circulator 352MHz 3MWp 150kW WR2300	ESS ERIC, SWE		
2019	2	Ferrite Load 352MHz 1.5MWp 150kW WR2300HH	ESS ERIC, SWE		
2019	2	Ferrite Load 352MHz 3MWp 150kW WR2300	ESS ERIC, SWE		
2018/2019	80	Circulator 704MHz 1.5MWp 74kW WR1150	ESS ERIC, SWE		
2018	82	Ferrite Load 704MHz 1.5MWp 74kW WR1150	ESS ERIC, SWE		
2017/2018	26	Circulator 352MHz 400kWp 20kW 6 1/8" EIA	ESS ERIC, SWE		
2017/2018	28	Ferrite Load 352MHz 400kWp 20kW 6 1/8" EIA	ESS ERIC, SWE		
2015	8	Isolator 100MHz 120kWcw 6 1/8" EIA	MAX IV, SWE		
201344	6	Circulator 350MHz 1300kWcw WR2300	KAERI, Korea		
201443	6	Ferrite Load 704MHz 1.5MWp 100kW WR1150	CERN, SUI		
2010	40	Ferrite Load 352MHz 2.8MWp 10kW WR2300	CERN LINAC4, SUI		

WICLOMONE

2. Basics of Microwave Ferrites (biased)

Precessions of electron spins



static magnet field

Gyromagnetic resonance

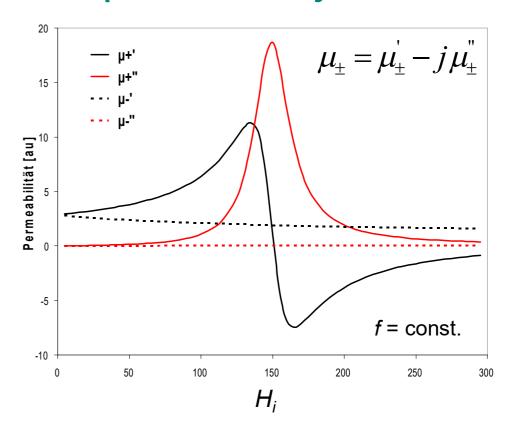
$$f_{res} = \gamma \cdot H_i$$

$$\gamma$$
 = 2.8 MHz/Oe

Polder Tensor

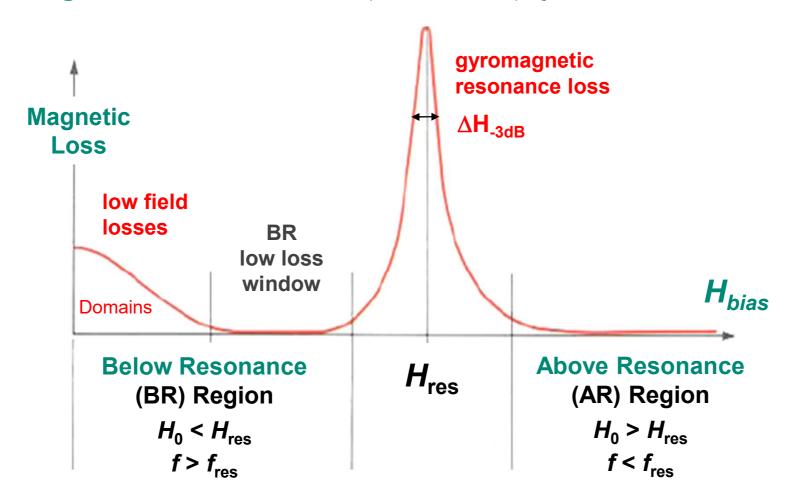
$$\vec{\mu} = \frac{\vec{B}}{\vec{H}} = \begin{pmatrix} \mu_{+} - 1 & 0 & 0 \\ 0 & \mu_{-} - 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 here: for circular polarization perpendicular to H

