PETRA III upgrade to PETRA IV

Peter Hülsmann, DESY MHF Twelfth CW and High Average Power RF Workshop, Sunday, Sept. 11, 2022 - Thursday, Sept. 15, 2022, CERN

Michael Ebert († 2021-03-06)

PETRA III upgrade to PETRA IV.

Overview

Rough overview of how PETRA-IV will look like

What are the plans for the RF systems

- The Fundamental-system: SSA-HOM-damped cavity, 500MHz
- The High Harmonic system: SSA- HOM-damped cavity, at 1,5GHz
- Alternative ideas for a 3rd harmonic cavity

Aerial View on the DESY Site

PETRA III and its related injectorm chain: LINAC II, PIA and DESY II

European XFEL

FLASH and FLASH II

PETRA IV Uses The PETRA III Tunnel

Some main parameters in comparison.

	PETRA III	PETRA IV (CDR)
Energy / GeV	6.0	6.0
Circumference / m	2304	2304
Revolution frequency / kHz	130.121	130.121
Beam lines	26	30
Number of bunches (timing-, brightness mode)	40, 480	80, 1600
Beam current / mA	100, 100	80, 200
Emittance (hor./vert.) / pm rad	1300 / 10	<50 / 10, <20 / 4
Energy loss (ID closed) / MeV per turn	5	4.024
Momentum comp. factor	0.001127	0.00001485
RF voltage / MV	20	8 + 2.3
Synchrotron frequency / kHz	6	0.421
RF frequencies / MHz	499.6	499.6 + 1500
Harmonic number	3840	3840

PETRA IV: The Ultimate Hard X-Ray Storage-Ring-Based LightSourceToday Pill (high β)Future PIV

Preparing X-Rays in a Well-Defined State

oday PIII (high β) Future PIV

Photon source size - ideal imaging capabilities

PETRA IV RF

The 500 MHz fundamental RF system

Parameters for the PETRA IV fundamental RF system:

Main (fundamental) RF frequency	499.65 MHz	
Total voltage main RF	8 MV	
RF voltage per cavity	476 kV	
Transit Time Factor	0.7	
RF voltage per cavity seen by the electrons	333 kV	
Cavity wall loss	16.3 kW	
Power to the beam	37,4kW	
Quality factor (unloaded)	29600	
Cavity coupling factor	3.3	
Shunt impedance R _s =V ² /(2P)	3.4 MΩ	
Loaded quality factor	6900	
Number of main RF cavities	24	
Synchronous phase	34.2°	
Nominal transmitter power per RF		
station	120 kW	
Beam tube aperture	74 mm	
Length of cavity (flange to flange)	500 mm	

New Design HOM-damping capabilities are optimized (Cavities in operation at:

- ALBA
- BESSY
- DELTA
- Diamond
- ESRF)

Diamond

PETRA IV RF

The Prototype 500 MHz, 120 kW SSA

Two frequencies

Lengthen the bunch with a second active RF-system

 $V(t) = V_{01} \sin(\omega t + \phi_{s1}) + V_{02} \sin(n\omega t + \phi_{s2})$

Bunch length:

- without a 2nd RF-system: 23 ps (7 mm)
- > with an additional RF-system (n=3): 60 ps (18 mm)
- > So the single bunch current could be increased
- The required harmonic RF voltage for a flat potential and the required synchronous phase is:
- ➢ V₀₂= 2.26 MV.
- ▶ φ_{s2} = -12.8°

The calculated parameters for the dual harmonic rf				
system (500MHz and 1,5GHz)				
ϕ_{s1}	ϕ_{s2}	k	V_{01}	<i>V</i> ₀₂
145,8°	-12,8°	0,28	8MV	2,24MV

The 500MHz-voltage (blue), the 1,5GHz-voltage (red) and the resulting voltage (black)

The single-harmonic- (red) and the dual harmonic bucket (black) in comparison.

PETRA IV RF

The high harmonics RF system

Parameters for the PETRA IV third-harmonic RF system:

3rd harmonic RF frequency	1498.995 MHz
Total RF voltage	2.3 MV
RF voltage per cavity	93 kV
Cavity wall loss	3 kW
Quality factor (unloaded)	17000
Loaded quality factor	4250
Cavity coupling factor	3
Shunt impedance R _s =V ² /(2P)	1.5 MΩ
Number of RF stations	24
(cavity/SSA)	۷4
Nominal transmitter power per	
RF station	10 kW
Beam tube aperture	46 mm
Length of cavity (flange to	
flange)	313.6 mm

Courtesy of A. Matveenko, BESSY II

RF System Design

How to group the RF-systems

Each cavity of the complete rf system is powered by its own Solid State amplifier (SSA)

The complete rf system is divided into 6 groups

Each group is composed of

- 4 * 500 MHz systems
- 4 * 1,5 GHz high harmonic systems

The groups are independent of each other They are spatially separated

Each group has its own

- Water supply
- Power supply
- Air cooling

The top priority of the design is redundancy and reliability

1.5 Trip compensation, what does that mean?

- The RF system has a high redundancy
- Continuous RF operation without beam loss is still guaranteed when:
- A complete group has failed or is in service.
- 1 fundamental- and 1 high harmonics rf 2) system is in service in each of the remaining groups.

