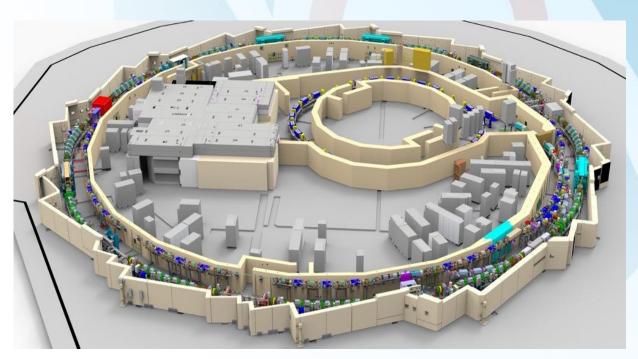


12th CW and High Average RF Power Workshop | September 12-14, 2022

The Plans and Status of the ALS-U RF Systems

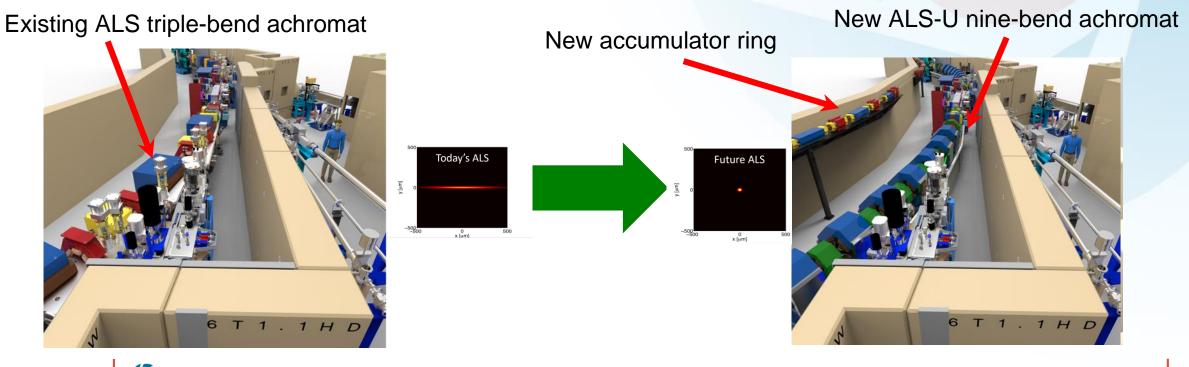

Ken Baptiste

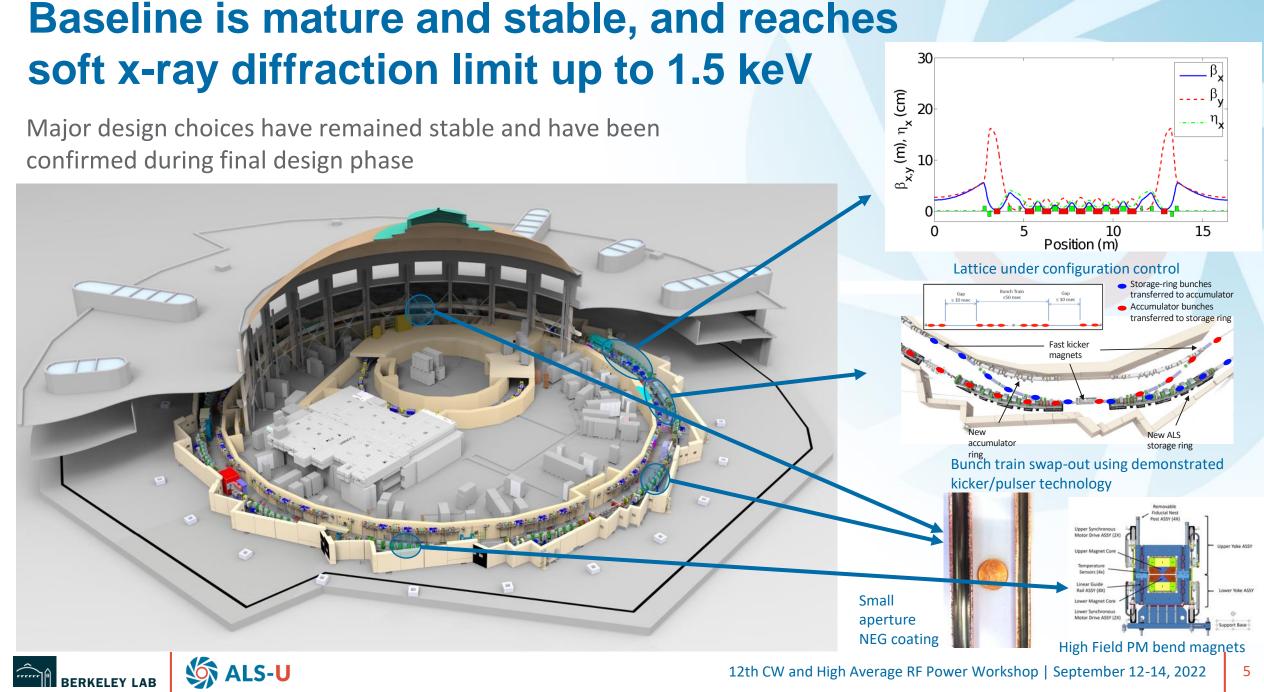
Dave Nett, Subhasish Basak, Kevin Bender, Mark Galt Tianhuan Luo, Ben Flugstad, Qiang Du

