Imperfections and Correction

Volker Ziemann

Uppsala University

https://cern.ch/ziemann
Background material (Proceedings)
https://arxiv.org/abs/2006.11016
even more (+example code in MATLAB)
https://www.crcpress.com/9781138589940

What is this talk about?

- First, you come up with lattice and design optics
- nice and shiny beta functions
- high periodicity \rightarrow systematic errors cancel

Butthen...

- ...the accelerator is built, and..
- the magnets are not quite where they should be;
- power supplies have calibration errors;

- the diagnostics might have imperfections, too
- Beam position monitors
- Screens

Therefore...

- I talk about
- things that can go wrong (courtesy of Mrs Murphy...) \rightarrow Imperfections
- how to figure out what is wrong \rightarrow Diagnostics to use
- and fix it
\rightarrow Corrections

Outline

- Imperfections
- Straight systems
- Beam lines and Linac
- Imperfections and their corrections
- Rings
- Imperfections and their corrections

Part 1: Linear Imperfections

- Spoil the 'nice\&shiny ${ }^{\text {TM }}$ ' periodic magnet lattice
- due to unwanted magnetic fields in the wrong place
- that's where the beam is
- constant: dipole kick
- gradient: focusing
- skew gradient: coupling

$B_{y}=$ Const
$\Delta x^{\prime}=C$

$$
\begin{aligned}
& \mathrm{By}_{\mathrm{y}}=\mathrm{gx} \\
& \Delta \mathrm{x} \mathrm{I}^{\prime}=\mathrm{Cx}
\end{aligned}
$$

$B_{y}=g y$
$\Delta \mathrm{x}^{\prime}=\mathrm{cy}$

- Solenoid fields
- detector
- electron cooler

Sources of Imperfections

- Anything that is not in the design lattice
- Fringe fields and cross talk between magnets
- Saturation of magnets
- Power supply calibration and read-back errors
- Wrong shims
- Earth magnetic field in low-energy beam lines
- Nickel layers in the wrong place
- Solenoids in detectors or coolers
- Weak focusing from wigglers
- Tilt and roll angles of magnets
- Misaligned magnets (or beams)

Alignment

- How do you do it?
- Magnets on tables
- Fiducialization to pods
- Triangulation
- How well can you do it?
- 0.2-0.3 mm OK

Photo: R. Ruber, CTF3-TBTS

- <0.1 mm increasingly more difficult
- more difficult in large installations
- Sub-micron for linear colliders \rightarrow beam-based

Transversely displaced elements

- Misalignment of linear elements

- and for a thin quadrupole...

$$
\vec{q}=[\tilde{R}-1]\binom{d_{x}}{0}=\left(\begin{array}{cc}
0 & 0 \\
-\frac{1}{f} & 0
\end{array}\right)\binom{d_{x}}{0}=\binom{0}{-\frac{d_{x}}{f}}
$$

- An additional dipolar kick appears \rightarrow feed-down

Misaligned quadupoles focus

 just as good as centered ones

Tilted elements

 UNIVERSITET

- come in, step right and point left, go through, step right again and point right

$$
\begin{aligned}
& \binom{x_{f}}{x_{f}^{\prime}}=\binom{-d_{d}^{L} L / 2}{-d_{x}^{\prime}}+\hat{R}\left[\binom{-d_{L}^{\prime} L / 2}{d_{x}^{d_{x}}}+\binom{x_{i}}{x_{i}^{\prime}}\right] \\
& =\left[\hat{R}+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right]\binom{-d_{d}^{L} L / 2}{d_{x}^{\prime}}+\hat{R}\binom{x_{i}}{x_{i}^{\prime}}=\vec{q}+\hat{R}\binom{x_{i}}{x_{i}^{i}}
\end{aligned}
$$

- Again,normal transport and a constant vector

Longitudinally Shifted Elements

 UNIVERSITET- Add a short positive element on one side and the negative on the other.
- Dipole
- kick on either side

- Quadrupoles
- thin quadrupoles

How would you implement this in your code?

