SCETlib Updated Level 3 Results.

Frank Tackmann

Deutsches Elektronen-Synchrotron

EWWG, January 27, 2022

in collaboration with Georgios Billis, Markus Ebert, Johannes Michel

Recall: Small- p_T Power Expansion.

Expand in p_T (more precisely in powers of p_T/Q where here $Q \equiv \sqrt{q^2 = m_{\ell\ell}}$) $d\sigma$ $\frac{{\rm d}\sigma}{{\rm d}p_T} = \delta(p_T) + \alpha_s \Bigl[\frac{{\rm ln}\, p_T}{p_T}$ $\frac{\mathrm{n}\,p_T}{p_T}\,\,+\frac{1}{p_T}$ $\frac{1}{p_T}$ + $\delta(p_T)$ + f $\left. \frac{\text{nons}}{1}(p_T) \right|$ $+\alpha_s^2\Big[\frac{\ln^3\!p_T}{\rho_T}$ $\frac{\hbox{h}^3 p_T}{p_T} + \frac{\hbox{h}^2 p_T}{p_T}$ $\frac{\ln p_T}{p_T} + \frac{\ln p_T}{p_T}$ $\frac{1}{p_T} \frac{p_T}{p_T} + \frac{1}{p_T}$ $\frac{1}{p_T} + \delta(p_T) + f_2^{\rm nons}(p_T) \Big]$ + + . . . $\sim (1/p_T) \,\big[$ $\mathcal{O}(1)$ $+ \mathcal{O}(p_T)$

- "singular" or "leading power"
	- \blacktriangleright To be resummed
- "nonsingular" or "subleading power"
	- Suppressed by relative p_T^2/m_V^2
	- \blacktriangleright To be supplied by matching to full FO

Matching to Fixed Order.

σ resum and σ nons are *separately* scale independent (args show residual dep.)

- In particular, $d\sigma$ ^{nons} *does not* depend on resummation scales and does not affect uncertainties of $\mathrm{d}\sigma^\mathrm{resum}$
- For $p_T \to Q$: $\mathrm{d}\sigma^\mathrm{resum} \to \mathrm{d}\sigma^{(0)}$
	- **P** Reproduces $d\sigma^{\text{FO}}$ *exactly* at any given order

(i.e. resummation should not induce any rogue higher-order corrections, because in general they would be unphysical and can be arbitrarily large)

- Achieved by using profile scales: $\mu_i(p_T), \nu_i(p_T) \rightarrow \mu_{\rm FO}$ for $p_T \rightarrow Q$ which smoothly and intrinsically turn off resummation
- Relation to benchmark levels
	- Level 1: $d\sigma^{resum}$ (canonical scales)
	- Level 2: $d\sigma^{resum}$ (profile scales)
	- Level 3: $d\sigma^{resum}$ (profile scales) + $d\sigma^{nons}(\mu_{\rm FO})$

Check against FO results from DYTurbo.

- \bullet Full $d\sigma$ from DYTurbo
- Singular $d\sigma^{(0)}$ from SCETlib
	- $\blacktriangleright \; p_T \, \mathrm{d}\sigma^{(0)}/\mathrm{d}p_T \sim \ln^n p_T + \mathrm{const} \to \mathrm{g}$ rows/constant on log-log plot
- Nonsingular $d\sigma d\sigma^{(0)}$ is indeed power-suppressed
	- ► p_T d $\sigma^{\rm nons}/\mathrm{d}p_T \sim p_T^2 \to$ must vanish with negative slope on log-log plot
	- \triangleright Strong check and best (only) way to identify (small) mismatches

$$
\mu_H = \nu_B = \mu_{\text{FO}} = Q
$$
\n
$$
\mu_B, \mu_S, \nu_S = \mu_{\text{FO}} f_{\text{prof}} \left[\frac{p_T}{Q}, \frac{1}{Q} \mu_* \left(\frac{b_0}{b_T}, \mu_i^{\text{min}} \right) \right] \begin{cases} = b_0/b_T & p_T \ll Q \\ \to \mu_{\text{FO}} \equiv \mu_R & p_T \to Q \end{cases}
$$
\n
$$
\mu_f = \mu_F f_{\text{run}} \left[\frac{p_T}{Q}, \frac{1}{Q} \mu_* \left(\frac{b_0}{b_T}, \mu_f^{\text{min}} \right) \right] \begin{cases} = b_0/b_T & p_T \ll Q \\ \to \mu_F & p_T \to Q \end{cases}
$$

f_{prof} steers transition from resummation on \rightarrow resummation off

- Turn-off for $p_T \to Q$ *does not* alter canonical res. at $p_T \ll Q$
	- **Figure 1** Transition driven by p_T/Q (b_T) is just means to an end, we want to predict physical p_T spectrum not the b_T spectrum)
	- \blacktriangleright Transition points are based on relative size of leading-power vs. nonsingular (power) corrections
	- \triangleright Their variation yields Δ_{match}

