

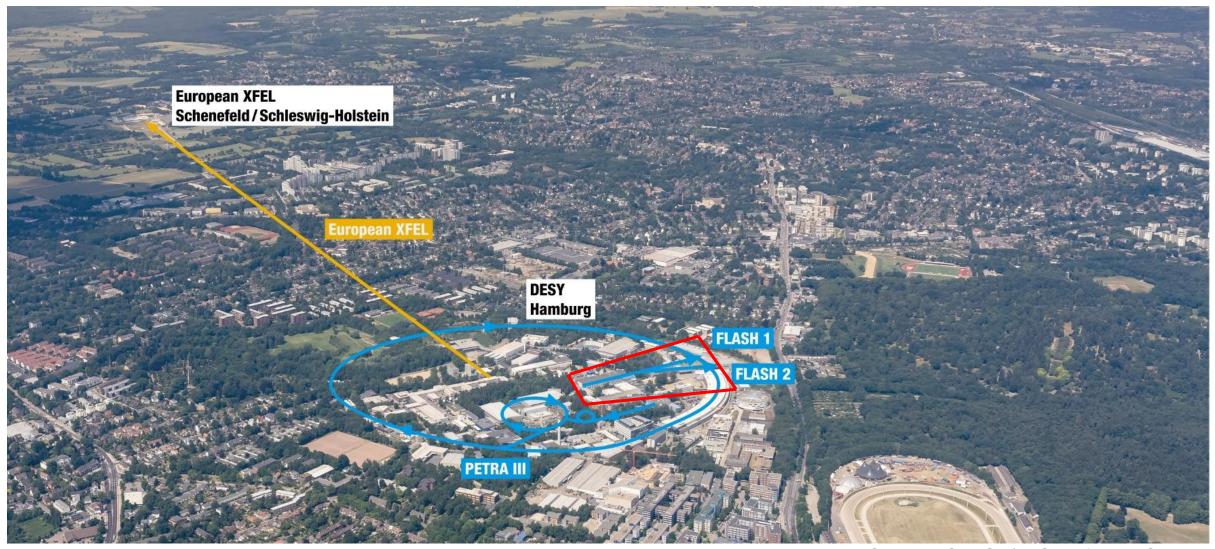
Stefan Choroba for the HPRF System Upgrade Team CWRF2022, Geneva, 14.09.2022

WPL RF Station Upgrade Thomas Froelich
WPL RF Waveguide Distribution Upgrade Burcu Yildirim

Agenda

1 FLASH Overview

2 FLASH RF Station Upgrade


3 FLASH RF Waveguide Distribution Upgrade

4 Summary

FLASH Overview

FLASH

FLASH at DESY

Copyright: © DESY / R. Schaaf und D. Schröder

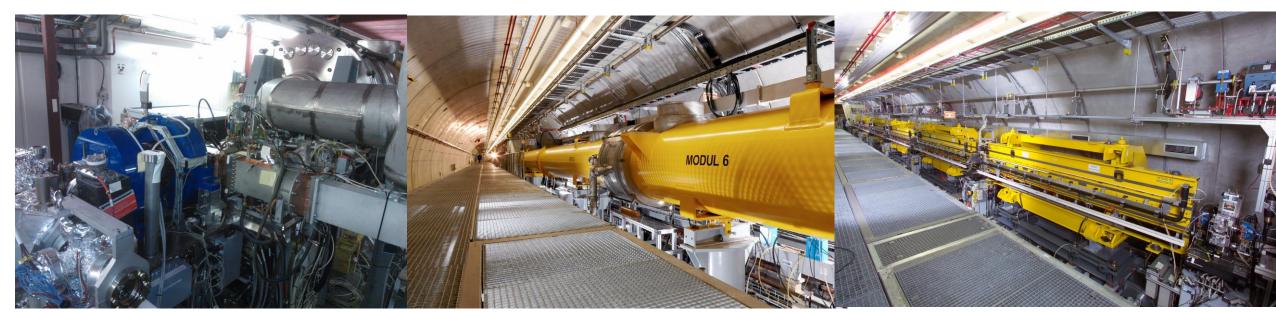
FLASH

History

Setup and Upgrades

- Early 1990s start of the TESLA collaboration with the goal to develop all components for a superconducting linear collider
- Setup of the TESLA Test Facility including a small short superconducting linear accelerator for test
- During the years more components have been integrated (more sc modules, RF gun, bunch compressors, etc. and finally undulators)
- First lasing demonstrated in 2000 at 109 nm
- TTF has been upgraded and renamed to FLASH in 2002/2003 and is operated as a FEL user facility
- Further upgrades and improvements since then