September 12, 2022

Outline

- ALS-U Upgrade Overview
- RF Requirements
- ALS & ALS-U Responsibilities
- RF Systems Plans & Status
- Summary


2


ALS-U Upgrade

Accelerator Systems scope

BERKELEY LAB

- **Replacement** of the existing triple-bend achromat storage ring with a new, highperformance storage ring based on a multi-bend achromat and high field bend magnets.
- Addition of a low-emittance, full-energy accumulator ring in the existing storage-ring tunnel to enable on-axis, swap-out injection using fast magnets.
- Addition of 2 new undulators and refurbishment of existing undulators or undulator vacuum chambers where needed.
- Upgrades of storage ring shielding to improve seismic safety and minimize dose rates.

RF Requirements

AR RF Requirements

• HPA

- 48 kW cav/beam pwr -> specified 60 kW SSA
- 60 kW SSA
 - Turn-key
 - Fault tolerant
 - Operational margin for transistors and DC power supply failures

Cavities

- Cavity voltage is nominal
- Beam loading is low
- Commercial EU "Dampy" cavity
- Modifiable to fit physical constraints on ALS SR tunnel

Physics High Level Parameters (Latt	ice ARv5)		RF System Requirements	2.0 GeV
Ring Circumference	С	182.130179 m	# of Cavities	2
Revolution Frequency	ω ₀ /2π	1.64603 MHz	R _s (ea)	~ 3.5 M-Ω
Beam Energy	E ₀	2 GeV	Cav Voltage (kV)	500
Horizontal Tune	V _x	16.221	Coupling β	1.18
Vertical Tune	v _y	8.328	Energy loss per turn (keV)	282
Avg. Current	l _{avg}	49.4 mA	BM Beam Pwr (kW)	13.3
Radiation Energy Loss per Turn	U ₀	269 keV		
Harmonic Number	h	304		
Momentum Compaction	α	1.1 x 10 ⁻³	Parasitic Beam Pwr (kW)	0.2
Natural rms Energy Spread	σ_{δ}	8.4 x 10 ⁻⁴	Total Beam Pwr (kW)	13.5
Total Cavity Voltage	V ₁₀	1.0 MV	Cavity Pwr (no beam) (kW)	36
Natural rms Bunch Length	σ_{z0}	5.2 mm	Cavity Pwr (beam) (kW)	42.7
Synch. Oscillation Tune	v _{s0}	4.90 x 10 ⁻³	RF Dist. Losses @ 60 kW (kW)	≤ 5
Synch. Oscillation Frequency	ω _{s0} /2π	8.07 kHz	High Power Xmtr per Cav (kW)	47.7
Long. Radiation Damping Time	τ _z	5.6 ms	Long. HOM Impedance (k Ω)	≤ 4.8
Ver./Hor Radiation Damping Time	$\tau_{y_{,}} \tau_{x}$	9.0 ms, 6.5 ms	Transverse HOM Impedance (kΩ)	≤ 180
Hor. Beta Function at the Cavity	B _{x,RF}	15 m	SSA Baseline Output Power (kW)	60
Ver. Beta Function at the Cavity	B _{y,RF}	5 m	Frequency (MHz)	500.3943

12th CW and High Average RF Power Workshop | September 12-14, 2022 7

SR RF Requirements for 2.0 GeV

Fundamental RF System	Legacy Coupling	New Coupling
Frequency (MHz)	500.394	500.394
# of Legacy RF Cavities	2	2
R _s (ea) (MΩ)	4.9	4.9
Cav Voltage (kV)	300	300
Coupling β	3.15	10.6 ¹
Energy loss per turn (keV)	347	347
BM Beam Pwr (kW)	125	125
ID Beam Pwr (min gap) (kW)	35	35
3HC Beam Pwr (kW)	13.8	13.8
Parasitic Beam Pwr (kW)	2.6	2.6
Total Beam Pwr (kW)	176.4	176.4
Cavity Pwr (no beam) (kW)	9.2	9.2
Cavity Pwr (w/beam) (kW)	136.3	97.4
Waveguide Losses (kW)	< 3	< 3
High Power Amplifier (kW)	272.6 ²	197.51

3 rd Harmonic RF System	SR - 2.0 GeV
Frequency (GHz)	1.50118
# of Cavities	2
R _s (ea) (MΩ) (90% Q/ 100% Q)	0.59/0.65
Cav Voltage (kV)	90.0
Total Cav Voltage (kV)	180.0
Cavity Pwr Dissipation kW)	6.9/6.2
R/Q (desired)	< 20

- Issue with legacy aperture coupler
 - Beam loading and large reflected power lower Robinson's stability threshold
 - Large reflected power is very inefficient