Permeability Tensor

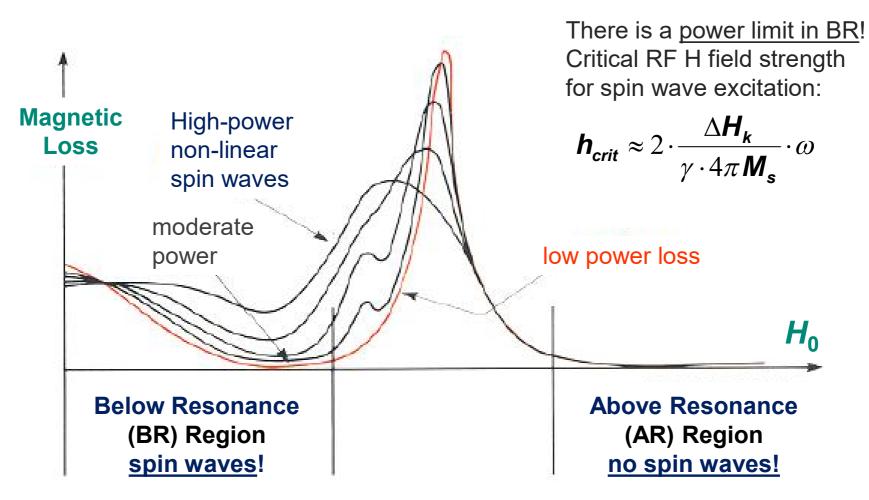

$$\vec{\mu} = \frac{\vec{B}}{\vec{H}} = \begin{pmatrix} \mu_{+} - 1 & 0 & 0 \\ 0 & \mu_{-} - 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

here: for <u>circular polarization</u> perpendicular to H_0

$$k_{\pm} = \frac{\omega}{\mathbf{c}} \cdot \sqrt{\varepsilon \, \mu_{\pm}} ,$$


$$eta_{\pm} = \frac{\omega}{\mathbf{c}} \cdot \sqrt{\varepsilon \, \mu_{\pm}}$$

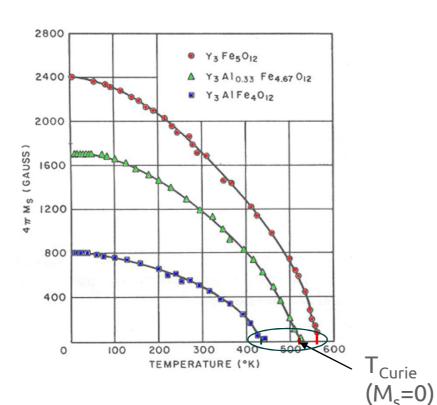
Complex Permeability



The difference in μ_+ and μ_- is the basis for non-reciprocal devices, the higher the more efficient. Permeability is set by ferrite saturation magnetization M_s , H_i and frequency.

Magnetic Losses in Ferrite (Low Power), f = const.

High-Power Ferrite Losses, f = const.

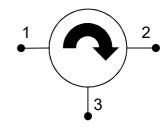


Below Resonance vs. Above Resonance

	Below Resonance	Above Resonance			
Definition	$H_{\text{bias}} < H_{\text{res}}$ $f > f_{\text{res}}$	$H_{\text{bias}} > H_{\text{res}}$ $f < f_{\text{res}}$			
Criterion for Ms	upper limit to avoid low field loss: $4\pi {\it M}_{\rm s} < \frac{\omega}{\gamma} - {\it H}_{\rm a}$	no limits			
Frequency Range	1 GHz to 100 GHz	10 MHz to 10 GHz			
Bandwidth	broadband (up to 50%)	narrowband (1 to 20%)			
Losses	limits due to low field losses and spin waves over power $\rightarrow \Delta H_k$!	Very low, since no domains and no spin waves, fully saturated ferrite			
Magnet System	low bias $ ightarrow$ compact, light weight	high bias \rightarrow bulky, heavy weight			
Use	high frequencies, broadband application, low to moderate loss, moderate power, latching	low frequencies, lowest loss, highest power			

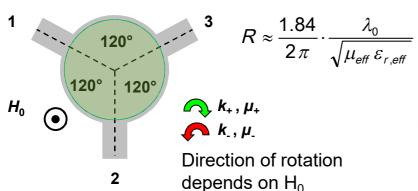
Ferrite Saturation Magnetization

Al-doped YIG


Saturation magnetization M_{S} decreases with temperature.

→ thermal drift of permeability and circulator performance

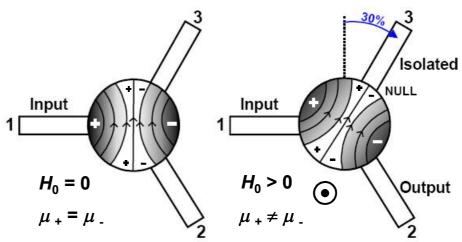
Thermal stabilization by:


- 1) ferrite doping, e.g. Gadolinium, however with higher losses.
- 2) Active temperature compensation with magnetic bias control \rightarrow TCU

WICLOMONE

3. 3-Port Junction Circulator

Ferrite-loaded junction


$$k_{\pm} = \frac{\omega}{c} \cdot \sqrt{\varepsilon \, \mu_{\pm}} \; , \quad \beta_{\pm} = \frac{\omega}{c} \cdot \sqrt{\varepsilon \, \mu_{\pm}}$$