 Cavity made of niobium, operated at 2K, gradient >23MV/m Q=10¹⁰ and 1.3GHz

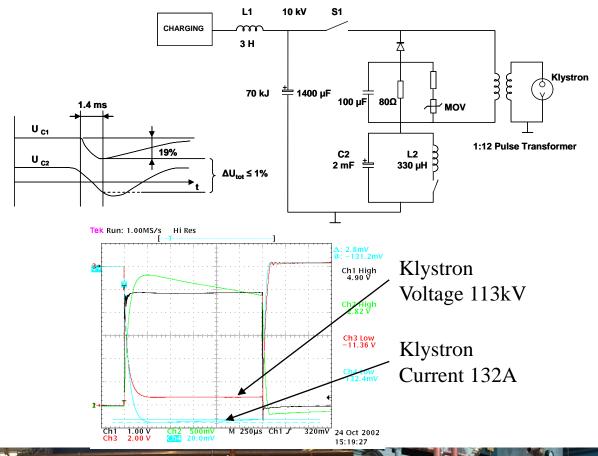


FLASH

Status before Upgrade in November 2021

- Linear Accelerator 1.25 GeV
- 1 RF Gun
- 56 sc 1.3 GHz cavities in 7 cryomodules
- 8 sc 3.9 GHz cavities in 1 module
- Lasing down to 4.1nm (water window)

- 5 1.3GHz HPRF stations supplying RF power to 56 sc cavities and 1 RF gun
- 1 1.3GHz HPRF station supplying RF power to 8 sc cavities
- up to 10MW ~1300us/600us RF at 10Hz
- cavity filling time ~500us/10us




FLASH RF System

RF Stations

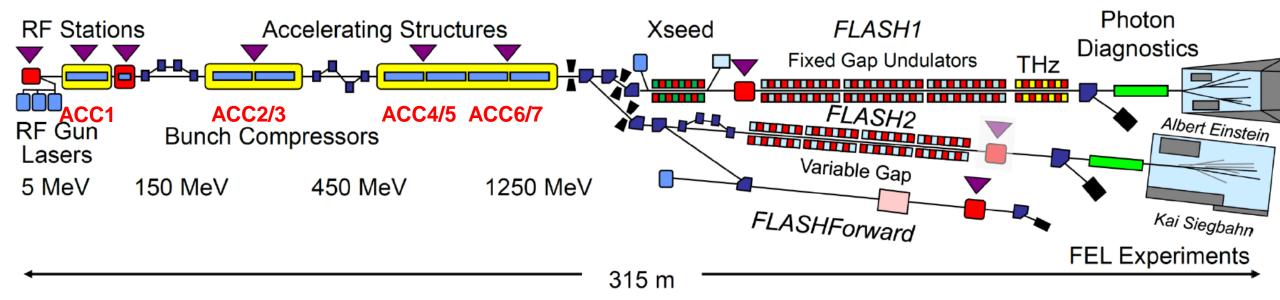
Status November 2021

- 5 long pulse Bouncer Modulators 130kV/1.7ms/10Hz
- each
 - 12kV HVPS plus 12kV pulse generator up to 12kV, 1.5kA, 1.5ms, 10Hz
 - 1:12 pulse transformer
 - Electronic racks with interlocks, timing, PSs
 - Water cooling

FLASH RF System

RF Stations

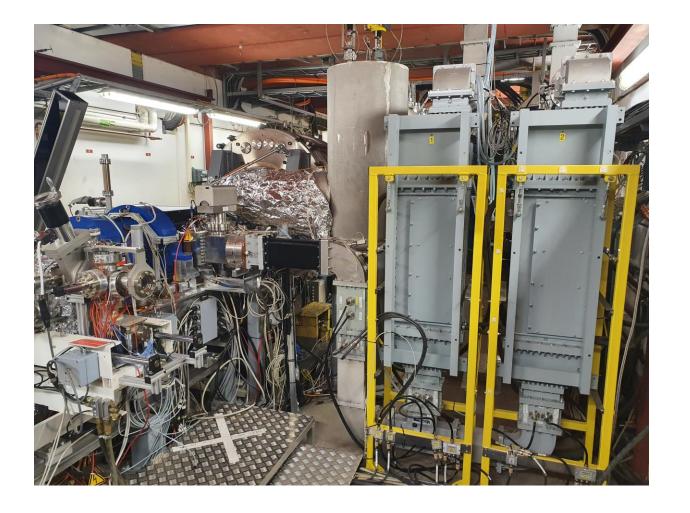
- 2 types of klystrons are in use
- at FLASH
- 3 TH2104C
- 2 TH1801