¹ Coupling required exceeds coupler's adj. range

BERKELEY LAB

 2 Each cavity would have ~39 kW reflected power at 500 mA due to the lack of coupling range.

ALS & ALS-U Responsibilities

Injector RF Systems – Scope & Deliverables

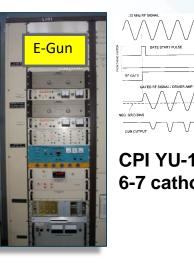
ALS-U Scope

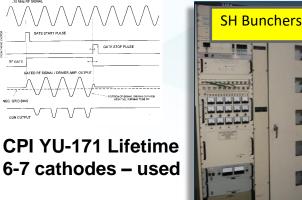
- Increase BRF Cavity voltage to improve quantum lifetime: IOT forward power > 65 kW
 - Potential to change from disc/cylindrical aperture coupler to coaxial as in planned for the SR cavities

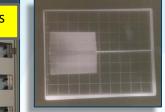
ALS Scope

BERKELEY LAB

- Use existing E-Gun system. ALS has future plans for new LLRF
- Use existing Sub-Harmonic Bunchers (125MHz & 500 MHz, 20 us, <10 Hz)
 - Recently upgraded Digital LLRF & plan to replace triode tube amplifiers with SSA
- Use existing Linac Klystrons/Modulators (3 GHz, 24 MW, 2us, <10 Hz)
 - New Scandinova Modulators installed in 2020
- Use existing Booster RF HPA (500 MHz, 80 kW IOT, 700 ms, <10Hz)
 - Manufacturer (TV Broadcast Co.): Issued End of Service
 - ALS working on proposal to replace with SSA (~copy of AR RF HPA) **ALS-U**

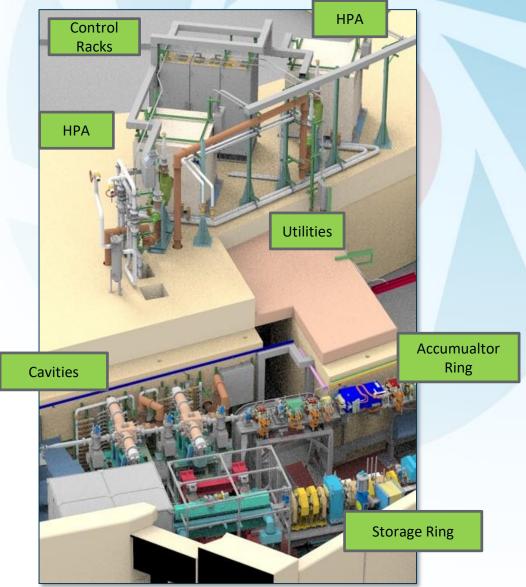





CPI IOT Lifetime #1: 3 yr (18k hrs) #2: 10 yr (~54k hrs #3: 1+ yr (~8k hrs)

Thales TV-2002Lifetime Mod #1: 17, 10, & 5+ yrs Mod #2: 9, 14, 2, 2 & 4+ yrs

Eimac 3CPX800A7 Lifetime 10-25 yrs ea. 20-25 tubes - used


Accumulator Ring RF – Scope & Deliverables

ALS-U Scope

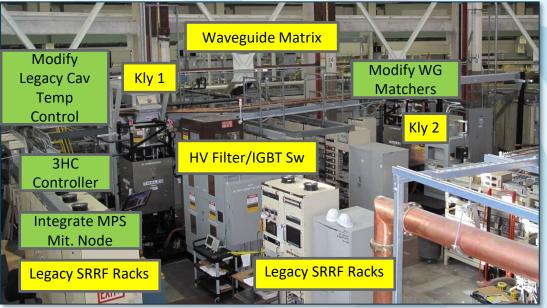
- AR RF System
 - Cavities qty 2
 - HPA qty 2
 - LLRF qty 2
 - Equipment Protection System (EPS) 1 integrated system with modes
 - EPICS Controls 1 integrated system
 - Electrical and LCW utilities distribution
 - Seismic and Structural engineering and compliance
 - Radiation shielding modifications and supplemental blocks

