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ATLAS, one of the largest experiments at the Large Hadron Collider, has a broad physics program, ranging from precision measurements to the discovery of new 
interactions. Completing that program requires gargantuan amounts of simulated Monte Carlo events. Detailed detector simulation with Geant4 provides good 
agreement to data, but, due to the complexity of the detector, the CPU resources required are extraordinary. For more than 10 years, ATLAS has developed and 
utilized tools that replace the slowest part of the simulation - the calorimeter shower simulation - by faster alternatives. AtlFast3, or AF3, is the latest generation of 
high precision fast simulation in ATLAS. AF3 combines Geant4 with a parametrization-based Fast Calorimeter Simulation and a new deep learning-based Fast 
Calorimeter Simulation. AF3 has achieved the speed up required to meet the computing challenges and Monte Carlo needs for Run 3.  With unprecedented 
precision and the ability to model jet substructure, AF3 can be used to simulate almost all physics processes. For high luminosity LHC, further improvement in 
physics modeling along with a fast simulation for the inner detector is expected.
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ATLAS physics program - Importance of simulated events
✦ ATLAS collaboration covers a wide ranging physics program - from precision measurements to searches for new physics 

interaction. 

✦ Monte Carlo simulated events (both hard scatter and pile up) are integral to this process - requiring a statistics equivalent to 

several times of the data luminosity.  

✦ At 13 TeV center of mass energy, ATLAS recorded  of data which will increase significantly in Run 3 and during 

High Luminosity(HL-) LHC. 
147 fb−1

Hasib Ahmed(U Edinburgh)

The invariant-mass spectrum of the reconstructed muon-pairs in ATLAS data. Events 
are weighted according to the expected signal-to-background ratio of their category. In 
the top panel, the signal-plus-background fit is visible in blue, while in the lower panel 
the fitted signal (in red) is compared to the difference between the data and the 
background model.

First hint of the Higgs boson decaying to a muon pair! with significance of 2.0 standard deviations.
More data to be collected in Run 3 and during the operation of the High-Luminosity LHC will help close in on this first hint!.

Dimuon invariant mass in the range 76–160 GeV. Data in points are 
compared to a full set of fully simulated background processes and the total 
background prediction is scaled to the integrated data yield. The H → μμ 
signal shown is the sum of the ggF, VBF, VH and ttH as open line, 
normalized to one hundred times the SM prediction for visibility.
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overlay µ times 
individual 
detector 

simulated events 
to emulate pileup

Detector Simulation:

✦ Dense hit content in inner trackers 

✦ Complex geometry with lots of volumes and complicated 

boundaries

Digitization:

✦ Large number of inner tracker readout channels

✦ Complex modeling of readout emulation


Reconstruction:

✦ Pattern recognition (combinatorics) function of average 

pileup - tracking

ATLAS Monte Carlo production steps

Hasib Ahmed(U Edinburgh)
Eur. Phys. J. C (2010) 70: 823–874

https://link.springer.com/article/10.1140/epjc/s10052-010-1429-9
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ATLAS Calorimeter

Hasib Ahmed(U Edinburgh)

✦ ATLAS detector covers nearly the entire solid angle around the collision point. 


✦ Inner tracking Detector (ID) - Provide good charged-particle momentum resolution and 

reconstruction efficiency in the inner tracker for offline tagging of τ-leptons and b-jets.


✦ Electromagnetic and Hadronic calorimeters - Sampling calorimeter with complex 

geometries and boundaries. Provide electron and photon identification and accurate 

jet and missing transverse energy measurements.


✦ Muon Spectrometer (MS) - Good muon identification and momentum resolution over a 

wide range of momenta.
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Display of a top anti-top quark pair 
candidate event from proton-proton 
collisions recorded by ATLAS with 
LHC stable beams at a collision 
energy of 13 TeV.

 The red line shows the path of a 
muon with transverse momentum 
around 140 GeV through the detector.

 The blue line shows the path of an 
electron with transverse momentum 
around 170 GeV through the detector.