THALES TH2104C 5MW 1.3GHz 1.5ms/10Hz

THALES TH1801 10MW 1.3GHz 1.5ms/10Hz

FLASH System

Overview Status November 2021



- RF Gun: 10MW typ. ~6MW
- ACC1: 5MW SBK for ACC1 typ. ~1MW supplied to 8 sc cavities
- ACC2/3: 5MW SBK for 16 cavities typ. ~3MW supplied to 2x8 sc cavities, equal power distribution
- ACC4/5: 5MW SBK for 16 cavities typ. ~4MW supplied to 2x8 sc cavities, equal power distribution
- ACC6/7: 10MW MBK for 16 cavities typ. 4-5MW supplied to 2x8 sc cavities by XFEL type waveguide distribution, maximum power for each cavity

FLASH RF System

RF waveguide distribution

 RF gun: 10MW MBK typ. ~6MW supplied in 2 ca. 20m long waveguide arms, which are combined before the RF gun

FLASH RF System

RF waveguide distribution

 ACC3 and 4 waveguide distributions, old layout

- ACC5 waveguide distribution, old layout
- ACC6 waveguide distribution, XFEL type

FLASH System

Status November 2021 and Upgrade Plan Photon **Accelerating Structures** FLASH1 RF Stations Xseed Diagnostics Fixed Gap Undulators Albert Einstein RF Gun **Bunch Compressors** Lasers Variable Gap 5 MeV 150 MeV 450 MeV 1250 MeV FLASHForward Kai Siegbahn FEL Experiments Photon **RF Stations** Accelerating Structures FLASH1 **TDS Diagnostics** Laser Heater FLASH2 THz Aivert Einstein RF Gun **Bunch Compressors** Lasers Seed Laser 550 MeV 5 MeV 1350 MeV 150 MeV FF Laser FLASHForward Kai Siegbahn **FEL Experiments** \\win.desy.de\group\mpy\xxl\schreibr\personal xxl\Conferences\Material\FLASH layout\2019\FLASH layout-2020+.png

Phase 0

Energy upgrade 3rd BC (FLASH2) TDS (FLASH2) Injector Laser Afterburner FLASH2

Phase 1

Variable gap undulators (FLASH1) Laser heater in 1st BC New 2nd bunch compressor (BC) Pump-probe laser (FLASH1)

Phase 1+

High rep.rate seeding (FLASH1) Photon diagnostics (FLASH1) Flexible pump-probe lasers

Phase 2

New variable gap undulators Chicanes for new lasing concepts (FLASH2)

Courtesy of E. Allaria, DESY

RF System Upgrade

Mayor upgrade renewing and replacing more than half of the existing HPRF System

RF Station Upgrade

- RF Station for ACC 2/3 has been fully replaced and
 will operate with a 10MW instead of a 5MW klystron
- RF Station for ACC4/5 received a new modulator and a new 5MW klystron
- All RF Stations received new interlock (technical and personnel) and timing systems, and some new PSs, water cooling system etc.
- Repair and maintenance of modulators

RF Waveguide Distribution Upgrade

- Accelerator modules ACC2/3 have been replaced by new modules and received RF waveguide distribution of the XFEL type
- RF waveguide distribution of ACC4/5 has been replaced by a modified XFEL type distribution
- Distribution for ACC6/7 were of XFEL type and were only improved
- Connecting and klystron RF waveguide distributions have been replaced for the RF stations supplying ACC 2 to 7.
- Personnel interlock waveguide switches have been replaced

FLASH Upgrade RF Station

RF Station Upgrade

- RF Station for ACC4/5 and for ACC6/7 were upgraded
- RF Station for ACC4/5 received new HV pulse modulator

 A large part of the RF waveguide distribution was removed and modified during the shutdown

RF Station Upgrade

 New RF Station for ACC 2/3 has been installed and RF Stations for ACC4/5 and for ACC6/7 have been upgraded

- New interlock and timing systems, PSs, water cooling etc. have been installed
- New waveguide switches for the personnel interlock were installed