$$
\mu_H = \nu_B = \mu_{\text{FO}} = Q
$$
\n
$$
\mu_B, \mu_S, \nu_S = \mu_{\text{FO}} f_{\text{prof}} \left[\frac{p_T}{Q}, \frac{1}{Q} \mu_* \left(\frac{b_0}{b_T}, \mu_i^{\text{min}} \right) \right] \begin{cases} = b_0/b_T & p_T \ll Q \\ \to \mu_{\text{FO}} \equiv \mu_R & p_T \to Q \end{cases}
$$
\n
$$
\mu_f = \mu_F f_{\text{run}} \left[\frac{p_T}{Q}, \frac{1}{Q} \mu_* \left(\frac{b_0}{b_T}, \mu_f^{\text{min}} \right) \right] \begin{cases} = b_0/b_T & p_T \ll Q \\ \to \mu_F & p_T \to Q \end{cases}
$$

Nonpert. cutoff prescription for $b_0/b_T\lesssim 1\,\text{GeV}$ (freeze-out, local b^* , global b^*)

- New: Dedicated μ_* prescription
	- Similar to local b^* except each scale has its own cutoff

$$
\mu_B^{\min} = \mu_S^{\min} = 1 \text{ GeV} \qquad \text{(min scale appearing in } \alpha_s),
$$

\n
$$
\nu_S^{\min} = 0 \qquad \text{(no cutoff needed for rapidity scale)},
$$

\n
$$
\mu_f^{\min} = 1.65 \text{ GeV} \qquad \text{(min scale of PDF, use } Q_0 \text{ of NNPDF3.1)}
$$

And cutoffs are maintained (kept unchanged) under any scale variations

$$
\mu_H = \nu_B = \mu_{\rm FO} = Q
$$
\n
$$
\mu_B, \mu_S, \nu_S = \mu_{\rm FO} f_{\rm prof} \Big[\frac{p_T}{Q}, \frac{1}{Q} \mu_* \Big(\frac{b_0}{b_T}, \mu_i^{\rm min} \Big) \Big] \begin{cases} = b_0/b_T & p_T \ll Q \\ \to \mu_{\rm FO} \equiv \mu_R & p_T \to Q \end{cases}
$$
\n
$$
\mu_f = \mu_F f_{\rm run} \Big[\frac{p_T}{Q}, \frac{1}{Q} \mu_* \Big(\frac{b_0}{b_T}, \mu_f^{\rm min} \Big) \Big] \begin{cases} = b_0/b_T & p_T \ll Q \\ \to \mu_F & p_T \to Q \end{cases}
$$

Perturbative uncertainties via scale variations

- "Fixed-order" Δ_{FO} : Max envelope of varying μ_{FO} by factor of 2
	- \blacktriangleright Keeps all resummed scale ratios invariant, hence the name
	- **IF** Transitions into μ_B variation for $p_T \to Q$
- "Resummation" Δ_{resum} : Max envelope of varying $\mu_B, \nu_B, \mu_S, \nu_S$
	- \triangleright 36 combinations that all possible scale ratios get probed and changed by factor 2 (but not 4) for $p_T \ll Q$ without changing $p_T \to Q$

$$
\mu_H = \nu_B = \mu_{\rm FO} = Q
$$
\n
$$
\mu_B, \mu_S, \nu_S = \mu_{\rm FO} f_{\rm prof} \Big[\frac{p_T}{Q}, \frac{1}{Q} \mu_* \Big(\frac{b_0}{b_T}, \mu_i^{\rm min} \Big) \Big] \begin{cases} = b_0/b_T & p_T \ll Q \\ \to \mu_{\rm FO} \equiv \mu_R & p_T \to Q \end{cases}
$$
\n
$$
\mu_f = \mu_F f_{\rm run} \Big[\frac{p_T}{Q}, \frac{1}{Q} \mu_* \Big(\frac{b_0}{b_T}, \mu_f^{\rm min} \Big) \Big] \begin{cases} = b_0/b_T & p_T \ll Q \\ \to \mu_F & p_T \to Q \end{cases}
$$

Perturbative uncertainties via scale variations

- \bullet "PDF/DGLAP" Δ_f . Max envelope of varying μ_f by factor of 2
	- \triangleright Probes unc. due to universal DGLAP evolution (at actual PDF scale)
	- Explicitly separated out now (was previously tied to μ_B)
		- \rightarrow Together with μ_f^{\min} largely avoids previously seen unphysical oscillations
	- **IF** Transitions into μ_F variation for $p_T \to Q$
	- Note: This leads to adding in quadrature separate max-envelopes of μ_F and μ_B variations also in FO limit