 The green and yellow bars indicate 
energy deposits in the liquid argon 
and scintillating-tile calorimeters, 
from these deposits 3 jets are 
identified with transverse momenta 
between 30 and 80 GeV. 

Two of the jets are identified as 
having originated from b-quarks.

 Tracks reconstructed from hits in the 
inner tracking detector are shown as 
arcs curving in the solenoidal 
magnetic field

Hasib Ahmed(U Edinburgh)



Shower generation 
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Sampling  calorimeter covering |η| < 4.9 
Electromagnetic (EM) Cal:

• Liquid Argon (active)

• Pb/Cu/Tungsten (absorber) 

Hadronic/Tile  Cal:

• Scintillating tiles (active)

• Steel (absorber)

Simulation in Geant4 with each Geant4 process 
responsible for the smallest unit called ‘step’ 

No. of steps ∝ simulation time

✦ 80% of the total simulation time is required for shower simulation (based 
on a typical ttbar event) - dense materials, unusual geometry e.g. 
accordion shape

EM barrel 
FCal
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Challenges in Simulation: Run 3 & beyond

[1] HS06 benchmark

✦ Simulation of the ATLAS detector with Geant4 is CPU 

intensive.


✦ The CPU requirements will increase due to the increased 

luminosity and pileup in Run 3 & HL-LHC. 


✦ In Run 3, > 50% of all events will be simulated with fast 

simulation increasing to > 75% in Run 4 to mitigate this.


✦ Beyond Run 3 fast Inner Detector (ID) simulation along with 

fast digitization can be used. [2]


✦ We can also utilize the inherent parallelism of fast calorimeter 

simulation with GPUs. [3]

Hasib Ahmed(U Edinburgh)
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[2] See talk on Fast Simulation Chain

[3] See talk on Porting Parametrized Calorimeter Simulation to GPU

https://w3.hepix.org/benchmarking.html
https://indico.cern.ch/event/948465/timetable/?view=standard_inline_minutes#64-the-fast-simulation-chain-i
https://indico.cern.ch/event/948465/timetable/?view=standard#35-porting-hep-parameterized-c
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Parametrized Fast simulation in Run 1 & Run 2: ATLFastII (AF2)

Hasib Ahmed(U Edinburgh)

✦ AtlFast2 (AF2) - a combination of Geant4 for ID, MS and a parametrized 
calorimeter simulation (FastCaloSimV1) is used in ATLAS during Run 1 and 
Run 2.


✦ Instead of simulating particle interactions, directly parametrize the detector 
response of single particles entering the calorimeter system. 


✦ Parametrize the single particle shower development in longitudinal (energy) 
and lateral (shape) directions. 


✦ Use the parametrization at simulation step to deposit energy in calorimeter 
cells using simplified (cuboid) geometry. 

ATL-PHYS-PUB-2010-013

https://cds.cern.ch/record/1300517
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AF2 parametrization and performance

Hasib Ahmed(U Edinburgh)

ATL-PHYS-PUB-2010-013

✦ e/γ and π are used for electromagnetic and hadronic shower parametrization respectively.

✦ Longitudinal shower:  energy vs shower depth and correlation between layers

✦ Lateral shower: Average shower profile from a fitted radial symmetric function for each layer.

✦ Good average shower description but complex variables e.g. jet substructure is not well modeled.

✦ No lateral parametrization for Forward Calorimeter (FCal), particles escaping calorimeter volume (punch through) 

✦ In Run 2, ~50% of all simulation was done using AF2.  

AF2 is tuned to data instead of Geant4 - requires a separate set of calibrations for reconstructed objects

https://cds.cern.ch/record/1300517
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Fast simulation in Run 3 & beyond: ATLFast 3 (AF3)
✦ AF3 improves physics performance significantly over AF2 and will meet the 

fast simulation needs of ATLAS for Run 3.  