Trip compensation in the worst case would bring the cavities as well as the SSA's to their limits.

 V_{C}

 P_{W}

 P_{B}

DESY. "PETRA III Upgrade to PETRA IV", Peter Hülsmann, DESY MHF, Twelfth CW and High Average Power RF Workshop, Sunday, Sept. 11, 2022 - Thursday, Sept. 15, 2022, CERN Page 13

How To Arrange Six Independent Groups In A Building

The RF-building was shifted from the South to the North

DESY. "PETRA III Upgrade to PETRA IV", Peter Hülsmann, DESY MHF, Twelfth CW and High Average Power RF Workshop, Sunday, Sept. 11, 2022 - Thursday, Sept. 15, 2022, CERN Page 14

An Alternative Cavity Design For The High Harmonics Cavity

Motivation for an alternative

- HH-rf-system needs a frequency of 1.5GHz, the 500MHz BESSY-HOM-damped cavity was downsized by a factor of 3. Fabrication is extremely expensive
- Simply downsizing is mechanically not an easy task. Cooling circuits of the cavity are a nightmare.
- > longitudinal loss factor $k_l \sim f$
- > transversal loss factor $k_{\perp} \sim f^2$
- increased HOM damping capabilities for the HH-rf-system would be desirable!
- Driven by the arguments we have started to look for other cavity concepts which have to fulfil the following requirements:
- 1) The concept has to be mechanically very simple and cost saving.
- 2) The HOM-damping capabilities must be more effective compared to the downsized BESSY-cavity.

1. Alternative: The "Choke Mode Cavity" from T. Shintake

A cut view through the "choke mode cavity". The cavity is azimuthally symmetric. (Picture: T. Shintake [1])

Our final design of the "choke mode cavity" with a ring shaped HOM-absorber made of silicon carbide (ring in dark blue) (Picture: S. Karau (DESY MHF)).

frequency	f _o	1,5GHz
shunt impedance (CST)	R_S	1,7 MΩ
unloaded quality factor	Q_0	19.000
	R_{s}/Q_{0}	88Ω

High power input coupler was chosen to be a capacitive coupler. Coupling factor β is adjustable from 0 up to 5 (XFEL-coupler) (Picture: S. Karau (DESY MHF))

DESY. "PETRA III Upgrade to PETRA IV", Peter Hülsmann, DESY MHF, Twelfth CW and High Average Power RF Workshop, Sunday, Sept. 11, 2022 - Thursday, Sept. 15, 2022, CERN Page 16

An application of the choke mode cavity

The choke mode cavity in a LINAC application. The individual choke mode disks are stacked to form a LINAC. This is a C-band LINAC for a compact X-ray free electron laser facility. The HOM-damper-material is a simple ring made of Siliconcarbide

Picture: T. Iganaki, C. Kondo, H. Maesaka, T. Ohshima, Y. Otake, T. Sakurai, K. Shirasawa and T. Shintake: "High-gradient C-band linac for a compact x-ray freeelectron laser facility", Physical Review special topics-Accelerators and Beams, 17, 080702 (2014)

DESY. "PETRA III Upgrade to PETRA IV", Peter Hülsmann, DESY MHF, Twelfth CW and High Average Power RF Workshop, Sunday, Sept. 11, 2022 - Thursday, Sept. 15, 2022, CERN Page 17

HOM-Damping Capabilities Of The Choke Mode Cavity

The pictures are provided with kind permission of Simon Karau (DESY MHF)

2. Alternative: The "Herminghaus" Single Mode Structure

The pictures are provided with kind permission of Kathrin Cottel (DESY MHF)

DESY. "PETRA III Upgrade to PETRA IV", Peter Hülsmann, DESY MHF, Twelfth CW and High Average Power RF Workshop, Sunday, Sept. 11, 2022 - Thursday, Sept. 15, 2022, CERN Page 19

 87Ω

Summary

- A concept for the PETRA IV RF system was presented:
 1) Fundamental RF: 24 × 500MHz HOM damped cavies plus 24 × 120kW SSA
 2) High Harmonics RF: 24 × 1,5GHz HOM damped cavities plus 24 × 10kW SSA
- > The main focus of the concept is: redundancy and reliability
- > Hence the large numbers of cavities with relatively moderate voltages
- There is currently a discussion at DESY ongoing: How much redundancy and reliability we should allow ourselves to have.
- Are there cavity alternatives which are simple to manufacture and with enhanced HOM damping capabilities?
- Currently we are investigating two single mode cavities: The Choke Mode Cavity and the Herminhaus Cavity.

Thank you for lending your ears.

• Additions or questions?

Contact

DESY. DeutschesPeter HülsmannElektronen-SynchrotronDESY, MHFpeter.huelsmann@desy.dewww.desy.de049/40/8998-2782