 \rightarrow Actually the more sensible thing to do than usual envelope of 7-point variations

• Previously: Via simple cutoff variations, crude and not ideal

- \blacktriangleright Relies on size of leftover, unresummed perturbative logs
- Directly depends on perturbative order
- New: Use a basic nonperturbative model
	- ► Switch to quartic μ_* prescription $\mu_*(\mu, \mu_{\min}) = (\mu^4 + \mu_{\min}^4)^{1/4}$ \rightarrow Avoids inducing artificial quadratic OPE coefficient [see e.g. Scimemi, Vladimirov arXiv:1609.06047; Ebert, Michel, Stewart, Sun arXiv:2201.07237]
	- \triangleright Otherwise current central-value predictions are not affected (i.e. model is turned off at central parameter values)
	- \triangleright Use reasonably generous model parameter variations to estimate Δ_{np}

Results.

Level 2

• Excellent coverage/convergence (except in pure FO region)

Here: Total uncertainty = $\sqrt{\Delta_{\rm FO}^2+\Delta_f^2+\Delta_{\rm resum}^2+\Delta_{\rm match}^2}$

Results.

Level 3

• Excellent coverage/convergence (except in pure FO region)

Here: Total uncertainty = $\sqrt{\Delta_{\rm FO}^2+\Delta_f^2+\Delta_{\rm resum}^2+\Delta_{\rm match}^2}$

Results.

Level 3 (wide)

• Excellent coverage/convergence (except in pure FO region)

Here: Total uncertainty = $\sqrt{\Delta_{\rm FO}^2+\Delta_f^2+\Delta_{\rm resum}^2+\Delta_{\rm match}^2}$

Breakdown of Uncertainties: Level 2.

Breakdown of Uncertainties: Level $2 \rightarrow$ Level 3.

Level 2 (wide)

• Matching only affects uncertainties beyond $p_T \geq 50 \,\text{GeV}$ (as it should)

Breakdown of Uncertainties: Level $2 \rightarrow$ Level 3.

Level 3 (wide)

• Matching only affects uncertainties beyond $p_T \geq 50 \,\text{GeV}$ (as it should)

Additional Slides

Factoriz[at](#page-16-0)ion and Resummation at Leading Power.

Leading-power terms factorize into hard, collinear, and soft contributions (with $Q \equiv \sqrt{q^2}$ and $x_{a,b} \equiv (Q/E_{\rm cm}) e^{\pm Y})$

$$
\begin{aligned} \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}p_T^2} &= \sum_{a,b} H_{ab}(Q^2,\mu)\times [B_aB_bS](Q^2,x_a,x_b,\vec{p}_T,\mu) \\ [B_aB_bS] &= \int \! \mathrm{d}^2 \vec{k}_a\, \mathrm{d}^2 \vec{k}_b\, \mathrm{d}^2 \vec{k}_s\, \delta^{(2)}(\vec{p}_T-\vec{k}_a-\vec{k}_b-\vec{k}_s) \\ &\times\, B_a(x_a,\vec{k}_a,\mu,\nu/Q)\, B_b(x_b,\vec{k}_b,\mu,\nu/Q)\, S(\vec{k}_s,\mu,\nu) \end{aligned}
$$

• Most general forms with no hard-coded choices yet (and completely equivalent)

Factoriz[at](#page-16-0)ion and Resummation at Leading Power.

Leading-power terms factorize into hard, collinear, and soft contributions (with $Q \equiv \sqrt{q^2}$ and $x_{a,b} \equiv (Q/E_{\rm cm}) e^{\pm Y})$

$$
\frac{d\sigma^{(0)}}{dQdYdp_T^2} = \sum_{a,b} H_{ab}(Q^2, \mu) \times [B_a B_b S](Q^2, x_a, x_b, \vec{p}_T, \mu)
$$

\n
$$
[B_a B_b S] = \int d^2 \vec{k}_a d^2 \vec{k}_b d^2 \vec{k}_s \delta^{(2)}(\vec{p}_T - \vec{k}_a - \vec{k}_b - \vec{k}_s)
$$

\n
$$
\times B_a(x_a, \vec{k}_a, \mu, \nu/Q) B_b(x_b, \vec{k}_b, \mu, \nu/Q) S(\vec{k}_s, \mu, \nu)
$$

\n
$$
\equiv \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i\vec{b}_T \cdot \vec{p}_T} \tilde{B}_a(x_a, b_T, \mu, \nu/Q) \tilde{B}_b(x_b, b_T, \mu, \nu/Q) \tilde{S}(b_T, \mu, \nu)
$$

\n
$$
\equiv \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i\vec{b}_T \cdot \vec{p}_T} \tilde{f}_a(x_a, b_T, \mu, \zeta_a) \tilde{f}_b(x_b, b_T, \mu, \zeta_b)
$$