Transmission 1 \rightarrow 2, if $2\beta_{+}\ell - \beta_{-}\ell = \pm 2N\pi$

Isolation at Port 3, if
$$\beta_{+}\ell - 2\beta_{-}\ell = \pm (2M - 1)\pi$$
 $N, M = 0, 1, 2 ...$

$$N, M = 0, 1, 2 \dots$$

Resonant E field pattern

WICLOMONE

Circulator Characteristic Parameters

S-Matrix of an ideal 3-port circulator (lossless)

Return Loss Measure for reflected/reverse power

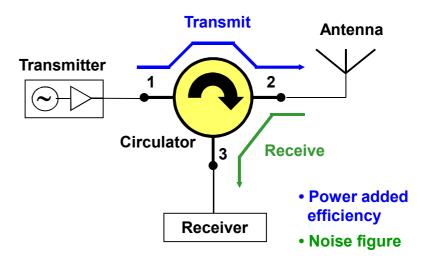
$$10 \cdot \log (P_{\text{out } i}/P_{\text{in } i}) [dB] = 10 \cdot \log (P_{\text{refl } i}/P_{\text{Fwd } i}) [dB]$$
 for port i

Insertion Loss: Measure for loss due to reflection, dissipation, radiation

$$10 \cdot \log (P_{out ii}/P_{in i})$$
 [dB] from port i to port ii

Isolation: Measure for suppression of reflected/reverse power

$$10 \cdot \log (P_{out i}/P_{in ii})$$
 [dB] from port ii to port i


Two Main Circulator Applications

Isolator := Circulator + Load

Microwave generator Magnetron, Klystron, SSPA Circulator Reverse power Load (Absorber)

Reliable protection & stabilization of high-power RF tubes and SSPAs, improve life-time of tube & system, allow continuous failure-free operation.

Diplexer

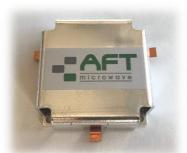
Diplexer in T/R modules of radar systems with phased array antennas

AFT MICrowave

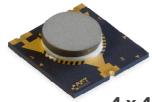
3-Port Circulators

From milliWatt to MegaWatt

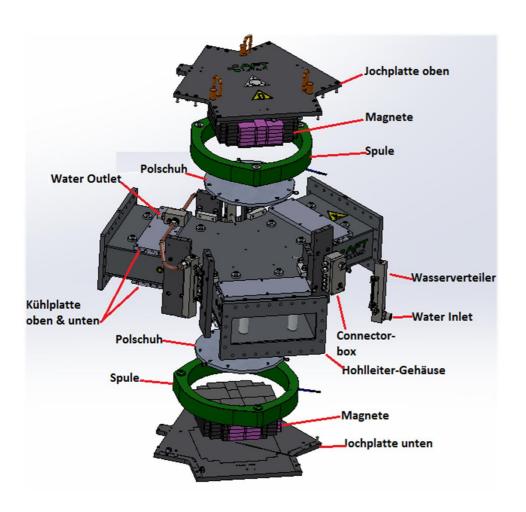
From 27 MHz to 31 MHz

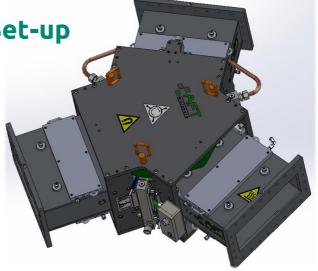

 $2 \times 2 m^2$

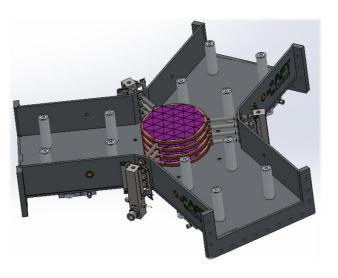
up to


1.3 MW cw

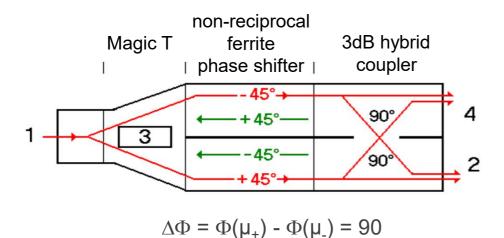
3 MW peak unpressurized

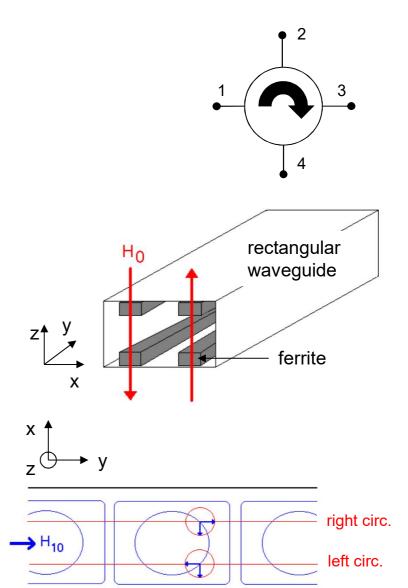

Thin film Microstrip, SMD




4 x 4 mm²

Power , Frequency


High-Power 3-Port Circulator – Principle Set-up



4-Port Phase Shift Circulator

- → higher power capability than a 3-port
 - no resonant ferrite structure,
 - lower E fields,
 - larger ferrite area for cooling
- more bulky than a 3-port
- two load terminations required