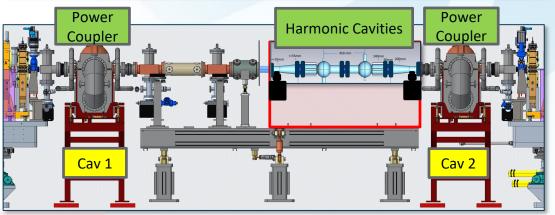
ALS Scope

None

Storage Ring RF – Scope & Deliverables

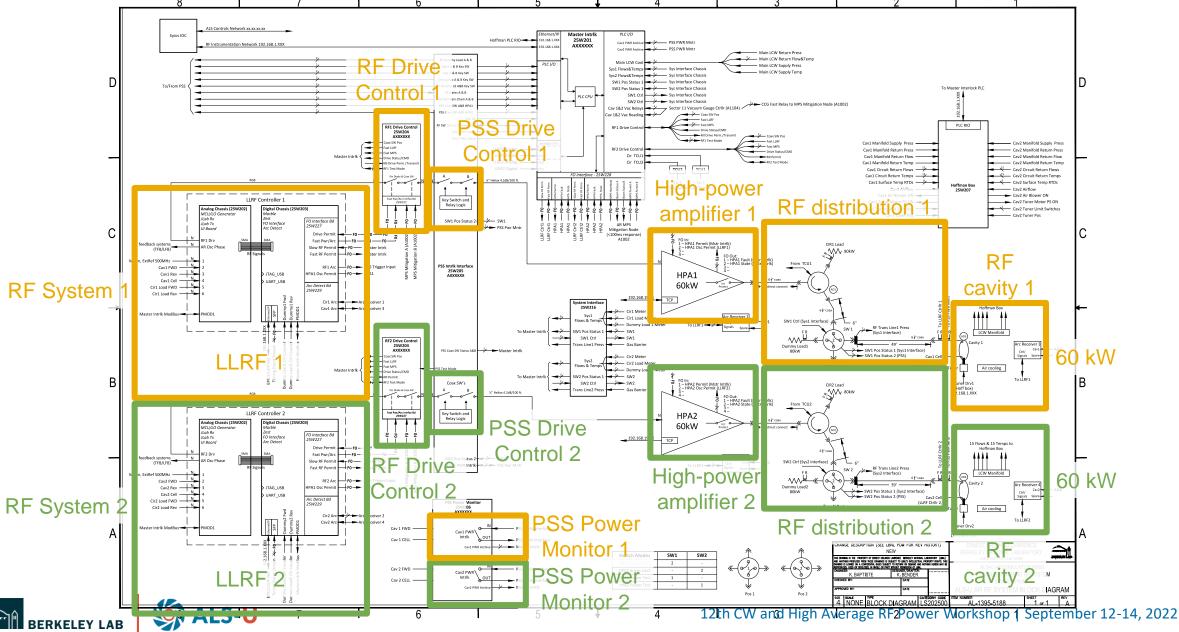
ALS-U Scope

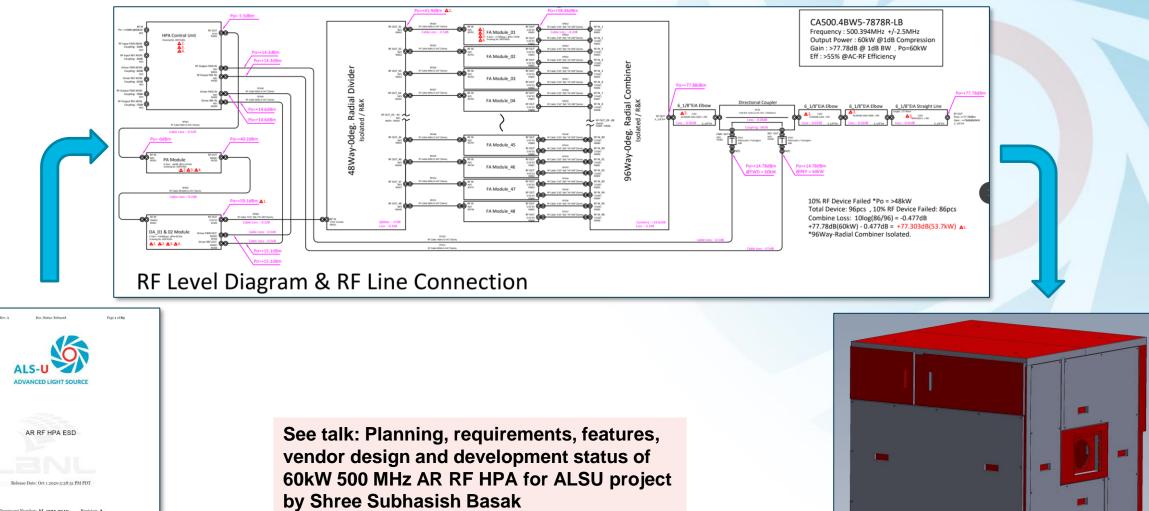

- 1. Design & Fabricate (3), install (2) New Passive 3rd Harmonic Cavities, Voltage Controllers, Temperature Controllers
- 2. Modify Legacy Cavity power coupler to increase coupling
- 3. Modify WG Matcher section to avoid AR interference
- 4. Install/Integrate MPS Mitigation Node to SRRF LLRF & EPS Sys.
- 5. Modify Legacy Cavity Temperature Control System


ALS Scope

BERKELEY LAB

- Maintain & upgrade SR RF sub-systems
 - HVPS, Filter Cabinet and IGBT dis-connect switch
 - PLC based Control & Interlock systems (replace in future AIP)
 - Redundant, 2-klystron system with a wave guide switch matrix
 - D-LLRF Controller
- Cavity Cooling Interlock systems (replace in future AIP)
- Tuner Drive Motor & Controller (replace in future AIP)


See talk: Dual Klystron Driven Storage Ring RF System at Advanced Light Source on behalf of Ben Flugstad by K. Baptiste