✦ AF3 uses two distinct approach of shower generation (includes FCal):


✦ Parametrization based modeling - FastCaloSim V2 (FCSV2)

✦ Generative Adversarial Network (GAN) based modeling - 

FastCaloGAN (FCSGAN)

✦ Dedicated parametrization for punch through particles - particles escaping 

calorimeter volume. 

Hasib Ahmed(U Edinburgh)

deposit energy in 
calorim

eter cells

✦ AF3 provides a speed gain by a factor of -

✦ O(500) for calorimeter only simulation 

✦ O(10) for full detector simulation

particles escaping 
calorim

eter

 AF3 targets achieving identical modeling to Geant4 requiring only one set of calibrations

Used for electron, photon and low or high energy hadrons FastCaloSim V2

Used for medium energy hadrons FastCaloGAN

Used for simulating particles that exit the calorimeter and 
enters Muon Systems (MS) Punch Through

Used for simulating very low energy hadrons in the 
Calorimeter, all particles in the MS and ID.Geant4

AF3 paper is accepted in Computing and Software in Big Science (Springer). - awaiting publication 

arXiv: https://arxiv.org/abs/2109.02551

https://arxiv.org/abs/2109.02551
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AF3 Configuration

Hasib Ahmed(U Edinburgh)
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Input datasets for AF3 modeling

Hasib Ahmed(U Edinburgh)

Geant4 simulated single particles generated at the calorimeter surface is used for modeling AF3

Photons: for photon shower

Electrons (e±): for electron shower

Pions (π±): for hadronic shower17
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100 bins of size 0.05 covering 0 ⩽|η| ⩽ 5

Detail G4 steps (granular energy deposit) 

No  primary vertex smearing in simulation 

Noise, cross-talk between neighboring cells and bad cells turned off in digitization.
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Parametrization based - FastCaloSim V2 

✦ FastCaloSim V2 follows the same principle of shower parametrization  
(longitudinal and lateral) as in FastCaloSim V1


✦ However targets to achieve the following:

✦ better modeling of the physics processes 

✦ keep the memory footprint of the parametrization small 

✦ The energy in each sampling layer is highly correlated. 

✦ Classify showers based on the depth on the interaction point 
(i.e. depth at where a particle initiates the shower)


✦ The longitudinal and lateral parametrization is done for each for 
the shower type, for each calorimeter layers. 

Hasib Ahmed(U Edinburgh)

FastCaloSim V2
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Shower Classification 
✦ To remove the energy correlation between layers - single particles are classified based on its 

depth on interaction point. 

✦ The energy fraction of each layer, total energy for all particles are used to perform a Principal 

Component Analysis (PCA).

G4 simulated
particles in

E-η grid

Total energy,
Energy fractions in

each layer

Principle Component
Analysis (PCA)
N components

1st PCA  to
divide

Geant4 dataset

Longitudinal
parametrization

Lateral
parametrization

Hasib Ahmed(U Edinburgh)

FastCaloSim V2

Leading principal component is used to divide the particles in quantiles
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Validation of shower classification - energy decorrelation
Before PCA: 

After PCA: 

Hasib Ahmed(U Edinburgh)

FastCaloSim V2
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Energy Parametrization & Interpolation
✦ Additional PCA on each bins of 1st Principal Component and the cumulative distributions, 

mean & RMS of the gaussians along with the PCA matrix is saved for energy 
parametrization - for the 17 discrete points.


✦ A piece-wise polynomial (spline) is used to fit the 17 energy points for interpolation. 


✦ During simulation the parametrization is randomly selected based on the logarithm 
distance of Etrue from parametrization grid. 

Hasib Ahmed(U Edinburgh)

FastCaloSim V2
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Lateral shower shape parametrization

✦ The distribution of energy in lateral direction averaged over many showers is 
parametrized over a certain radial distance (r) containing 99.5% of the total 
energy and 8-bins in the angular direction (α). 


✦ The bin size (1 or 5mm) in the radial direction is coarser compared to G4 
steps but finer compared calorimeter cell size in each layer. 


✦ Shower centers are corrected by average longitudinal depth of energy 
deposits in each PCA bin. 


