Neutron measurements in medical LINACs through SRAMs

Matteo Cecchetto (CERN)

R. García Alía, G. Lerner on behalf of the R2E project

Lukas Gabrisch, Björn Poppe (**Oldenburg Univ**.) Johannes von Vangerow (**PTW**)

R2E Annual Meeting – 2-3 March 2022 https://indico.cern.ch/event/1116677/

Purpose of the tests

- Verify the capability of SRAM detectors employed at CERN to characterize the neutron environment of a medical LINAC: at the patient position and surrounding areas
- Assess the impact of different field sizes on the neutron flux that is generated
- Measure the thermal neutron flux with respect to highly energetic particles
- Compare measurements with Monte Carlo simulations/Bonner sphere measurements

Detectors – Single Event Upsets (SEUs)

SRAM Tester

1x ISSI 40 nm SRAM 3.3 V (IS61WV204816BLL-10TLI1650)

R2E

SEEs: response function SRAMs

Thermal neutron equivalent fluence

$$\varphi_{ThNeq} = \int \sqrt{\frac{0.025[eV]}{E[eV]}} \frac{d\varphi_n(E)}{dE} dE$$

HEHeq = High Energy Hadrons + Intermediate energy neutrons from 0.01 to 20 MeV, the device (SRAM) cross section is strongly energy-dependent

$$\varphi_{HEHeq} = \int_{0.01MeV}^{20MeV} w(E) \frac{d\varphi_n(E)}{dE} dE + \int_{20MeV}^{+\infty} \frac{d\varphi_{HEH}(E)}{dE} dE$$

In our case, φ_{HEHeq} is given by the first term, as no neutrons (or other hadrons) above 20 MeV are present in the medical LINAC environment

Response function of SRAM detectors

*M. Cecchetto et al., "0.1–10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments," in IEEE TNS

02/03/2022

R2E

Medical LINACs - setups

Neutron fluence measurements were performed in two different medical LINACs and the Device Under Test (DUT) was installed in different positions.

02/03/2022

LINAC	Photon energy (max) [MeV]	SSD100 Target	DUT posi respect to Z [cm]	ition with SSD100 Y [cm]
1 (Oldenburg)	15	-	-45	0
2 (PTB)	25	5x PMMA plates	0	40

- Main beam composed of photons but also parasitic neutrons that are produced by several elements
- SSD100 (source skin distance, 100 cm from source) is the reference position

6

 SRAMs fluence compared to that from FLUKA simulations (Oldenburg) and Bonner sphere measurements (PTB)

1) Elekta medical LINAC (Oldenburg)

R2E

02/03/2022

Side view

The accelerator provides:

- Photon beams: 6 and 15 MeV
- Field size (at 100 cm): from 0.5 cm² to 40 cm²
- Dose uncertainty: < 0.5%

Courtesy of L. Gabrisch, B. Poppe

7

SEU measurements – 15 MeV

The ISSI memory was irradiated at the closest test position (55 cm) with about 100 Gy per run to obtain a good SEU statistics

Run	Field size	Monitor	Dose	SEU
	[cm ²]	Units	[Gy]	ISSI
1	20x20	10k	100	108
2	4x4	10k	100	106
B4C	4x4	10k	100	105
B4C	20x20	10k	100	104

*100 Monitor units correspond to 1 Gy at SSD 90 in 10 cm of water with 10x10 cm2 photos beam size

SRAM under the beam

8

Field size does not impact the neutron fluence

02/03/2022

- A layer of boron carbide (B4C) was interposed between beam and detector:
 - \rightarrow no significant difference on the SEU counts \rightarrow no thermal neutrons in the main beam
 - \rightarrow Measured SEUs are due to neutrons above 1 eV, according to the HEHeq response

1) Neutron fluence and comparison to simulations

		Sim	nulations	Measurement
Distance	E (max)	ThNeq	HEHeq (ISSI)	HEHeq (ISSI)
[cm]	[MeV]	[cm ⁻² /Gy]	[cm ⁻² /Gy]	[cm ⁻² /Gy]
100	15	7.5x10 ⁵	3.2x10 ⁵	7.0x10 ⁵ ±20%

- Considering the measurement at SSD 55 cm we can estimate the HEHeq fluence at the isocentre (100 cm), with the strong assumption of 1/R² law.
- Preliminary simulations are compatible to the measurements within a factor ~2.
- For comparison a typical value in the LHC:

R2E

$$^{3}\varphi_{HEHeq}$$
 (LHC)= 10⁹ [cm⁻²/Gy]

FLUKA simulations^A - neutron spectrum

^AJ. Becker, "Simulation of neutron production at a medical linear accelerator", M. thesis, 2007

02/03/2022

^BD. Prelipcean "Conversion coefficients between different quantities measuring radiation levels at the LHC"

2) Medical LINAC (PTB)

SEU measurements - 25 MeV

Run	MU	Dose*	Field size	SEUs
		[Gy]	[cm ²]	2xISSI
1	25k	~370	0.5x0.5	99
2	25k	~370	10x10	105
B4C	25k	~370	0.5x0.5	72

*68 Monitor units correspond to 1 Gy at SSD 100 in water, $FS = 10 \text{ cm} \times 10 \text{ cm}, z = 10 \text{ cm}$

- The field size does not significantly impact the SEU rate (as proven also in the Elekta accelerator in Oldenburg)
- By covering the SRAMs with B4C the SEU rate decreased by 30%

 $\varphi_{HEHeq} = 4.1 \times 10^5 \pm 20\% \text{ [cm}^{-2}/\text{Gy]}$ $\varphi_{ThNeq} = 6.7 \times 10^5 \pm 24\% \text{ [cm}^{-2}/\text{Gy]}$

02/03/2022

NOTE: the dose is referred to as delivered to the isocentre and not on the position of the SRAMs

Fluences from Bonner sphere – SRAM comparison

Run	Е	Field size	HEHeq	ThNeq
TUT	[MeV]	[cm ²]	[cm ⁻² /Gy]	
SRAMs	25	0.5x0.5	4.1x10 ⁵ ±20%	6.7x10 ⁵ ±24%
Bonner S.	25	0.5x0.5	3.1x10 ⁵	6.1x10 ⁵

- HEHeq fluence agreement ~ 30%
- ThNeq fluence agreement ~ 10%!

*Bonner sphere spectrum by Johannes von Vangerow

R2E

02/03/2022

Neutron fluences different accelerators

- In Oldenburg the SRAM was directly on the beam while in PTB the SRAMs were outside the beam field.
- The measured neutron fluence in Oldenburg was coming from the main target (source), while in PTB neutrons (especially thermals!) were also produced by the PMMA plates.

R2E

Conclusions

- SRAMs were used to measure neutron fluence in medical LINAC environment.
 - Large Monitor Units (dose) required to accumulate enough statistics
- Field size does not impact the neutron fluence.
- LINAC in Oldenburg:
 - Fluence measurement under the main photon beam
 - No thermal neutrons
 - Preliminary simulations agreement HEHeq ~factor 2
- LINAC in PTB:
 - Fluence measurement outside the main photon beam + PMMA plates
 - Same order of magnitude for ThNeq and HEHeq fluence
 - Good ThNeq and HEHeq agreement with bonner sphere measurements

Thank you for your attention!