4-Port Circulators
High Power WG

L-Band 1300 MHz WR650

352 MHz WR2300

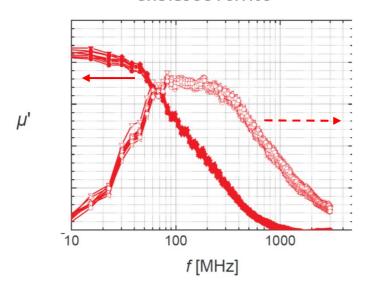
S-Band 2998 MHz WR284

1.5 m

5.4 m

19

X-Band 9300 MHz WR112

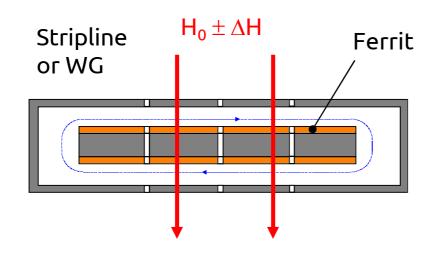

0.65 m

Frequency ↓
Power ↑

0.35 m


Ferrite RF Loads

Complex permeability of an unbiased ferrite

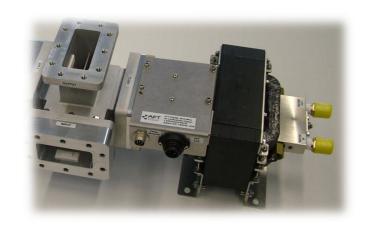

- broadband absorption covering lower frequencies
- temperature stable absorption
- excellent stability over power

800 kW cw in WR1500

- ferrite tiles bonded to WG walls
- effective cooling structure (brazed)
- water is clearly separated from RF
- robust & reliable design, no wear parts
- from VHF to X-Band, WR2300 to WR112
- → modular set-up, up to 800 kW cw

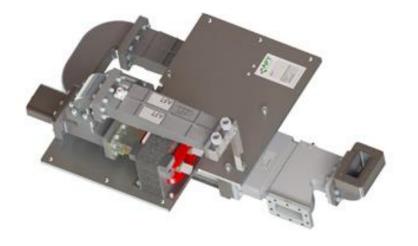
Fast Ferrite Tuner (FFT) – A <u>reciprocal</u> ferrite phase shifter

Ferrites in a shorted transmission line. Permeability is controlled by variable bias $H_0 \pm \Delta H$.


using a permanent-magnet (H_0) and a fast-switching current driven electromagnet ($\Delta I \rightarrow \Delta H$)

Tuning speed limited to ms-range by eddy currents in RF conductors

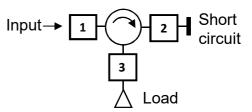
→ Continuously tunable phase shift:


$$\Delta\Phi(\Delta H) = \frac{2\pi}{\lambda_0} \cdot L \cdot \sqrt{\varepsilon_{r,eff}} \cdot \left[\sqrt{\mu_{r,eff}(H_0 - \Delta H)} - \sqrt{\mu_{r,eff}(H_0 + \Delta H)} \right]$$

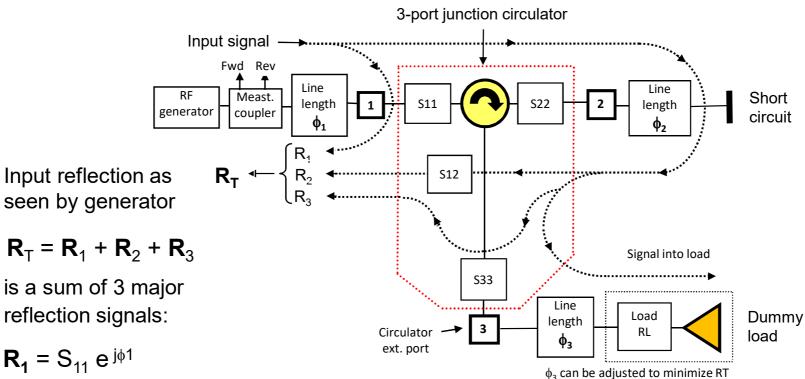
FFTs in Power Variators (PV) and I-Q-Modulators

FFT acts as a tunable reflection-type phase shifter (90°/180°) or phase switch.