RF Systems Plans ans Status

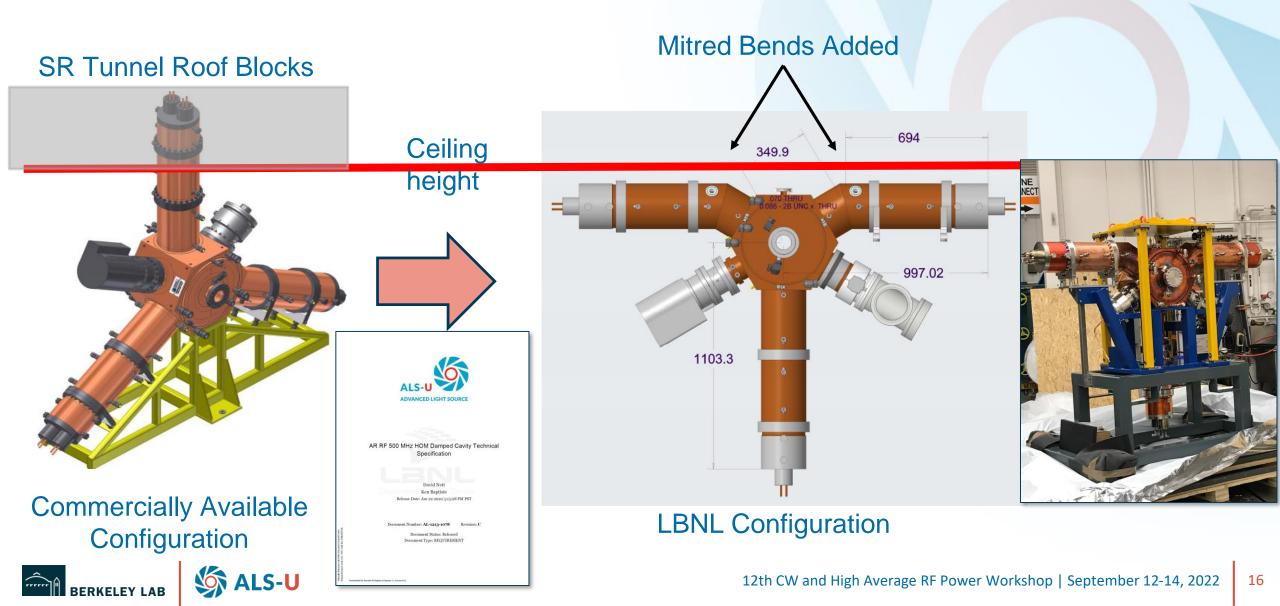
ALS-U: AR RF System: 2 new, independent 60 kW RF systems

ALS-U: AR RF Solid State High Power Amplifier – Development

Imber: AL-1225-3340 B Document Status: Released cument Type: SPECIFICATION Category Code: AL7350

BERKELEY LAB

····· [1

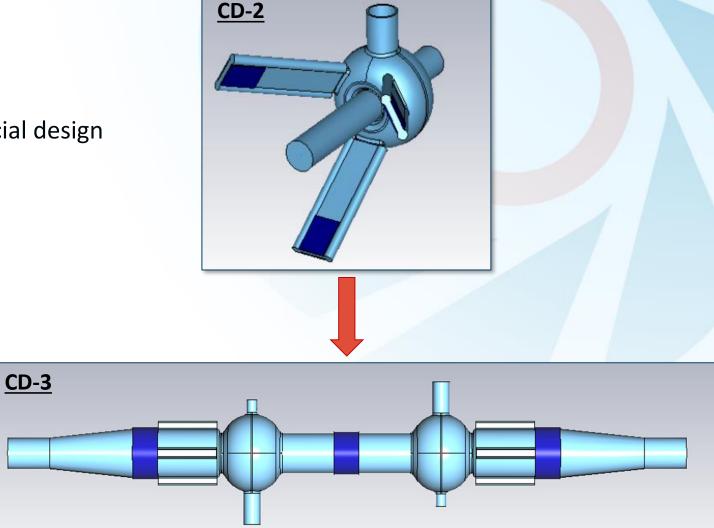

ALS-U

5

ALS-U

12th CW and High Average RF Power Workshop | September 12-14, 2022 15

ALS-U: AR RF Cavities – Development

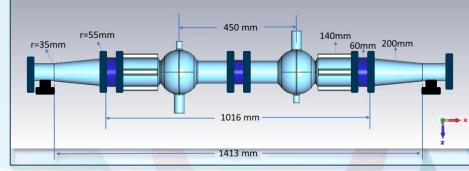


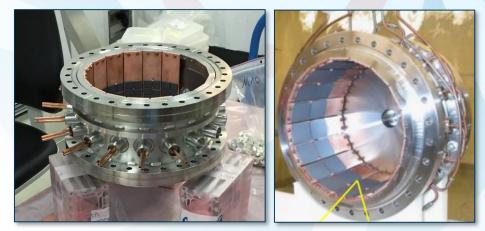
ALS-U: 3HC RF Design Complete, work led by T. Luo

New 3rd Harmonic Cavity Design

- 1.5 GHz normal conducting passive cavity.
- 2 cavities required to achieve voltage •
- Low r/Q design better beam dynamics
- Beamline HOM Dampers based on commercial design •