✦ This parametrization is done for each layer and PCA bin for each 
parametrization grid point. 


✦  These 2D histograms are used as PDF during simulation to randomly 
generate quantized energy deposits (hits) 
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FastCaloSim V2
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Simulation of lateral shower

Hadronic showers have larger intrinsic 
fluctuations and the stochastic terms are 

calculated for each layer and η region

✦ Generation of shower is a stochastic process with the average shower gives the PDF.

✦ Energy is deposited using  of equal energy. 


✦  is calculated such that it gives the same Poisson RMS as the resolution of the calorimeter layer.  

Nhits

Nhits

Calorimeter Stochastic term a
EM 30 - 40%
Tile 50 - 60%

Hadronic endcap 60 - 80% 
FCal 80 - 100%

Hasib Ahmed(U Edinburgh)

 Ehit = Elayer /Nhits

FastCaloSim V2

This model with  equal energy hits works well for EM showers but 
require hit reweighting for Hadronic showers.
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Weighted hit simulation for hadrons (1)

Hasib Ahmed(U Edinburgh)

✦ Hadronic calorimeter layers have large  stochastic terms (> 30%) leading to large energy deposits 
(100 - 300 MeV) for hits with equal energy. 


✦ Even only few hits  far away from the shower center have large probability to create clusters. 

✦ These low energy clusters introduce mismodeling in the total number of clusters.

Geant4 AF3 with equal hit energy

FastCaloSim V2

Evoxel - bins  in average shower histogram

Evoxel / Ehit - energy fraction in each bin of avg. shower 

ΔR [mm] - radial distance from shower center in mm unit

Equal hit energy deposition creates large number of clusters 
away from the center of the shower not observed in Geant4!
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Weighted hit simulation for hadrons (2)

✦ The equal hit energy model can reproduce the mean well but not the 
RMS.  


✦Introduce weights to change the RMS of each bin to reproduce the 
RMS of  the Geant4 distribution. 


✦ Additional smearing is applied to include unaccounted fluctuations.

Geant4 AF3 with weighted hits

comparison of mean & RMS

FastCaloSim V2

Weighted hit model significantly improves modeling of hadron showers!
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Shower Generation using Deep Learning - FastCaloGAN

✦ Use deep generative network  to simulate shower generation in the entire calorimeter - providing both 
longitudinal (including correlation between layers) and lateral shower modeling - Generative 
Adversarial Network (GAN), Variational Auto Encoders (VAE). 


✦ Pre-processing / voxelization techniques plays an important role in model performance. 

✦ Previous attempts of GAN and VAE training at the cell level (ATL-SOFT-PUB-2018-001)

✦ FastCaloGAN uses hits voxelized in the same frame of reference (r,α) as in FCS V2 shape 

parametrization - optimized for each particle and η bins

FastCaloGAN

The binning used for the voxelization of pions in the different calorimeter layers for FastCaloGAN in the 0 < |𝜂| < 0.8 
range. Each ellipsis indicates when the same binning continues until the subsequent listed number. 

https://cds.cern.ch/record/2630433
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Network architecture
Wasserstein loss with gradient penalty (WGAN-GP) is used, conditioned on the truth momentum and trained for 

each η slice but inclusive in energy -  resulting 100 GANs for pions.


Hasib Ahmed(U Edinburgh)

ATL-SOFT-PUB-2020-006

FastCaloGAN

Networks are implemented in TensorFlow2 - allows training in both CPUs and GPUs


https://cds.cern.ch/record/2746032
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Training strategy
✦ Training a GAN with all energy points (for a fixed η) does NOT provide good performance. 

✦ An incremented training strategy is used:


✦ start with a single energy point 32 GeV and train for 50K epochs 

✦ add new energy points every 20K epoch in the following order: 32 GeV, 64 GeV, 16 GeV, 128 GeV, … 


✦ Each GAN is trained for 1M epochs with a checkpoint saved every 1K epochs.