- low loss (above resonance)
- high peak and avg. power capability
- low switching time (1ms)



Application example:


S-Band 4-port isolator incl. an FFT PV

- PV and energy switching in dual-energy
 X-ray sources for cargo scanning & NDT
- With pulse-to-pulse PV up to 1kHz

WICLOMONE

4. About the Term "Isolation" in an RF System

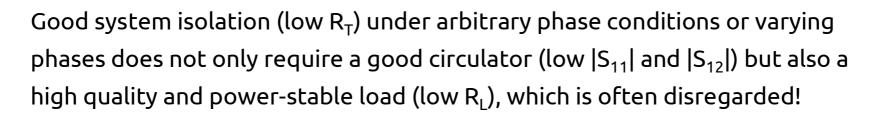
$$R_1 = S_{11} e^{j\phi 1}$$

$$\mathbf{R_2} = S_{21} S_{12} e^{j\phi 1 + j\phi 2}$$

$$R_3 = S_{21} S_{23} S_{13} R_L e^{j\phi 1 + j\phi 2 + j\phi 3}$$

4. About the Term "Isolation" in a System

$$R_T = R_1 + R_2 + R_3$$


For a lossless circulator $(S_{21}, S_{32}, S_{13} = 0)$ we get:

$$R_1 = S_{11}$$
 $R_2 = S_{12}$
 $R_3 = R_L$

$$e^{j\phi 1}$$
 $e^{j\phi 1 + j\phi 2}$
 $e^{j\phi 1 + j\phi 2 + j\phi 3}$

R_T depends on magnitudes & phases!

Adjusting the phase lengths ϕ_2 and ϕ_3 is an option to improve the achievable R_T in an RF distribution system.

4. About the Term "Isolation" in a System

Example:

If all 3 signal contributions are of same magnitude $|S_{11}| = |S_{12}| = |R_L| = |R_x|$

$$|R_{T,max}| = |S_{11}| + |S_{12}| + |R_L| = |R_x| \cdot 3$$

$$20 \cdot \log R_{T,max} = 20 \cdot \log (R_x \cdot 3) = 20 \cdot \log R_x + 9.54 dB!$$

Assuming a minimum RL_T of 20 dB (VSWR < 1.2:1) is required for the RF source, we ask for: $|20 \log R_x| = 20 dB + 9.54 dB = 29.54 dB \approx 30 dB$.

With other words we need a circulator with $|S_{11}| = |S_{12}| \ge 30$ dB and a dummy load with a min. return loss of 30 dB, to achieve $|R_T| \ge 20$ dB and to safely protect the RF generator under all possible phase conditions.

Worst Case Input Return Loss R_T vs. Load Return Loss R_L

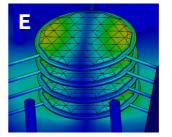
Input return loss R_T

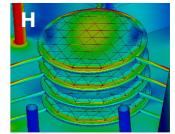
	Case 1	Case 2	Case 3
S ₁₁ [dB]	30	30	26
S ₂₁ [dB]	30	30	26
$R_L[dB]$	30	26	20
R _T [dB] worst	20.46	18.91	13.97

Input return loss R_T vs. R_L

Even if in practice we usually won't find all three reflection signals in phase, it is good practice to use the worst case scenario for specifying circulator and load requirements.

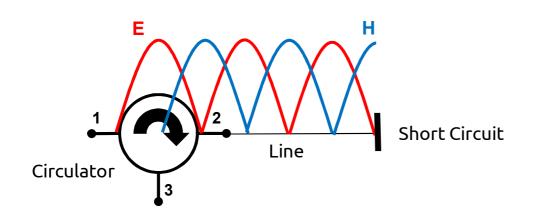
5. High-Power Handling Requirements


Basically, a circulator shall provide low loss, high isolation and low reflection.


But what are the crucial <u>high-power</u> requirements for a circulator?

- 1) Handle full <u>peak</u> and <u>average</u> power.
- 2) Handle <u>forward</u> power and <u>reverse</u> power up to <u>100% reflection</u> and at <u>any phase.</u>
- 3) Consider worst case operating conditions.