Cavity Param	eters	
Frequency (GHz)		1.504 (target 1.501)
r/Q (Ohm)		19
Q ₀		34900
Cavity voltage (kV)		90
R _s (MOhm) (90% Q/100% Q)		0.59/0.65
P* (kW) (90% Q/100% Q)		6.9/6.2
PD_peak* (W/cm^2)		21.2
* R = V	^{/2/} (2P), normaliz	ed to V=180 kV
BERKELEY LAB	SALS-U	


ALS-U: SR 3HC Cavity – Ready for Mechanical Design/Manufacture


Design/Manufacture Plan

Award contract

- Vendor to complete preliminary design
- Step file to LBNL for RF performance verification
- Conduct PDR, Close-out action items from PDR
- Vendor to complete final design
- Step file to LBNL for RF performance verification
- Conduct FDR, Close-out action items from FDR
- Release vendor to manufacture
- FAT, Ship Deliverables

LBNL receival/acceptance

Commercial Ferrite HOM Beam Pipe Damper

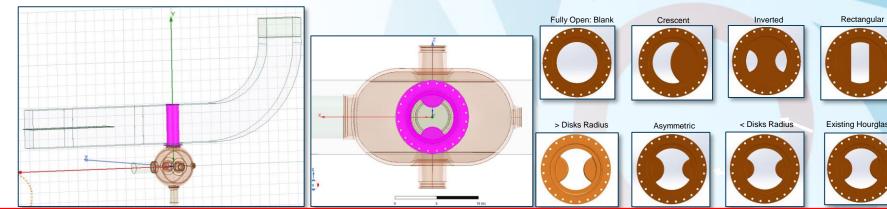
Current approach:

- 18 copper carriers
- 100 mm diameter beam tube
- Copper carriers includes one or two ferrite tiles
- Power dissipation capability of about 7.5W/cm²

ALS-U: Legacy Cavity Power Coupler, Increase β = 3.1 -> 10+

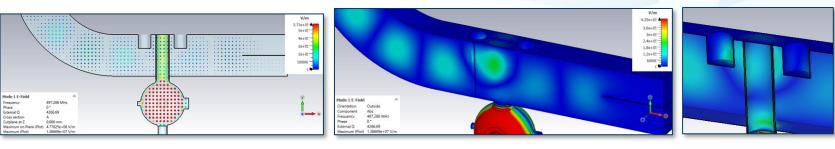
Aperture Coupler

- Ansys HFSS
- Calculated $\beta = 3.6 3.7$
- Actual $\beta = 3.15$
- Multiple aperture shapes reviewed, no improvement


Coaxial Loop Coupler

- "Doris" style
- Many dozens in service, commercially available
- Used in AR RF Cavities
- Calculated β up to 20

Waveguide Stubs


- CST
- r=70 mm, h=150 mm
- 200 mm stub CL to aperture CL
- Calculated $\beta = 10$

Coupling type	Magnetic loop coupling
Vacuum interface	CF 160
Coaxial interface	EIA 6 1/8 inch
Maximum power	120 kW
Frequency range	Up to 500 MHz
Coupling	variable by rotation
Cooling	Water cooling of inner and outer conductor Air cooling of ceramics
Leak tightness	2 x 10 ⁻¹⁰ mBar*I/s
	·

ALS-U: Ready for Mech. Design/Manufacture

Work led by B. Flugstad

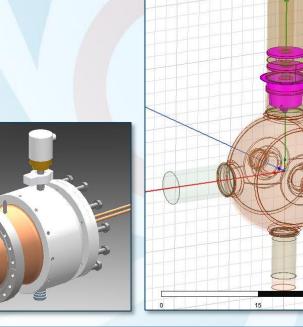
Design/Manufacture Plan

Award contract

Vendor to complete preliminary design

Step file to LBNL for RF performance verification

Vendor to complete final design


Step file to LBNL for RF performance verification

Conduct FDR, Close-out action items from FDR

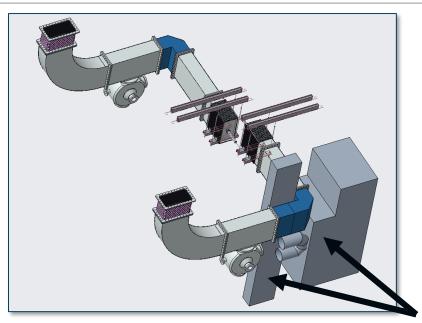
Release vendor to manufacture

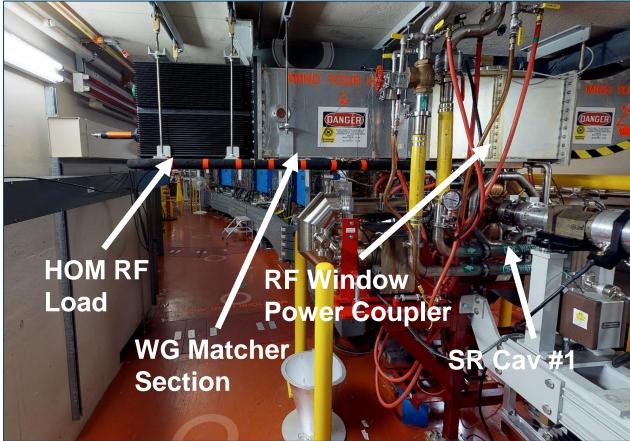
FAT, Ship Deliverables

LBNL receival/acceptance

Coupling type	Magnetic loop coupling	
Vacuum interface	CF 160	
Coaxial interface	EIA 6 1/8 inch	
Maximum power	120 kW	
Frequency range	Up to 500 MHz	
Coupling	variable by rotation	
Cooling	Water cooling of inner and outer conductor Air cooling of ceramics	
Leak tightness	2 x 10 ⁻¹⁰ mBar*l/s	

