SpaceRadMon, a radiation tolerant monitor device for cubesats

P. Gkountoumis, S. Danzeca, A. Zimmaro (BE-CEM-EPR)

R2E Annual Meeting – 1-2 March, 2022 https://indico.cern.ch/event/1116677/

- SpaceRadmon is a radiation monitor device with high TID resolution and low power consumption designed for CubeSat Satellites
- It was developed with the support of KT fund, profiting of the knowledge/experience gained from RadMon - system used for radiation monitoring in the harsh environment of LHC
- □ It is a flexible payload that can be embedded in several missions with little effort.
- □ Integrates specific sensors for space applications
- Attractive solution for space missions close collaboration with many companies and universities

Impact of payload development

 To design, develop, debug and validate a radiation tolerant system with a complex hardware architecture is a very complicated process and can last for years

SpaceRadMon V2 VS NG

What we succeeded:	Spaceradmon v2	SPACERADMON NG
Characteristics	V2	NG
Tolerance [Gy]	250 Gy	418 Gy
Power consumption	165 mW	63.5 mW Idle - 45.0 mW Sleep
Mass	60 g	57.5 g
Sensors	Radiation Field Effect Transistor	Floating Gate Dosimeter
Resolution (TID)	57 mGy	2 mGy
SRAMs	1 SEU and 2 SEL	4 SEUs (2 commercial and 2 custom with adjustable voltage)
Voltage monitoring	No	Yes
Temperature monitoring	Yes	Yes
Communication protocol	l ² C	l ² C

SpaceRadMon NG timeline

Tests at KU Leuven

KU LEUVEN

- Vibration tests using 1 dimension shaker at the KU Leuven Noise and Vibration research lab
 - Resonance survey, Sine/Random vibration, Sine burst, Shock tests
- Thermal stress tests using a Climatic/Temperature Testing Chamber
 - 3 x Thermal cycles from -30 to 60 °C (board not active)
 - 3 x Thermal cycles from -20 to 50 °C (board active)
- EMC tests
 - According to US military standard (MIL-STD-461G)
 - Scanned range: 10kHz 6GHz

R2E

❑ Results: No functional or mechanical failures

EMC test setup

CHARM irradiation tests by Skylabs

- □ TM/TC satellite communication sub-system (Nanolink)
- Easy payload integration
- □ Wireless data transmission using Software Defined Radio (SDR)
- □ Testing in collaboration of CERN, ESA and Skylabs

Motivation:

- System level testing (SpaceRadMon)
- Test High speed data wireless link
- Test both systems and validate the platform

CHARM irradiation tests by Skylabs

- 3 systems (SpaceRadMon NG + nanolink) in different positions and fluxes
- Mixed particle field (mainly dominated by Hadrons: proton, neutrons, pions).
- Data analysis almost finalized Very promising results
- Thanks to Skylab team and ESA: Gianluca Furano, Antonis Tavoularis and Claudio Monteleone

CHARM results

- Results compared with Batmon and RadMon (irradiated in parallel)
- R10 position Configuration CuOOIC

System	TID [Gy]	Difference
BatMon #2	3.51	
BatMon #3	3.48	
SpaceRadMon	3.16	9.97%

SpaceRadMon NG timeline

SpaceRadMon V2 arranged missions

01/03/2022

01/03/2022

SpaceRadMon NG arranged missions

- LEO Duration of 1-1.5 years
- Collaboration of CERN with KU Leuven and ISISpace
- Expected lunch date: end of 2022

GOMX-5

- LEO Duration of ~3 years
- Collaboration of CERN with GomSpace
- Expected lunch date: end 2022
- Agency: ESA

KU LEUVEN

GOMSPACE

SpaceRadMon EM-QM/FM distribution

Produced 30 V2 and 30 NG payloads

- Engineer/Qualification Models (EM/QM) are used for system validation
- Flying Model (FM) for system integration
- : (V2 version) Delivered 2 EM/QM, 1 FM to be delivered
- **ISISpace** : (NG version) Delivered 2 EM/QM and 1 FM
- **GOMX** : (NG Version) Delivered 1 EM/QM, 1 FM to be delivered
- Skylabs : Delivered 2 V2 and 4 NG EM/QM
- Provide detail Interface Control Document + continuous support to the users

Releas

SpaceRadMon NG Interface Control Document

> SpaceRadMon NG.ICD Version 1.0

Written by:		
60	Alessandro Zimmaro/Panagiotis Gkountoumis	
Checked by:		
Approved by:	5	
Distribution List-	8	

Conclusions

- This project is a result of the knowledge/experience gained all those years in radiation monitoring thanks to KT support
- □ Is a continuous effort to improve, characterize and qualify the system
 - hardware, firmware/software stability
 - SRAM calibration
 - TID/DDD/SEE
 - data analysis
- Provide new architecture and system level testing, validate mitigation techniques, characterize sensors and validate new components under radiation
- It is a flexible payload for Cubesat satellites, that can be embedded in several missions with little effort.
- □ Was tested extensively and was fully qualified for space missions

Thank you for your attention!

Sensor capabilities

□ FGDOS (linear radiation response – 2 mGy resolution)

□ KU Leuven SRAMs – Powered by adjustable voltage for higher sensitivity

01/03/2022

Radiaton test facilities

- PSI
- Mono-energetic proton beam
- 200 MeV 2.5x10⁸ p/cm²/sec

R2E

SEE, TID and DD

CHARM

- Mixed-particle field
- Ideal for system level testing
- Representative radiation fields
- SEE, TID and DD

60**Co**

- Ideal for system/component level testing
- TID

Space RadMon NG irradiation

SpaceRadMon NG test results

- Cross-section calculation for the 180nm SRAMs at PSI
- Test for failure mechanism and mitigations

R2E

0.25

0.2

(M) James (M) Ja

0.05

MCU awak

MCU awake

MCU av