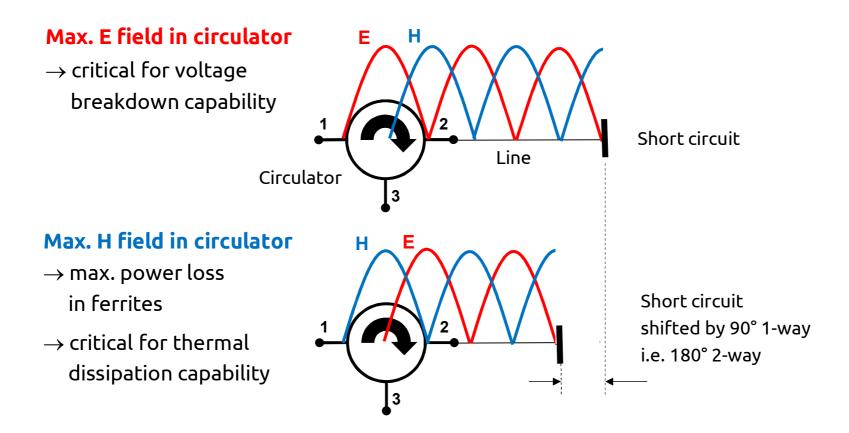
AFT MICrowave


High-Power Design Aspects

	Peak Power	Average Power
Characteristic	1) high voltage & E field2) high current & H field	losses in ferrites, dielectrics & conductors \rightarrow power dissipation \rightarrow heating
Risk	 electrical breakdown (arcing) in air gaps between ferrites and at edges & corners burning at poor electrical contacts 	 overheating & burning of materials reduced el. breakdown capability at overheated surfaces thermo-mechanical stress thermal drift of ferrite properties
Solution	 elaborated design by 3D EM sim., covering detailed E field analysis proper design margins avoid sharp edges well defined electrical contacts gas pressurization, if required 	 careful 3D thermal modeling based on the simulated EM power loss low ferrite loss by material and bias good el. conductors, low loss dielectrics good thermal bonding of ferrites adequate cooling of hot spots/areas thermal compensation (TCU)

Standing Waves between Circulator and Short Circuit

E and H are displaced by 90°


Standing wave pattern repeats at 180° ($\lambda/2$) intervals

The superposition of forward and reverse wave results in a <u>standing wave</u> between the short circuit and the circulator (also inside!).

The standing wave moves with the <u>phase</u> of the short circuit (line length).

Thus, the magnitudes of E- and H-field in the circ. vary significantly with phase. Same is true for the circulator power loss.

Worst Case Standing Wave Conditions into a Short

A relative phase shift of 180° (2-way) is required to cover the worst cases in the circ.

High-Power Handling Requirements for the Worst Cases

	Characteristic Peak Power max. E field	Maximum Power Loss max. H field
Design criterion for power capability	$P_C = \left(\sqrt{P_{FWD1}} + \sqrt{P_{REV2}} + \sqrt{P_{REV3}}\right)^2$ $\approx 4 \cdot P_{FWD}$ for $P_{REV2} = P_{FWD1}$, $P_{REV3} \approx 0$ ($R_L > 30$ dB)	≈ 3 * Insertion loss (1-way) for a 3-port circulator operated into a short
Notes	In the simulation of a circulator with matched terminations, we have to consider 4 times the forward power to calculate max. E field strength. A bad dummy load would increase P_c significantly: factor 4.4 for $R_L = 20 dB$ factor 9 for $R_L = 0 dB$ The circulator is usually <u>not</u> designed to withstand these conditions!	The max. ferrite power loss is more than 2 times the insertion loss as expected for the FWD and REV wave, due to the resonant pattern in the 3-port junction. Ferrite power loss varies between 1 and 3 times insertion loss as the short phase is shifted by 180° (2-way).

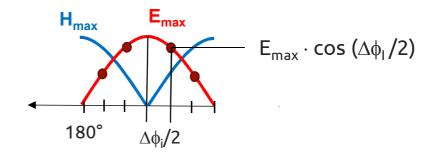
How to Test Full Power Capability into a Short Circuit?

We need a short circuit of variable phase at circulator port 2:

- (1) sliding short or
- (2) fixed short plus additional offset line length.

A total phase shift of 180° (2-way) is sufficient as the standing wave pattern repeats every $\lambda/2$.

What is a reasonable number a phase samples/increments to adequately cover max. E and H field in the circulator?