ALS-U: Modify SRRF Cavities 1 & 2, WG Matcher - AR Interference

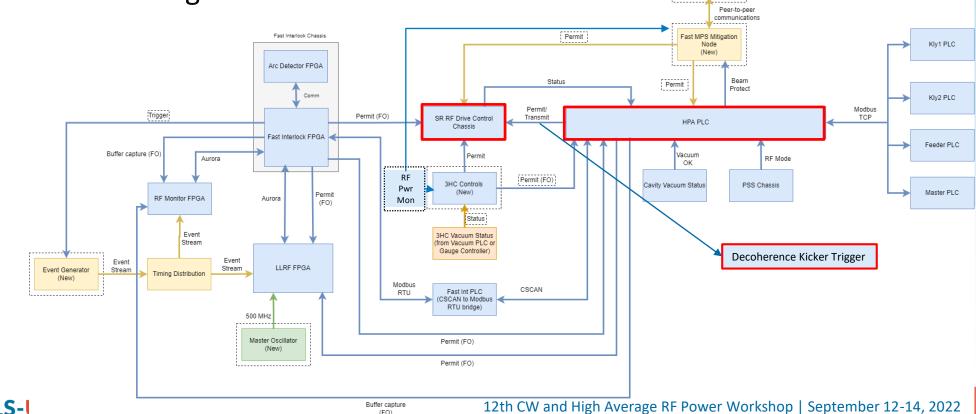

Design/Manufacture Plan


Award contract

Conduct FDR, Close-out action items from FDR

Ship Deliverables

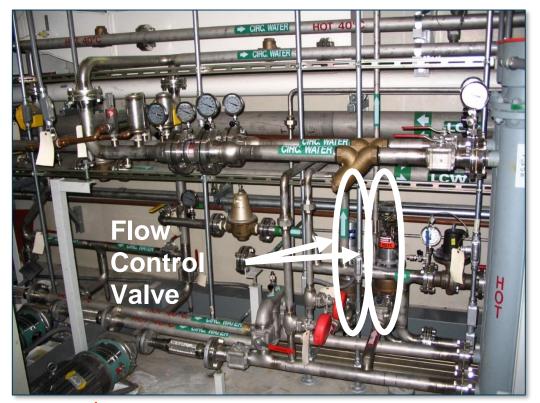
LBNL receival/acceptance


Keep clear space volumes

ALS-U: SRRF, MPS Mitigation Node Integration

- Final Design has begun
- Interfaces are well understood: SR RF ICD, Vac ICD, Vac Controls & Instrumentation ICDs
- RF design similar to AR

BERKELEY LAB


- Redesign HPA PLC & Drive Control FO I/O to be compatible w/MPS node
- Install during dark time using R&I •

