Floating Gate Dosimeter

Matteo Brucoli BE-CEM-EPR

R2E Annual Meeting – 1-2 March, 2022 https://indico.cern.ch/event/1116677/

1. Overview and Applications

2. Enhanced Sensitivity Mode

3. Charge Yield Measurements

The Floating Gate Dosimeter (FGDOS)

- It is developed to measure **lonizing Radiation (TID)**
- Radiation sensor integrated in a System-On-Chip
 - Easy integration in more complex systems
- Linear radiation response
- High Sensitivity (resolution < 2 mGy)
- Works in mixed radiation field environment

Sensor	BIAS	Resolution [mGy]	Dose Range [kGy]
RadFET	5V	57 🔶 x 30	2.3
FGDOS	-	2	0.3

02/03/2022

Sensor Development → An Iterative Process

02/03/2022

Controls

Electronics & Mechatronics

R2E

Extremely flexible system

- Auto-recharge Control
 - Embedded Charge Pump
- Temperature Compensation Circuit
- Recharge counter

Configurable for different applications

- Active Mode
 - Highest resolution, High data rate
- Autonomous Mode
 - Low power consumption, low data rate
- Passive Mode
 - No power consumption, limited dose range

Wireless Battery-powered Radiation Monitoring System (BatMon)

- System Qualification (link)
- Radiation Measurements Campaign in the SPS accelerator

System Qualification (link)

FGDOS flying on the International Space Station

- esa
- FGDOS integrated in the CryptIC project (link)

	Dose rate [mGy/day]
Expected Dose Rate by ESA	0.24
Data processed by CERN	0.22

Sensitivity Enhancement Mode

Enhancing the sensitivity - Motivation

- **Sensitivity** is a key parameter for TID sensors employed in accelerator-like environments
- In the context of the R2E mitigation activities, radiation levels assessment is necessary to determine the harshness of a specific location hosting some electronic equipment
- The radiation environment characterization consists in **measuring** the radiation levels in a short time window and aims to **predict** the levels over several years of operations

Higher sensitivity allows to characterize locations with low radiation levels in shorter time

FGDOS Working principle

The radiation sensitive circuit consists in a transistor whose gate is overextended on the Field Oxide

Enhancement Mode - Working Principle

Enhancement Mode - Working Principle

Experimental Results

- The Sensitivity can be increased of 20%
- The larger V_{cap} , the larger the sensitivity increase
- The increase is stronger for larger TID
- This can be exploited for mitigate the sensitivity drift

Charge Yield Measurements

Charge Yield Measurements - Motivation

- Radiation-induced charge build-up in STI, dielectric spacers and buried oxides is the main cause of TIDrelated ICs' degradation and failure for *modern scaled technologies*
- Heavy lons affect oxides by inducing SEGR and microdose effects
- Charge generated in dosimeters
- The *charge yield* is a crucial param
- The charge yield has been estimated
 - Gate oxides as sensitive volume
 - Electric field > 1 MeV/cm
- In this work, the heavy-ion charge yi
 - Measure based on the electrons s
 - Independent from oxide trapped c
 - Low electric field (<0.1 MeV/cm)</p>

Experimental Setup – Closed Loop Reading System

• A dedicated prototype was used for this study

Mechatronics

R2E

- A closed loop system was designed to indirectly measure the floating gate voltage $\rm V_{FG}$
 - $V_{\rm G}$ is modulated to minimize the difference between the two currents
 - The two (identical) transistors work in the same condition, thus their degradation will be identical

- The system makes the measurement immune to any change in the transistor characteristics:
 - Interface traps buildup
 - Oxide trapped charge
 - Temperature effect

Analysis and Discussion / Heavy Ion Charge Yield

- The Charge Yield can be calculated as: $CY = \Delta Q_{FG} / Q_{gen}$
- The ΔV_{FG} can be converted into collected charge as: $\Delta Q_{FG} = C \cdot \Delta V_{FG}$
- The generated charge can be estimated by: $Q_{gen} = q \cdot g_0 \cdot Vol \cdot D$

Controls

Electronics &

R2E

Atomic Element	LET in Si [MeV cm ² / mg]	Charge Yield
¹³² Xe	44	7.0·10 ⁻³
⁴⁰ Ar	8	8.5·10 ⁻³
¹² C	0.24	11.2.10-3

 The Charge Yield monotonically increases with the electric field as a results of a lower recombination rate

Analysis and Discussion / ⁶⁰Co photons vs Heavy Ions

- The ⁶⁰Co charge yield results significantly higher than Heavy lon ones
 - \rightarrow Geminate vs Columnar recombination

Brucoli et al, submitted to IEEE TNS, 2021 Presented at RADECS 2021, Vienna

- FGDOS Applications
 - SPS measurements, Space RadMon, International Space Station
- Sensitivity Enhancement
 - Sensitivity increase up to 20%
 - Sensitivity drift mitigation
 - Inputs for future design
- Charge yield Measurements
 - Reference measure
 - Sensor design improvement and analytic model

Thank you for your attention!

Controls Electronics & Mechatronics