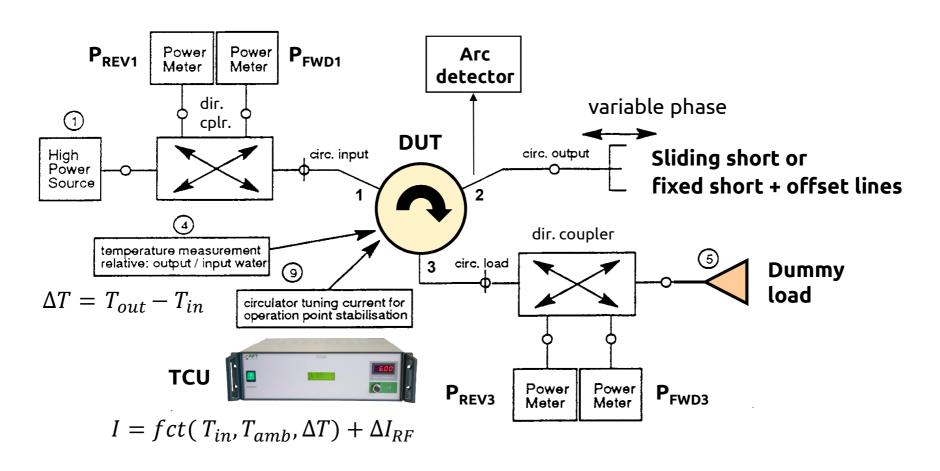

Standing Wave Sampling with Phase increment $\Delta \phi_1$ (1-way)

Best case: samples align with max. field

 H_{max} E_{max} 180° $\Delta \phi_{i}$

field exposure 100%

Worst case: samples displaced by $\Delta \phi_1/2$



min. field exposure [%] := $\cos (\Delta \phi_1/2) \cdot 100\%$

Min. field exposure [%]	70.7	86.6	92.4	95.1	96.6	98.5	99.2	99.6
Phase increment $\Delta \phi_i$ [°]	90	60	45	36	30	20	15	10
No. of line sections for 180°	1	2	3	4	5	8	11	17

→ A 30° phase increment is a reasonable practical trade-off for high exposure (96.6%) and reduced efforts in testing with only 5 line sections.

6. High-Power Test Set-up for Circulators

High-Power Measurement Categories for Circulators

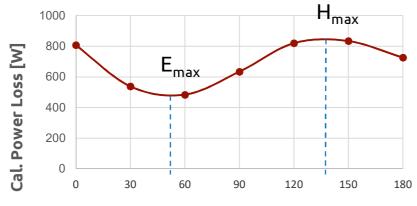
Category	Definition	Unit	Remark
Reverse power seen by the RF source	P _{REV1}	W	
Input return loss of circulator at port 1	$RL_1 = 10 \cdot \log \frac{P_{REV1}}{P_{FWD1}}$	[dB]	same as R _T before
Return loss of dummy load at port 3	$RL_3 = 10 \cdot \log \frac{P_{REV3}}{P_{FWD3}}$	[dB]	monitor load and its stability over power
Water temperatures	$\Delta T = T_{out} - T_{in}$	[°C]	measured by TCU
Calorimetric power loss of the ferrites	$PL = \Delta T \cdot c_w \cdot waterflow$	[W]	more precise than coupler+power meter
Body temperature at circulator port 2	T_{body}	[°C]	hottest at output port due to standing wave

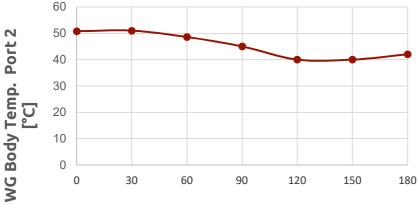
Important Notes on Test Equipment

- Verify DUT in a cold test prior to high-power test
- Use calibrated test equipment only, verify before use at high power
- Directional couplers:
 - <u>High directivity</u> (D $>> R_L$) is required for a precise measurement of low reflected power otherwise high errors due to FWD power leakage.
 - <u>Verify directivity and coupling</u> coefficient before installation.
 - Install <u>low-pass filters</u> between couplers and power detectors to suppress power contribution by harmonics.
 - Install directional couplers close to the DUT but use safety distance of at least $\lambda/4$.

36

High-Power Test Procedure


- 1. Set/install first short circuit phase
- 2. Start with a lower power setting $\sim P_{max}/10$


Potentiometer to set ΔT gain factor

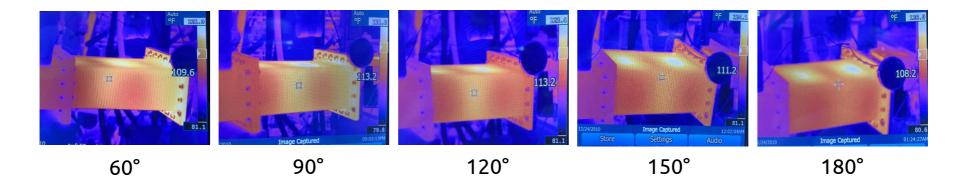
- 3. Record measurements at thermal stabilization (ΔT stable) after ~ 5 minutes
- 4. If reflected power becomes too large due to a thermal drift of the circulator, adjust the TCU ΔT gain factor with potentiometer, also bias control with GUI.
- 5. Carefully increase power stepwise and repeat 3. and 4. Pulsed power: start with peak at low average before increasing duty, so to separate peak (breakdown) and average (thermal) power effects.
- 6. Set/install next short phase and repeat 2. to 6.
- 7. Evaluate test results. Figure out phase for max. power loss & max. E field.
- 8. If required, repeat the test and fine adjust ΔT to achieve compromise setting.