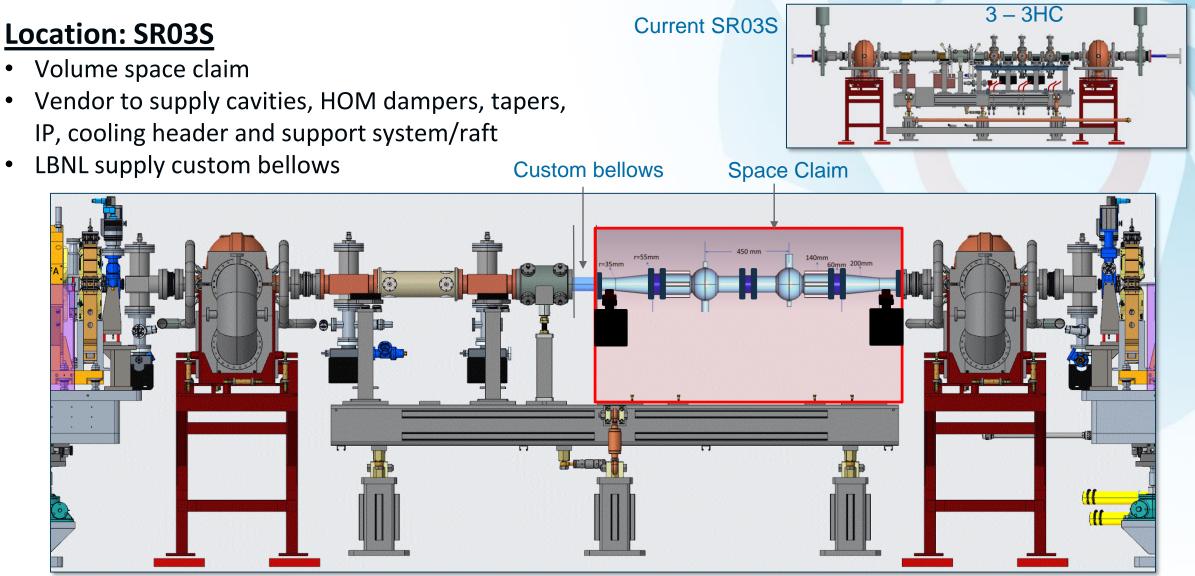


Fast Valves

ALS-U: SRRF Cavities, Upgrade Cav Temp Controller

- Replace motorized flow control valve
- Replace analog PI controller with PLC based PID controller
- Installed during ALS Maintenance shutdown period, pre-Darktime

Summary


- Partnership and coordination between ALS and ALS-U.
- The ALS Storage Ring RF system is being re-used for the new ALS-U Storage Ring. It is operational and it is ready for a few interface modifications to be compatible with the AR, new beam loading characteristics and ALS-U MPS/Controls.
- The 3rd Harmonic Cavities RF design is complete. We will award the mechanical design/manufacture contract this year and expect delivery in 2024, well over 1 year before dark time.
- Plans are in place for the smaller tasks such as modifications to RF Drive Control interfaces and PLC interlocks, along with waveguide modifications, cavity power coupler replacement and a cavity cooling valve replacement, two of which will be done prior to dark-time, reducing risk.

Thank you. Questions?

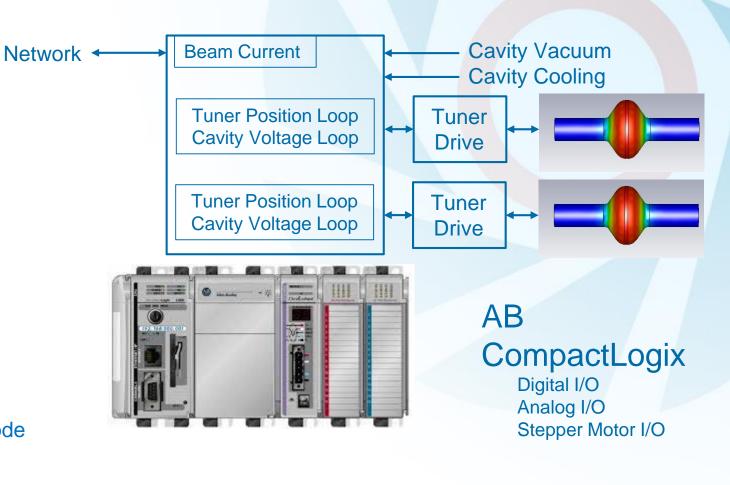
Back-up slides

1. SR 3rd Harmonic Cavity Installation - Darktime

Preliminary Design – 3HC RF Cavity Controller

New 3rd harmonic Cavity

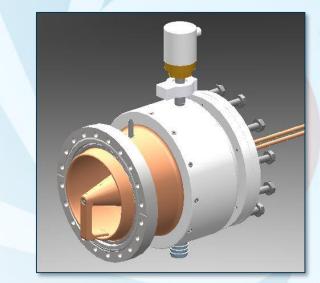
- Amplitude Controller
 - Tuner resonance controller
- 3HC EPS
 - Cavity Cooling Inst. & Interlocks
 - Cavity Vacuum Interlocks
 - Local HMI
 - Engineering GUI
 - Fault capturing/1st Fault
- Controls
 - EPICS Interface
 - Tuner Controller
 - 3HC EPS
 - Operation GUI/High Level App
- Install pre-dark time, connect using R&I during dark time.

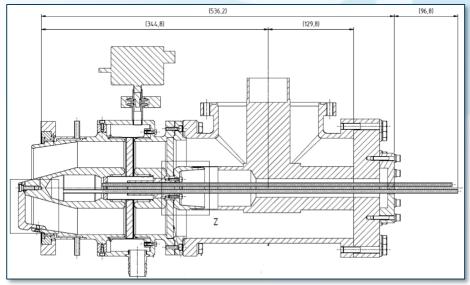

Control System Integration

- 3HC Cavity Controller & MPS Mitigation Node
 - Signals, PVs, HMIs

Vacuum System Integration

3HC Cavity vacuum signals




SR RF Cavity Coaxial Coupler Adapter Design & Manufacture

- Award contract adapter spool for coaxial coupler
- Vendor to complete preliminary design, includes:
 - Design to meet electro/magnetic requirements (freq, coupling range)
 - Design to meet vacuum requirements
 - Design to meet thermal requirements
 - Design for manufacturability
 - Design to meet interface requirements
- Send step file to LBNL for RF performance verification
- Upon design verification, organize joint PDR
- Conduct PDR, Close-out action items from PDR
- Vendor to complete final design
- Send step file to LBNL for RF performance verification
- Upon design verification, organize joint FDR
- Conduct FDR, Close-out action items from FDR
- Release vendor to manufacture
- FAT, Ship Deliverables

BERKELEY LAB

• LBNL receival/acceptance

