SCETlib Updated Level 3 Results.

Frank Tackmann

Deutsches Elektronen-Synchrotron

EWWG, January 27, 2022

in collaboration with Georgios Billis, Markus Ebert, Johannes Michel

Recall: Small- p_T Power Expansion.

Expand in p_T (more precisely in powers of p_T/Q where here $Q \equiv \sqrt{q^2} = m_{\ell\ell}$) $\frac{d\sigma}{dp_T} = \delta(p_T) + \alpha_s \Big[\frac{\ln p_T}{p_T} + \frac{1}{p_T} + \delta(p_T) + f_1^{nons}(p_T) \Big] + \alpha_s^2 \Big[\frac{\ln^3 p_T}{p_T} + \frac{\ln^2 p_T}{p_T} + \frac{\ln p_T}{p_T} + \frac{1}{p_T} + \delta(p_T) + f_2^{nons}(p_T) \Big] + \vdots \qquad \vdots \qquad \vdots \qquad \ddots + \dots \Big] - (1/p_T) \Big[\qquad \mathcal{O}(1) + \mathcal{O}(p_T) \Big]$

- "singular" or "leading power"
 - To be resummed
- "nonsingular" or "subleading power"
 - Suppressed by relative p_T^2/m_V^2
 - To be supplied by matching to full FO

Matching to Fixed Order.

σ^{resum} and σ^{nons} are separately scale independent (args show residual dep.)

- In particular, dσ^{nons} does not depend on resummation scales and does not affect uncertainties of dσ^{resum}
- For $p_T \to Q$: $\mathrm{d}\sigma^{\mathrm{resum}} \to \mathrm{d}\sigma^{(0)}$
 - Reproduces dσ^{FO} exactly at any given order
 (i.e. resummation should not induce any rogue higher-order corrections, because in general they would be unphysical and can be arbitrarily large)
 - ► Achieved by using profile scales: $\mu_i(p_T), \nu_i(p_T) \rightarrow \mu_{\rm FO}$ for $p_T \rightarrow Q$ which smoothly and intrinsically turn off resummation
- Relation to benchmark levels
 - Level 1: $d\sigma^{resum}$ (canonical scales)
 - Level 2: $d\sigma^{resum}$ (profile scales)
 - Level 3: $d\sigma^{resum}$ (profile scales) + $d\sigma^{nons}(\mu_{FO})$

Check against FO results from DYTurbo.

- Full dσ from DYTurbo
- Singular $d\sigma^{(0)}$ from SCETlib
 - ▶ $p_T \, \mathrm{d}\sigma^{(0)}/\mathrm{d}p_T \sim \ln^n p_T + \mathrm{const} \to \mathrm{grows/constant}$ on log-log plot
- Nonsingular $d\sigma d\sigma^{(0)}$ is indeed power-suppressed
 - ▶ $p_T \, \mathrm{d}\sigma^{\mathrm{nons}}/\mathrm{d}p_T \sim p_T^2
 ightarrow$ must vanish with negative slope on log-log plot
 - Strong check and best (only) way to identify (small) mismatches

$$\mu_{H} = \nu_{B} = \mu_{FO} = Q$$

$$\mu_{B}, \mu_{S}, \nu_{S} = \mu_{FO} f_{\text{prof}} \Big[\frac{p_{T}}{Q}, \frac{1}{Q} \mu_{*} \Big(\frac{b_{0}}{b_{T}}, \mu_{i}^{\min} \Big) \Big] \begin{cases} = b_{0}/b_{T} & p_{T} \ll Q \\ \rightarrow \mu_{FO} \equiv \mu_{R} & p_{T} \rightarrow Q \end{cases}$$

$$\mu_{f} = \mu_{F} f_{\text{run}} \Big[\frac{p_{T}}{Q}, \frac{1}{Q} \mu_{*} \Big(\frac{b_{0}}{b_{T}}, \mu_{f}^{\min} \Big) \Big] \begin{cases} = b_{0}/b_{T} & p_{T} \ll Q \\ \rightarrow \mu_{F} & p_{T} \rightarrow Q \end{cases}$$

