R2E assessment and mitigation of failures in the SPS access system

<u>Matteo Cecchetto</u>, Ygor Aguiar G. Lerner, R. García Alía on behalf of the R2E project

R2E Annual Meeting 1-2 March 2022 https://indico.cern.ch/event/1116677/

Introduction – SPS Access system

Access system is a safety-interlock architecture that controls the access to the machine.

- Safety PLC systems from Siemens.
 - In case of discrepancy, the affected modules go to failsafe state → beam dump.
- Input cards to:
 - Elements Important for Safety (EIS): personnel and material access devices, doors, moveable shielding walls and etc.
 - Patrol boxes.
- Recovery of the systems require manual reset of the modules.
- Underground and intermediate level racks.

Overview: failure rate and SPS injected Intensity

- Total of 75 R2E events have been recorded in the input cards.
 - Not all of them lead to beam dump, but can possibly increase the downtime of the machine as the modules need to be manually reset during a beam stop.

Heavy Shielding in BA1

- 40 cm Iron shielding installation (~ 17 T) on the 15th of September 2021.
 - More info on the installation can be found in <u>T. Ladzinski's presentation</u> at 292nd IEFC meeting.

Shielding wall

BA1 - Fluence measurements: BatMon*

2x BatMon installations: on the side of the rack facing the SPS tunnel and inside a boron carbide (B4C) layer facing the front of the rack

*Input from M. Brucoli, A. Zimmaro, A. Amodio and S. Danzeca EDMS 2620946

Alternatives to heavy shielding

- Relocation of racks during YETS2021-2022.
- Before the relocation campaign, the SPS PPS project team investigated alternatives to prevent the direct beam dump and to reduce the recovery time.
- Remote reset of cards:
 - Reduction from 3.6h to 1.1h average downtime per fault (about 70% reduction).
 - Suppression of the cool-down time previously required for the manual reset of modules.
 - More info at <u>T. Ladzinski's</u> presentation at 293rd IEFC meeting.

R2E

01/03/2022

Impact of the Iron Shielding

Assuming the radiation levels scale proportionally with the SPS intensity

SPS Availability in 2021

 Using the Accelerator Fault Tracking (AFT) tool, the beam availability is calculated since the week of start of SPS North Area Physics [Week 28].

*Thanks to Andrea Apollonio for the support with AFT tool.

SPS Root Cause Downtime by System

- SPS Unavailability of 26.6% (806h).
- Top 3 root cause:
 - Injectors
 - Vacuum
 - Access System: 16% (131h)
- 78% of R2E faults and 97% of R2E downtime (127h).
 - Average downtime of 2.4h per fault.
- The SPS access system R2E faults leads to 4.3% of SPS unavailability in 2021.

*Raw data accessible through AFT by clicking here.

SPS access system relocation summary

- Information from <u>https://edms.cern.ch/document/2669636/1.0</u>
- Ten electronics (double) racks were relocated from intermediate level to the surface in several locations of the SPS, in order to mitigate the observed radiation to electronics effects:

BA1, BA2, BA3, BA4, BA5, BA6, BA7, BA80, TCC8, ECN3

 Racks on TSG4 (AWAKE) could not be relocated on the surface, hence a dedicated study is presented hereafter.

Example in BA80: the rack was relocated on the surface

TSG4 - AWAKE request and general overview

 Observed 6 Single Event Upsets (SEUs) in the Access System racks between the TSG44 and TSG45 side-galleries close to the ventilation duct (VD1) in 2021.

Radiation source:

 400 GeV protons on the AWAKE target (He).

Assessment:

- Radiation levels between vent. duct and TSG45 at the position of the rack.
- High Energy Hadrons (HEH) and Thermal neutron (ThN) fluences.
- BatMon measurements vs simulations

01/03/2022

Possible shielding strategies.

FLUKA geometry

• FLUKA geometry (input from E. Nowak, C.Ahdida, HSE/RP).

HEHeq and ThNeq overview (protons delivered in 2018)

The beamline is on the bottom of the picture (top view), while the service gallery on the top part.

HEHeq and ThNeq fluence in 2018 and 2021

Radiation levels [cm⁻²/year] between ventilation duct (to the left) and TSG45 gallery (to the right) for the full 2018 and 2021 operation.

HEHeq - FLUKA simulations – BatMon position

- HEHeq top view scoring at the height of the BatMon (~1m above the floor).
- Very strong HEHeq and ThNeq fluence gradient at BatMon location.
- Hence, the agreement with measurements can be considered within "order of magnitude".

R2E

BatMon vs FLUKA fluences comparison

- Good HEHeq agreement between FLUKA and BatMon (~20%).
- ThNeq fluence present a factor of ~10 difference between FLUKA and BatMon.
- We should take into account that the BatMon SEU statistics was quite low (~50 events) corresponding to about 10 days of acquisition (1.2e15 POT delivered in AWAKE).

	BatMon* Measurement	FLUKA Simulation
HEHeq [cm ⁻²]	8.7e6	7.0e6
ThNeq [cm ⁻²]	2.9e6	3.1e7

*From A. Zimmaro, M.Brucoli, A. Amodio, S. Danzeca EDMS 2671023

Shielding implementation (visit on 20/01/2022)

Integration from F. Galleazzi https://indico.cern.ch/event/1119557/

01/03/2022

Shielding solutions

Integration layout from F. Galleazzi (<u>https://indico.cern.ch/event/1119557/</u>) F. Delsaux, C.Bertone, S. Fumey

Installation of **40 cm thick iron wall** for TSG45 and ventilation duct to reduce radiation levels in the TSG gallery.

Possible solutions:

- Shielding at the end of the duct, hence installed on the main TSG4 service gallery. ➡ Ventilation duct
- 2) Shielding (almost) inside the end of the gallery. Important TSG45

Conclusions

- R2E mitigation measures were taken after failures on the SPS access system.
 - Heavy shielding installation (BA1).
 - Most of electronics racks at intermediate level were relocated on the surface (10 locations).
 - Great reduction on the downtime thanks to the remote reset of the modules.
- The Access System has a high direct impact on the availability of the SPS.
 - R2E faults leads to 4.3% of SPS unavailability in 2021.
- Some racks in AWAKE (between the ventilation duct and TSG45 in the TSG4 gallery) could not be relocated:
 - HEHeq and ThNeq fluences present a strong gradient between the two galleries and even within the racks and are high enough to potentially induce SEUs.
 - Works to implement 40 cm iron shielding for TSG45 and the ventilation duct started in order to reduce radiation levels in the TSG4 gallery.

More info about the analysis presented: https://indico.cern.ch/event/1123290/

Thank you for your attention!

