IoT BatMon: Wireless radiation monitoring at CERN

Alessandro Zimmaro (UM - CERN/BE/CEM-EPR) Salvatore Danzeca (CERN/BE/CEM-EPR)

R2E Annual Meeting – 1-2 March, 2022 https://indico.cern.ch/event/1116677/

Controls Electronics & Mechatronics

Background: the RadMon, an R2E instrument

Radiation tolerant full custom measurement system:

measures the Total Ionizing Dose, the Displacement Damage and the High Energy Hadron and Thermal Neutron Fluence in order to:

- Monitor the radiation levels on the electronics systems in the accelerators
- Anticipate the electronics degradation
- Investigate the cause of failures
- Simulation benchmarking

Impact in developing a new system

Mechatronics

The BatMon: Over the Challenges

Easy to configure

System reconfigurable wireless or via cable

Low Power

Use of low-power components and a microcontroller safeguards battery lifetime

Wireless

LoRa technology perfectely fits the constraints of low power and wide area coverage

Low Cost

The system is based on qualified COTS

BATMON consumption per operation cycle and lifetime

Electronics &

Mechatronics

R2E

A first layer of validation without Radiation:

- 1) Expected system life based on power consumption
- 2) System Functionality Validation
- 3) Test in Magnetic Field

Performances can be degraded by Radiation Effects

The Radiation Qualification is made of 2 phases:

- Component level qualification:
 - Low Power components can embed new power-saving features that can present new failure modes and impact the lifetime
 - > All BatMon COTS qualified at PSI
- > System Level Qualification:
 - ➢ Normally performed at CHARM → Unavailable until the end of 2021
 - Alternative approach splitting into different validation steps

System Radiation Qualification: TID

Electronics &

Mechatronics

System Radiation Qualification: HeH

Proton beam for system-level test:

- Isolate SEE contributions targeting different subsystems
- Inducing all TID, DD, and SEE
- Tuning proton flux
- Not possible to irradiate whole system(s),

Alternative R&D approach:

- From the data obtained from component level qualification, it was known that the most sensitive component to HeH was the Microcontroller.
- The system was divided into two macro-subsystems, which always included the microcontroller within them.
- They have been tested **separately**

Mechatronics R2E

02/03/2022

Controls

Electronics &

Two main contributions to system SEE:

- 1) Microcontroller (stuck program)
- 2) Communication Controller (stuck program)
- \rightarrow Recovered by external watchdog

BATMON Total SEE Response: 6.5.10⁻¹¹ cm²

• Expected Failure Rate in Operation

System Radiation Qualification: Thermal Neutron

ThN

- Radiation Monitoring System for accelerator must be able to measure the contribution of ThN.
- The possible presence of B10 in the manufacture of the components makes this qualification step necessary.

ThN beam for system-level test:

- Evaluate Measurement
 performance of the system
- Investigate possible sensitivity to ThN.
- Not possible to irradiate whole system(s)

R&D approach testing subsystem one by one to obtain global sensitivity

02/03/2022

 No sensibility observed on any subsystems

Controls

Electronics &

Mechatronics

System flexibility allows:

- Individual radiation sensitivity calibration.
- Mass system calibration is possible in large radiation facilities since no cables are required

FGDOS TID Sensor sensitivity spread

02/03/2022

System Expected Lifetime and failure Rate

- 2 main information are retrieved from this alternative approach:
 - System Sensitivity

Expected Failure rate in operation

Radiation Lifetime

2022

Controls Electronics &

Mechatronics

R2E

- Expected lifetime in operation
- This approach has allowed developing a specific methodology for qualifying this type of system:
 - A. Zimmaro et al., 'Testing and Validation Methodology for a Radiation Monitoring Systems for Electronics in Particle Accelerators,' in proc. Transactions on Nuclear Science 2022
- Further tests performed at CHARM using the BatMon have shown that accelerated tests (High Flux) for system qualification, may hide some failure modes in case of microcontroller-based design.
- These limitations of accelerated testing for system-level
 operation will be presented in a new specific work at RADECS

System failure rate for specific HL-LHC environments and 1 year of operation using the Homogeneous Poisson Process.

- To characterize the radiation levels of specific areas in SPS, users requested measurements through the MCWG. However:
 - No power and data (Wordfip) network for these locations.
 - The time windows available for the measurements were generally very short, which means *low radiation levels* could be cumulated.

but these requirements couldn't be fulfilled by using the RadMons \rightarrow BatMon can!

13 BatMons have been installed in 2021 in 7 positions

Electronics &

Mechatronics

R2E

- ➢ No LoRa Coverage for these locations → maximum sampling rate (300 s) and use the system in passive mode (measurements saved in non-volatile memory)
- Lifetime of ~40 days leading to some devices turning off before the next access.

02/03/2022

Prévessin-Moën

SPS BA4

TSG 41

1 BatMon

TCC8

2 BatMon

Saint-Genis-Pouilly

2 BatMon

SPS BA2

SPS BA1 LHC P.A. 1.8

2 BatMon

SPS BA80

SITE DE PREVESSIN

SPS BA3

4 BatMon

SPS BA5

1 BatMon

Conclusions

- This presentation illustrated the process BatMon went through from the first prototype to operation.
 - The different steps of this process were discussed.
 - An **alternative** approach for system-level qualification was proposed
 - It allowed developing a new methodology for the qualification of radiation monitoring systems for accelerators
- The BatMon has been already deployed successfully in different SPS areas where the RadMon can not be used
- In 2022, the possible deployment of BatMon in the LHC will allow testing of the LoRa Wide Area coverage capability.
- Its testing in CHARM allowed to discover new limitation for system level qualification through the use of only accelerated test which will be the subject of a future study to be presented at RADECS 2022
- New R&D solutions to improve the performance of the platform are in the pipeline and will be tested during this year.