$f_{ m prof}$ steers transition from resummation on ightarrow resummation off

- Turn-off for $p_T \rightarrow Q$ does not alter canonical res. at $p_T \ll Q$
 - Transition driven by p_T/Q (b_T is just means to an end, we want to predict physical p_T spectrum not the b_T spectrum)
 - Transition points are based on relative size of leading-power vs. nonsingular (power) corrections
 - Their variation yields Δ_{match}

$$\mu_{H} = \nu_{B} = \mu_{FO} = Q$$

$$\mu_{B}, \mu_{S}, \nu_{S} = \mu_{FO} f_{\text{prof}} \Big[\frac{p_{T}}{Q}, \frac{1}{Q} \mu_{*} \Big(\frac{b_{0}}{b_{T}}, \mu_{i}^{\min} \Big) \Big] \begin{cases} = b_{0}/b_{T} & p_{T} \ll Q \\ \rightarrow \mu_{FO} \equiv \mu_{R} & p_{T} \rightarrow Q \end{cases}$$

$$\mu_{f} = \mu_{F} f_{\text{run}} \Big[\frac{p_{T}}{Q}, \frac{1}{Q} \mu_{*} \Big(\frac{b_{0}}{b_{T}}, \mu_{f}^{\min} \Big) \Big] \begin{cases} = b_{0}/b_{T} & p_{T} \ll Q \\ \rightarrow \mu_{F} & p_{T} \rightarrow Q \end{cases}$$

Nonpert. cutoff prescription for $b_0/b_T \lesssim 1\,{
m GeV}$ (freeze-out, local b^* , global b^*)

- New: Dedicated μ_* prescription
 - Similar to local b* except each scale has its own cutoff
 - $$\begin{split} \mu_B^{\min} &= \mu_S^{\min} = 1 \, \text{GeV} & (\text{min scale appearing in } \alpha_s) \,, \\ \nu_S^{\min} &= 0 & (\text{no cutoff needed for rapidity scale}) \,, \\ \mu_f^{\min} &= 1.65 \, \text{GeV} & (\text{min scale of PDF, use } Q_0 \text{ of NNPDF3.1}) \end{split}$$

And cutoffs are maintained (kept unchanged) under any scale variations

$$\mu_{H} = \nu_{B} = \mu_{FO} = Q$$

$$\mu_{B}, \mu_{S}, \nu_{S} = \mu_{FO} f_{\text{prof}} \left[\frac{p_{T}}{Q}, \frac{1}{Q} \mu_{*} \left(\frac{b_{0}}{b_{T}}, \mu_{i}^{\min} \right) \right] \begin{cases} = b_{0}/b_{T} & p_{T} \ll Q \\ \rightarrow \mu_{FO} \equiv \mu_{R} & p_{T} \rightarrow Q \end{cases}$$

$$\mu_{f} = \mu_{F} f_{\text{run}} \left[\frac{p_{T}}{Q}, \frac{1}{Q} \mu_{*} \left(\frac{b_{0}}{b_{T}}, \mu_{f}^{\min} \right) \right] \begin{cases} = b_{0}/b_{T} & p_{T} \ll Q \\ \rightarrow \mu_{F} & p_{T} \rightarrow Q \end{cases}$$

Perturbative uncertainties via scale variations

- "Fixed-order" Δ_{FO} : Max envelope of varying μ_{FO} by factor of 2
 - Keeps all resummed scale ratios invariant, hence the name
 - Transitions into μ_R variation for $p_T
 ightarrow Q$
- "Resummation" Δ_{resum} : Max envelope of varying $\mu_B, \nu_B, \mu_S, \nu_S$
 - ▶ 36 combinations that all possible scale ratios get probed and changed by factor 2 (but not 4) for $p_T \ll Q$ without changing $p_T \rightarrow Q$

$$\mu_{H} = \nu_{B} = \mu_{FO} = Q$$

$$\mu_{B}, \mu_{S}, \nu_{S} = \mu_{FO} f_{\text{prof}} \Big[\frac{p_{T}}{Q}, \frac{1}{Q} \mu_{*} \Big(\frac{b_{0}}{b_{T}}, \mu_{i}^{\min} \Big) \Big] \begin{cases} = b_{0}/b_{T} & p_{T} \ll Q \\ \rightarrow \mu_{FO} \equiv \mu_{R} & p_{T} \rightarrow Q \end{cases}$$

$$\mu_{f} = \mu_{F} f_{\text{run}} \Big[\frac{p_{T}}{Q}, \frac{1}{Q} \mu_{*} \Big(\frac{b_{0}}{b_{T}}, \mu_{f}^{\min} \Big) \Big] \begin{cases} = b_{0}/b_{T} & p_{T} \ll Q \\ \rightarrow \mu_{F} & p_{T} \rightarrow Q \end{cases}$$