✦ Each GAN requires ~8hrs to train on GPU over HTCondor - 100 days of GPU time for the entire detector

best epoch

✦ The final epoch is NOT necessarily the best 
epoch - interplay between the generator 
and the discriminator. 


✦  between the total energy generated by 
GAN and Geant4 is used as a metric. 


✦ At simulation step the GAN with best epoch 
is used to generate hits which are deposited 
in the corresponding voxels.

χ2

Hasib Ahmed(U Edinburgh)



Performance at best epoch

24
Hasib Ahmed(U Edinburgh)

FastCaloGAN
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 FCSGAN Performance in Simulation
✦ FastCaloGAN shows better modeling compared to FCS V2 for hadrons in the medium energy range.

✦  The exact threshold is determined based on single cluster and jet properties. 

✦ AF3 uses FCSGAN for hadron showers in the range: 16 GeV ≤ Ekin ≤ 256 GeV

✦ The total energy of the FastCaloGAN is scaled to the energy of FCS V2 - allows smooth transition between the 

two simulation flavors.

Hasib Ahmed(U Edinburgh)

FastCaloGAN

Fully implemented in the ATLAS simulation infrastructure and used as part of AF3 for sample production! 
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What about photons and low/high energy pions?

Hasib Ahmed(U Edinburgh)

FastCaloGAN

✦ For photons, the reconstructed mean energy is shifted 

✦ For low and high energy pions, too few energy deposits in cells of the 

leading cluster.

✦ Some of the issues are expected to be resolved in the future.

We also released some datasets 
for training under CERN open 

data!

https://opendata-qa.cern.ch/

record/15012

http://opendata-qa.cern.ch/record/15012
http://opendata-qa.cern.ch/record/15012
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Assigned quantized energy (hits) to calorimeter cells 
✦ Simulated hits (from FCS V2 or FCSGAN) are assigned to cells assuming 

simplified cuboid geometry.

✦ Derive a probability density function (PDF) from the difference of cell 

assignment efficiency calculated in Geant4 and AF3.

✦ Use the PDF to randomly assign a displacement to a hit before assigning 

to a cell. 

too much 
energy

not enough 
energy

Without correction: With correcton: 

Probability function describing the chance 
that the energy belongs to this cell 

Hasib Ahmed(U Edinburgh)
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FastCaloGAN FastCaloSim V2

Closure with Geant4 with the correction applied!
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Corrections to improve energy resolution

✦ Probabilistic reweighting to reject simulated energy far off from the 
G4 distribution - using a PDF derived from simulated over expected 
energy. 

Hasib Ahmed(U Edinburgh)

✦ There is a modulation of energy in the phi direction in the input G4  due 
to accordion structure in Liquid Argon (LAr) calorimeter which is not 
modeled in AF3. 


✦ The Geant4 inputs are corrected before parametrization to “flatten” the 
phi modulation.

FastCaloGAN FastCaloSim V2
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Corrections to improve mean energy

✦ Small residual differences in energy response simulation in  electron , photon and pion:

✦ derive correction factors  for each energy and η points with linear interpolation in between

✦ for photons & electrons the corrections are applied if the correction factor is statistically significant  


✦ Hadron showers simulated with pion parametrization has an intrinsic energy difference: 

✦ derive  correction factors scaled by 


✦ the correction factors are linearly interpolated in between the discrete energy points 

ĒG4/ĒAF3

ĒHadron
G4 /Ēπ

G4 Eπ
kin,true/EHadron

kin,true

Hasib Ahmed(U Edinburgh)

FastCaloGAN FastCaloSim V2
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Parametrization of particles escaping to the muon systems
✦ Particles that punch through to the MS are reconstructed as a fake muon.  

✦ 	AF3 includes a dedicated parametrization to model the secondary particles (e,γ, π, μ, p)

✦ Depending on the momentum and η for a pion entering the calorimeter volume, the punch 

through particles are generated and passed to Geant4. 
muon segments results from particles punching through 
the calorimeter as well as real muons probability of a single pion to produce at least one punch-

through particle of at least 50 MeV

Improves modeling of muons  significantly compared to AF2!
Hasib Ahmed(U Edinburgh)

 Punch Through
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Performance of AF3: reconstructed photons & electrons
✦ Photons and electrons are reconstructed from clusters of energy deposits in EM calorimeter.