Test Results 3-Port Circulator WR1150 805MHz at 1MWp 76kWavg

Relative Phase of Short Circuit [deg]

Relative Phase of Short Circuit [deg]

Calorimetric power loss vs. 180° phase range sampled with a $\Delta \phi_i$ =30° increment


- shows expected standing wave pattern
- max. loss of 1.1% only at max. H field
- min./max. loss vs. phase ratio is about 1.7

Body temperature at circulator output port varies with phase due to moving H field pattern.

38

Test Results 3-Port Circulator WR1150 805MHz at 1MWp 76kWavg

Visualize the H-field (current) standing wave pattern vs. phase by heat mapping with an IR camera on a black-painted waveguide section ($l \sim \lambda$) connected to circ. output port.

An extrapolation of the visualized H field pattern to the center of the ferrite section allows to predict the phases for max. and min. H field in the circulator: 150° & 60° respectively → very good agreement with power loss measurement!

Useful Safety Notes for Installation & Operation

- Keep clean: avoid dust, dirt and particles in the waveguide.
 Check and clean if required before installation. Risk of arcing!
- Keep dry: avoid moisture and condensation in the waveguide.
 Condensation, if water temp. is below dew point and at high humidity.
 Stay well above dew point and protect interior from entering humidity.
 A wet circulator will result in severe arcing!
- Check Flanges: avoid contamination, deep scratches, burrs, uneven and misaligned flanges, ensure stress-free flange connections.
 Risk of burning, arcing and RF leakage (check with RF sniffer).
- Check for water leakage at all installed pipes and connections.

Crucial Safety Interlocks for High-Power Operation

- Cooling
 - max. outlet temperature T_{out}
 - min. coolant flow rate
 - max. coolant inlet pressure
- ✓ Arc Detector: crucial at very high power and at first test
- **TCU** power failure interlock (if applicable)
- Minimum gas pressure (if applicable)
- Max. reverse power for RF generator (optional)

Install and <u>check</u> all selected interlocks for final GO condition!

About the Importance of Arc Detection

- Circulators are thoughtfully designed to handle full RF power under the specified operating conditions, while containing regions of high RF field strength, especially in air gaps between ferrites.
- ✓ However, they are <u>not</u> able to withstand arcing as a consequence of voltage breakdown due to moisture, dirt or abnormal operating conditions.
- Arcs of high energy will result in <u>permanent damage</u> by bursting and melting of metals and ceramics (hot plasma >> 1000°C).
- Under CW RF arcs <u>travel back</u> to the RF generator at high velocity!
- Goal of arc detection: quench the arc by removing RF power fast before the arc energy reaches critical values (> 5 Joule) → prevent damage.

Best Solution: Optical Arc Detectors

- Key features of an optical arc detector:
 - high optical sensitivity, usually < 1 Lux
 - very low response time < 2 μs
 - hard-wiring to RF generator interlock within ~10 µs shut-off time
- An arc viewport monitors light or heat flashes in the WG interior.
- AFT arc detectors use low loss optical fibers to connect the viewport and so allow separation of detector electronics from radiation areas.
- "Coincidental" arc detection effectively helps to reduce spurious arc detection under radiation influence or scintillation:
 2 viewports for 1 observation point, both output signals AND-combined.

Summary

- Ferrites are unique, partly unrivaled materials for high-power RF: distinctly functional (non-reciprocity, tunable μ) and very low loss.
- Ferrite circulators and loads provide key contributions to the reliable operation of high-power RF generators (tubes & SSPA): Protection from reflected power, stable operating conditions, improve life time of tubes, high system availability and long system operating life.
- They are usually designed to safely operate under 100% reflection any phase, thus under all possible and worst case operating conditions.
- Sophisticated design, low loss ferrites, proper bias, effective cooling and a solid temp. compensation are the keys to high-performance and reliability.
- → High-power testing into a short circuit with variable phase is required to verify the full power capability. Protection by interlocks is essential.

WICLOMONE

Many thanks for your attention & interest!

AFT microwave GmbH

Donaustrasse 18 71522 Backnang Germany

+49 (0) 7191 / 96 59 0

info@AFT-microwave.com