Perturbative uncertainties via scale variations

- "PDF/DGLAP" Δ_f : Max envelope of varying μ_f by factor of 2
 - Probes unc. due to universal DGLAP evolution (at actual PDF scale)
 - Explicitly separated out now (was previously tied to μ_B)
 - \rightarrow Together with μ_f^{\min} largely avoids previously seen unphysical oscillations
 - Transitions into μ_F variation for $p_T o Q$
 - Note: This leads to adding in quadrature separate max-envelopes of μ_F and μ_R variations also in FO limit

ightarrow Actually the more sensible thing to do than usual envelope of 7-point variations

• Previously: Via simple cutoff variations, crude and not ideal

- Relies on size of leftover, unresummed perturbative logs
- Directly depends on perturbative order
- New: Use a basic nonperturbative model
 - Switch to quartic μ_∗ prescription μ_∗(μ, μ_{min}) = (μ⁴ + μ⁴_{min})^{1/4} → Avoids inducing artificial quadratic OPE coefficient [see e.g. Scimemi, Vladimirov arXiv:1609.06047; Ebert, Michel, Stewart, Sun arXiv:2201.07237]
 - Otherwise current central-value predictions are not affected (i.e. model is turned off at central parameter values)
 - Use reasonably generous model parameter variations to estimate Anp

Results.

Excellent coverage/convergence (except in pure FO region)

• Here: Total uncertainty = $\sqrt{\Delta_{FO}^2 + \Delta_f^2 + \Delta_{resum}^2 + \Delta_{match}^2}$

Results.

Level 3

• Excellent coverage/convergence (except in pure FO region)

• Here: Total uncertainty = $\sqrt{\Delta_{FO}^2 + \Delta_f^2 + \Delta_{resum}^2 + \Delta_{match}^2}$

Results.

Level 3 (wide)

Excellent coverage/convergence (except in pure FO region)

• Here: Total uncertainty = $\sqrt{\Delta_{FO}^2 + \Delta_f^2 + \Delta_{resum}^2 + \Delta_{match}^2}$

Breakdown of Uncertainties: Level 2.

Frank Tackmann (DESY)

2022-01-27 12/14

Breakdown of Uncertainties: Level 2 \rightarrow Level 3.

• Matching only affects uncertainties beyond $p_T \gtrsim 50 \, {
m GeV}$ (as it should)

Breakdown of Uncertainties: Level 2 \rightarrow Level 3.

Level 3 (wide)

• Matching only affects uncertainties beyond $p_T \gtrsim 50~{
m GeV}$ (as it should)

Additional Slides

Factorization and Resummation at Leading Power.

Leading-power terms factorize into hard, collinear, and soft contributions (with $Q \equiv \sqrt{q^2}$ and $x_{a,b} \equiv (Q/E_{
m cm})e^{\pm Y}$)

$$egin{aligned} &rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}p_T^2} &= \sum_{a,b} H_{ab}(Q^2,\mu) imes [B_aB_bS](Q^2,x_a,x_b,ec{p}_T,\mu) \ & [B_aB_bS] &= \int\!\mathrm{d}^2ec{k}_a\,\mathrm{d}^2ec{k}_b\,\mathrm{d}^2ec{k}_s\,\delta^{(2)}(ec{p}_T-ec{k}_a-ec{k}_b-ec{k}_s) \ & imes B_a(x_a,ec{k}_a,\mu,
u/Q)\,B_b(x_b,ec{k}_b,\mu,
u/Q)\,S(ec{k}_s,\mu,
u) \end{aligned}$$

Most general forms with no hard-coded choices yet (and completely equivalent)

Factorization and Resummation at Leading Power.

Leading-power terms factorize into hard, collinear, and soft contributions (with $Q \equiv \sqrt{q^2}$ and $x_{a,b} \equiv (Q/E_{
m cm})e^{\pm Y}$)

Most general forms with no hard-coded choices yet (and completely equivalent)

Schematic Resummation Structure.

$$\mathrm{d}\sigma^{(0)} = H(Q,\mu) imes B(p_T,\mu,
u/Q)^2 \otimes S(p_T,\mu,
u/p_T)$$
 $\mathrm{ln}^2 rac{p_T}{Q} = \ 2 \,\mathrm{ln}^2 rac{Q}{\mu} \ + \ 2 \,\mathrm{ln} rac{p_T}{\mu} \,\mathrm{ln} rac{
u}{Q} \ + \ \mathrm{ln} rac{p_T}{\mu} \,\mathrm{ln} rac{\mu}{
u^2}$