FLASH Upgrade RF Waveguide Distribution

RF Waveguide Distribution Upgrade

ACC2 specification

Specification for FLASH 2020+ Waveguide Distribution (WD) production

Cryomodule name	PXM2.1							
WD type	XFEL type, Left							
WD for	ACC 2							
Cavity number*	1	2	3	4	5	6	7[PU]	8
Cavity number* Cavity gradient**, MV/m	1 28.7	2 28.8	3 33	4 33	5 30.9	6 31.5	7[PU] 32.2	8 28.8

^{*} Cavity number in the beam direction

Established in two copies

Signed for and behalf of FLASH 2020+ team

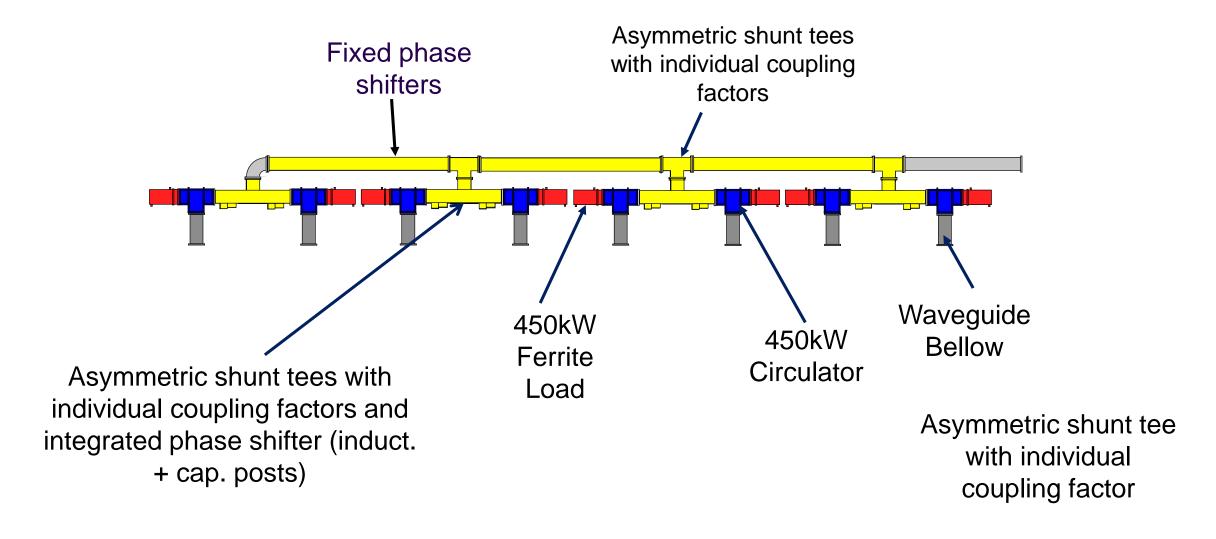
Signed for and behalf of MHF-p:

Elmar Vogel

02/02/2022

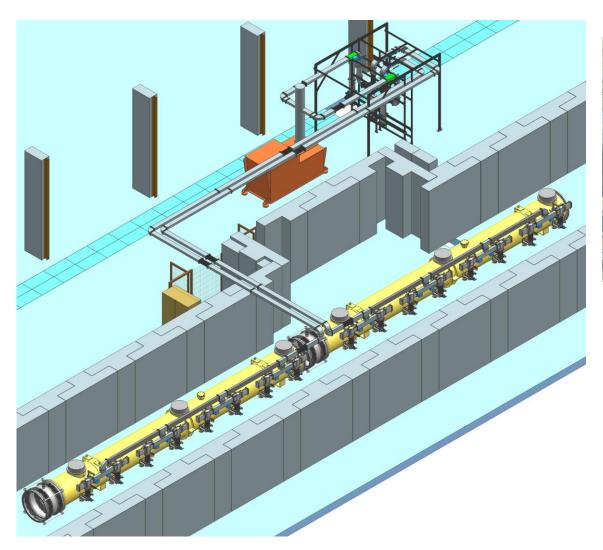
B.Yildirim

Data


02.02.2022

^{**} The cavity gradient is 1 MV/m below the cavity quench limit

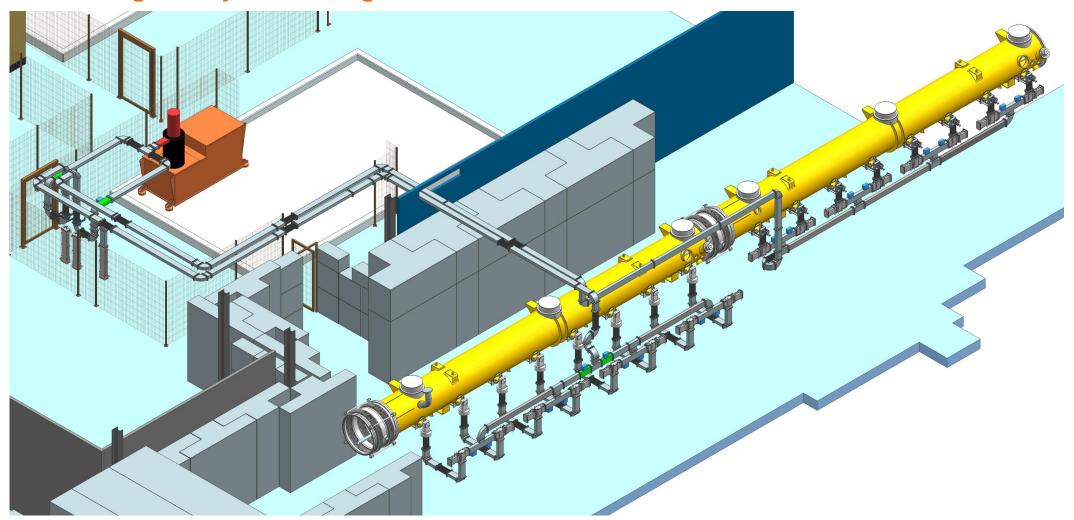
^{***} The difference between neighboring cavities in the binary cell cannot exceed 3 dB; in specific cases it can be exceed after discussion with MHF-p experts (Qext=3.0, $tinj=500 \ \mu s$)


XFEL Type RF Waveguide Distribution

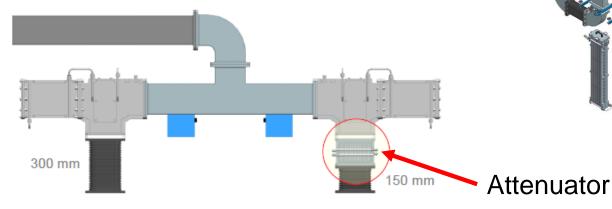
XFEL type distribution allows for maximum RF power for each cavity avoiding the weak cavity limit

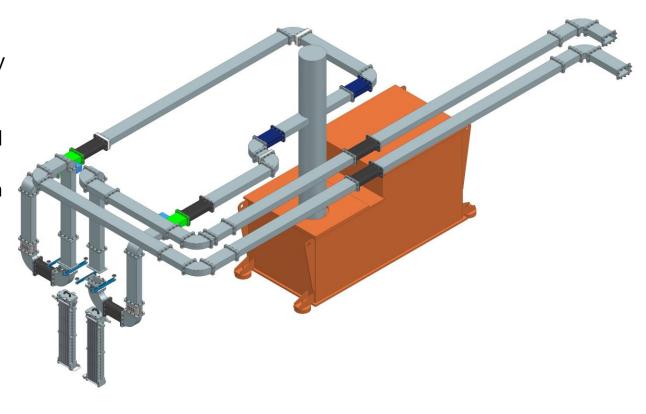
ACC2/3

Complete new waveguide distribution for the new modules ACC2 and 3



ACC4/5


Modified and optimized XFEL type waveguide distribution for already installed modules ACC4 and 5 and new connecting and klystron waveguide distribution



ACC6/7

Minor adjustments to XFEL type distribution and new klystron waveguide distribution

- 3 attenuators have been installed between the cavity and the isolator already before.
- Two of the them have been installed for ACC6 (0.8 dB for cavity 2, 1.2 dB for cavity 8)
- third one with 5.1 dB has been used at ACC7 for cavity 8.
- The reduction of power to these limiting cavities allowed to increase the power to the other cavities and thus the total power to the modules.
- This improvement resulted in a total beam energy gain of about 20 MeV, which is equivalent to one additional cavity.

FLASH tunnel

ACC2 and 3 in the FLASH Tunnel

Summary

- 1 of 5 RF stations has been renewed
- 1 of 5 RF stations has received a new HV modulator.
- All 5 RF stations got additional new subsystems
- New or improved RF waveguide distribution systems of the XFEL type avoiding the weak cavity limit have been installed
- FLASH will reach 1.35GeV allowing to decrease the FEL laser wavelength further beyond 4nm
- Warm commissioning has been finished
- RF gun operation has been restarted
- Cool down is in progress

Broken Component Transparency

 Water cooling failure of IGCT main switch

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY

MHF

stefan.choroba@desy.de

Stefan Choroba

www.desy.de