\n(where $\zeta_{a,b} \propto \omega_{a,b}^2$ with $\zeta_a \zeta_b = Q^4$ plays the role of ν)

• Most general forms with no hard-coded choices yet (and completely equivalent)

Schematic Resummation St[r](#page-16-0)ucture.

$$
\mathrm{d}\sigma^{(0)}=H(Q,\mu)\times B(p_T,\mu,\nu/Q)^2\otimes S(p_T,\mu,\nu/p_T)
$$

$$
\ln^2\frac{p_T}{Q}=2\ln^2\frac{Q}{\mu}+2\ln\frac{p_T}{\mu}\ln\frac{\nu}{Q}+\ln\frac{p_T}{\mu}\ln\frac{\mu_{PT}}{\nu^2}
$$

• For generic μ , ν , each function contains (potentially large) logs

• Resummation follows from solving RGEs, and evolving each function from some starting scales μ_i, ν_i to common arbitrary μ, ν

> $H(u) = H(u_H) \times U_H(u_H, u)$ $B(\mu,\nu) = B(\mu_B,\nu_B) \otimes U_B(\mu_B,\nu_B;\mu,\nu)$ $S(\mu, \nu) = S(\mu_S, \nu_S) \otimes U_B(\mu_S, \nu_S; \mu, \nu)$

- I Dependence on overall arbitrary µ, ν cancels *exactly at each order* (it must do so = RGE consistency or path independence)
- ▶ This is *not* SCET specific, it is exactly how CSS formula arises from solution of Collins-Soper equation

Schematic Resummation St[r](#page-16-0)ucture.

 $\mathrm{d}\sigma^{(0)}=H(\mu_H)\times U_H(\mu_H,\mu)\times \left[B(\mu_B,\nu_B)\otimes U_B(\mu_B,\nu_B;\mu,\nu)\right]^2$ $\otimes S(\mu_S, \nu_S) \otimes U_B(\mu_S, \nu_S; \mu, \nu)$

• *Boundary conditions* $H(\mu_H)$, $B(\mu_B, \nu_B)$, $S(\mu_S, \nu_S)$ can (must) be calcluated in (log-free) fixed order, so at

- Choice of boundary scales does matter
	- \triangleright Determine precise form of resummed logarithms ("resummation" scales)
	- **In Their dependence** *only cancels to the fixed order* of the boundary conditions
- Solving the complete RGE system for p_T distribution is (surprisingly) difficult
	- Exact distributional solution in \vec{p}_T space is equivalent (up to different boundary terms) to solving RGE in b_T space with *canonical* b_T *scales* $~\left(b_0=2e^{-\gamma_E}\right)$

 $\mu_H = Q$, $\mu_B = b_0/b_T$, $\nu_B = Q$, $\mu_S = \mu_\nu = \nu_S = b_0/b_T$

- Quite nontrivial statement, proven in [Ebert, FT; 1611.08610]
- \blacktriangleright This corresponds to canonical logs (level 1)
- **O** Once canonical scales are inserted, the dependence on μ_i, ν_i "disappears"
	- \blacktriangleright But important to remember that this was a choice
	- **I** Typical CSS implementations are (roughly) equivalent to only retaining μ_H dependence

(In addition, μ_B is reintroduced by reexpanding $\alpha_s(\mu_H)$ in terms of $\alpha_s(\mu_B)$, which typically leads to violating RGE consistency unless $\mu_H = \mu_B$)

Complete RGE System.

In virtuality scale μ

$$
\mu \frac{\mathrm{d}H(Q,\mu)}{\mathrm{d}\mu} = \gamma_H(Q,\mu) H(Q,\mu)
$$

$$
\mu \frac{\mathrm{d}B(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_B(\mu,\nu) B(\vec{p}_T,\mu,\nu)
$$

$$
\mu \frac{\mathrm{d}S(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_S(\mu,\nu) S(\vec{p}_T,\mu,\nu)
$$

and rapidity scale ν

$$
\nu \frac{\mathrm{d}B(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} = -\frac{1}{2} \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, B(\vec{p}_T - \vec{k}_T, \mu, \nu) \n\nu \frac{\mathrm{d}S(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} = \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, S(\vec{p}_T - \vec{k}_T, \mu, \nu) \n\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \gamma_\nu(\vec{k}_T, \mu) = \nu \frac{\mathrm{d}}{\mathrm{d}\nu} \gamma_S(\mu, \nu) \delta(\vec{k}_T) = -4 \Gamma_{\text{cusp}}[\alpha_s(\mu)] \delta(\vec{k}_T)
$$

- **•** plus evolution equations for $\alpha_s(\mu)$ and PDFs(μ)
- plus consistency relations between different anomalous dimensions γ_i which encode RGE consistency