- For generic μ , ν , each function contains (potentially large) logs
- Resummation follows from solving RGEs, and evolving each function from some starting scales μ_i, ν_i to common arbitrary μ, ν

 $H(\mu) = H(\mu_H) \times U_H(\mu_H, \mu)$ $B(\mu, \nu) = B(\mu_B, \nu_B) \otimes U_B(\mu_B, \nu_B; \mu, \nu)$ $S(\mu, \nu) = S(\mu_S, \nu_S) \otimes U_B(\mu_S, \nu_S; \mu, \nu)$

- Dependence on overall arbitrary μ, ν cancels exactly at each order (it must do so = RGE consistency or path independence)
- This is not SCET specific, it is exactly how CSS formula arises from solution of Collins-Soper equation

Schematic Resummation Structure.

 $d\sigma^{(0)} = H(\mu_H) \times U_H(\mu_H, \mu) \times [B(\mu_B, \nu_B) \otimes U_B(\mu_B, \nu_B; \mu, \nu)]^2 \\ \otimes S(\mu_S, \nu_S) \otimes U_B(\mu_S, \nu_S; \mu, \nu)$

• Boundary conditions $H(\mu_H)$, $B(\mu_B, \nu_B)$, $S(\mu_S, \nu_S)$ can (must) be calcluated in (log-free) fixed order, so at

- Choice of boundary scales does matter
 - Determine precise form of resummed logarithms ("resummation" scales)
 - ► Their dependence only cancels to the fixed order of the boundary conditions

- Solving the complete RGE system for p_T distribution is (surprisingly) difficult
 - Exact distributional solution in \vec{p}_T space is equivalent (up to different boundary terms) to solving RGE in b_T space with canonical b_T scales ($b_0 = 2e^{-\gamma_E}$)

 $\mu_H = Q$, $\mu_B = b_0/b_T$, $\nu_B = Q$, $\mu_S = \mu_\nu = \nu_S = b_0/b_T$

- Quite nontrivial statement, proven in [Ebert, FT; 1611.08610]
- This corresponds to canonical logs (level 1)
- Once canonical scales are inserted, the dependence on μ_i, ν_i "disappears"
 - But important to remember that this was a choice
 - Typical CSS implementations are (roughly) equivalent to only retaining µ_H dependence

(In addition, μ_R is reintroduced by reexpanding $\alpha_s(\mu_H)$ in terms of $\alpha_s(\mu_R)$, which typically leads to violating RGE consistency unless $\mu_H = \mu_R$)

Complete RGE System.

In virtuality scale μ

$$\mu \frac{\mathrm{d}H(Q,\mu)}{\mathrm{d}\mu} = \gamma_H(Q,\mu) H(Q,\mu)$$
$$\mu \frac{\mathrm{d}B(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_B(\mu,\nu) B(\vec{p}_T,\mu,\nu)$$
$$\mu \frac{\mathrm{d}S(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_S(\mu,\nu) S(\vec{p}_T,\mu,\nu)$$

and rapidity scale u

$$\begin{split} \nu \frac{\mathrm{d} B(\vec{p}_{T},\mu,\nu)}{\mathrm{d}\nu} &= -\frac{1}{2} \int \mathrm{d}^{2} \vec{k}_{T} \, \gamma_{\nu}(\vec{k}_{T},\mu) \, B(\vec{p}_{T}-\vec{k}_{T},\mu,\nu) \\ \nu \frac{\mathrm{d} S(\vec{p}_{T},\mu,\nu)}{\mathrm{d}\nu} &= \int \mathrm{d}^{2} \vec{k}_{T} \, \gamma_{\nu}(\vec{k}_{T},\mu) \, S(\vec{p}_{T}-\vec{k}_{T},\mu,\nu) \\ \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \gamma_{\nu}(\vec{k}_{T},\mu) &= \nu \frac{\mathrm{d}}{\mathrm{d}\nu} \gamma_{S}(\mu,\nu) \delta(\vec{k}_{T}) = -4\Gamma_{\mathrm{cusp}}[\alpha_{s}(\mu)] \delta(\vec{k}_{T}) \end{split}$$

- plus evolution equations for $\alpha_s(\mu)$ and PDFs (μ)
- plus consistency relations between different anomalous dimensions γ_i which encode RGE consistency

Frank Tackmann (DESY)