Production schedule and cost estimation of the BINP full-scale prototype wiggler

Alexey Bragin, Budker Institute of Nuclear Physics, Novosibirsk, Russia

Tested short prototype. Review.

Short prototype of NbTi wiggler was tested in August 2010.

Its parameters are:

Period – 50 mm

Gap – 20 mm

Peak magnetic field – 2.5 T

Ratio Iop/Icr – 95%

Number of turns – 341

SC cable with high NbTi/Cu

ratio – 1.5 (0.72 - typically)

Main parameters of the NbTi ANKA wiggler

- Period 56 mm
- ◆ Total cryostat length 2.5 m
- Magnet length 2 m
- Peak magnetic field 3.0 T
- Pole gap 18 mm
- Beam aperture 13 mm
- ◆ Ratio Iop/Icr ~ 83%
- Num. of vertical coils in two halves 142
- Easy disassembling cryostat in two weeks
- Proposed wiggler cooling saves the gap space

Design of the wiggler coils

Grove sizes - 18 mm x 18 mm

Number of turns – 333

Number of layers - 18

Current - 600 A

Magnetic field on coils – 5.3 T

Scope of work

- 1. Magnet system (iron, coils) manufacturing
- 2. Cryostat manufacturing
- 3. Wiggler training in LHe cryostat at 4.3. K
- 4. Tests of the wiggler in the cryostat (60 W on the beam tube?)
- 5. Magnetic field measurements
- 6. Assembling and testing the wiggler in ANKA

Schedule

	2011												2012											
Items	J	F	М	A	M	J	J	Α	s	0	N	D	J	F	М	Α	М	J	J	Α	s	0	N	D
1. Contract signed																								
2. Manufacturing drawings																								
3. Materials and SC cable																								
4. BINP workshop												cryostat												
5. Winding tools																								
6. Coils winding and impregnating																								
7. Assembling and training																								
8. Cryostat assembling and testing																								
9. Wiggler at ANKA																								
10. Wiggler installed																								

Equipment

- Current leads HTSC, 1.1 kA ?
- ◆ Power supplies (1.1 kA, ~20 A correction) ?
- Quench protection electronics ?
- Magic fingers correction ?
- ◆ Temperature sensors ?
- Vacuum pumps, gauges ?

Cost estimation

- BINP workshop estimation according to calculated hours of work ~ \$10/h. Cryostat, magnet ~ 20 000 hours. So, BINP workshop \$200 000
- 2. Beam tube \$50 000
- SC cable, $(3 \text{ euros/m}, \text{ N. Mezentsev}^*)$ \$105 000
- The total cost of the SC magnet can be estimated according to (**) \$950 000 without cryogenics
- The final price should be approved by BINP administrators after discussing the scope of work and supplying equipment.

^{*)} Previously, I thought that the cable costs 2 euros/m.

^{**)} M. Green, B. Strauss " ", IEEE Transactions on Applied Superconductivity, 2008

Conclusions

- BINP is ready to start working on the new prototype of the CLIC wiggler which will be installed in ANKA.
- Technical specification should be discussed.
- The preliminary price is stated with an accuracy 20 %.