✦ The objects are selected with identification criteria with high purity as used in physics analyses. 
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Very good modeling for all electron/photon variables!

Invariant mass of Higgs (left) and energy 
fraction in sampling 3 of the EM 
calorimeter (right) in H→γγ events

Hasib Ahmed(U Edinburgh)
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Performance of AF3: kinematics of reconstructed jet 
✦ Good modeling of jet kinematics for jets of cone 0.4 reconstructed with EMPFlow or EMTopo algorithms

✦ Jets with pT > 200 GeV shows better agreement in AF3 compared to AF2 

✦ Dedicated parametrization in forward calorimeter also improves the modeling for |η| > 3 

all jets pT distribution - (left) for pT < 200 
GeV in ttbar and (right) for pT > 200 GeV in 
W′(13TeV) → W Z → 4q   

jet η distribution - (left) for leading and 
(right) sub-leading jet in ttbar 

Hasib Ahmed(U Edinburgh)
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Jet performance: small-R jet number of clusters
✦ Number of constituents inside a jet of cone 0.4 for leading (pT > 200 GeV) and sub-leading (pT > 20 GeV)

✦ Jets reconstructed with EMPFlow algorithm

Number of constituents  - (left) leading jet  
in W′(13TeV) → W Z → 4q  and (right) sub-
leading jet in ttbar events 

Significant improvement over AF2 leading to improvements in other observables!
Hasib Ahmed(U Edinburgh)
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Jet performance: large-R jet substructures
✦ Jet substructure variables for high energetic jets inside a cone of 1.0

✦ Reconstructed with trimmed UFO or LCTopo algorithm
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Improvements of these variables in AF3 over AF2 will allow more analyses to use fast simulation!

Number of constituents  - (left) and 
dipolarity (right)  in W′(13TeV) → W Z → 4q  
events 

sub-jetiness variables - τ21, (left) and τ32 

(right)  in Z′(4TeV) → tt ̄  events 

Hasib Ahmed(U Edinburgh)
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Jet performance: scope for improvement
✦ High energetic jets inside a cone of 1.0 reconstructed with trimmed UFO algorithm 

✦ AF3 shows some discrepancy for jet mass - although improves upon AF2

✦ The discrepancies are in the tails of the high energetic jets

Most  physics analyses are not affected!

leading jet mass - (left) in Z′(4TeV) → tt ̄ and 
(right)  in W′(13TeV) → W Z → 4q  events 

Hasib Ahmed(U Edinburgh)
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Performance of AF3: reconstructed electrons & hadronic taus
✦ Invariant di-electron and di-tau masses show good agreement


Hasib Ahmed(U Edinburgh)
AF3 shows good performance for both electrons and taus !

Invariant mass distribution from a selection targeting events with a Z boson decaying into () two 
electrons with pT> 25 GeV and |η| < 1.37 or 1.52 < |η| < 2.47, and  the visible part of the invariant 
mass of two hadronically decaying τ-leptons in Z →ττ DY events filtered for an off-shell mass of 

2.0--2.25 TeV 
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Summary

✦ AF3 is the next generation of fast simulation in ATLAS - successfully deploying complex 

parametrized and deep learning algorithms. 

✦ AF3 achieved very good modeling for all reconstructed observables compared to Geant4 

even for complex variables such as jet substructure. 

✦ The CPU performance of AF3 is only limited by the ID simulation (Geant4), but  a factor of 

O(10) speed up is sufficient to meet the CPU needs for Run 3. 

✦ ATLAS used AF3 to re-simulate 8 billion events from Run 2. 

✦ An update of the current AF3 version in expected for Run 3 - current performance seems 

sufficient to produce a large fraction of ATLAS Run 3 Monte Carlo events. 

Hasib Ahmed(U Edinburgh)

Thank you!
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