Incorrectly powered quadrupoles

- Focal length changes
- beam matrix differs from the expected
- beta functions change
- in rings, the tune changes

Undulators and Wigglers

- $B_{y} \sim \cos \left(2 \pi s / \lambda_{u}\right) \rightarrow$ horizontal oscillations
- $\partial \mathrm{B}_{\mathrm{y}} / \partial \mathrm{s}=\partial \mathrm{B}_{\mathrm{s}} / \partial \mathrm{y} \rightarrow$ vertically changing B_{s}
- Focus vertically (only)
- Many Rbends
- weak effect $(1 / \rho)^{2}$, but
- changing excitation
- affects orbit;
- affects tune.

Dispersion

- Effect of magnetic fields on the beam $(\sim B / p)$ with $p=p_{0}(1+\delta)$ is reduced by $1+\delta$
- Every dipole behaves as a spectrometer
- separates the particles according to their momentum
- even dipole correctors contribute
- In planar systems the vertical dispersion is by design zero
- but rolled dipoles (and quadrupoles) make it non-zero.

Check out hands-on exercises 33 to 38 about how this is done in software!

Chromaticity

 UNIVERSITET- Also quadrupolar fields are reduced by $1+\delta$
- longitudinal location of the focal plane depends on momentum and enlarges the beam sizes at the IP
- chromaticity Q'=dQ/dס
- tune spread

How would you implement this in your software?

Measuring Dispersion and Chromaticity

- Change the beam energy in rings by changing the RF frequency
- and look at orbit changes on BPMs \rightarrow dispersion
- and measure the tune \rightarrow chromaticity
- In transfer lines or linacs change the energy of the injected beam.
- Optionally, may scale all magnets with the same factor
- all beam observables are proportional to B/p.

Rolled elements

- Coordinate rotation

$$
\left(\begin{array}{l}
x_{2} \\
x_{2}^{\prime} \\
y_{2} \\
y_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cos \phi & 0 & \sin \phi & 0 \\
0 & \cos \phi & 0 & \sin \phi \\
-\sin \phi & 0 & \cos \phi & 0 \\
0 & -\sin \phi & 0 & \cos \phi
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{1}^{\prime} \\
y_{1} \\
y_{1}^{\prime}
\end{array}\right)
$$

- Sandwich roll-left before the element and then rollright after the element
- Example: quad to skew-quad (example, thin quad)

$$
Q_{s}=R(-\pi / 4)\left(\begin{array}{cc}
Q_{f} & 0_{2} \\
0_{2} & Q_{d}
\end{array}\right) R(\pi / 4)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 / f & 0 \\
0 & 0 & 1 & 0 \\
1 / f & 0 & 0 & 1
\end{array}\right) \quad \begin{gathered}
\text { Venfify his } \\
\text { onpaper }
\end{gathered}
$$

- Mixes the transverse planes \rightarrow betatron coupling

Reminder: Multipoles

- Magnet builder's view (b_{m} : upright, a_{m} : skew)

$$
B_{y}+i B_{x}=B_{0} \sum_{m=1}^{\infty}\left(b_{m}+i a_{m}\right)\left(\frac{x+i y}{R_{0}}\right)^{m-1}
$$

- How the beam "sees" the fields

$$
\Delta x^{\prime}-i \Delta y^{\prime}=\frac{\left(B_{y}+i B_{x}\right) L}{B \rho}=\sum_{n=0}^{\infty} \frac{k_{n} L}{n!}(x+i y)^{n}
$$

- Multipole coefficients
- real part: upright

$$
\frac{k_{n} L}{n!}=\frac{\left(B_{0} / R_{0}^{n}\right) L}{B \rho}\left(b_{n+1}+i a_{n+1}\right)
$$

- imaginary part: skew

Feed-down from displaced multipoles

- Kick from thin multipole $\quad \Delta x^{\prime}-i \Delta y^{\prime}=\frac{k_{n} L}{n!}(x+i y)^{n}$
- and from a displaced multipole

$$
\begin{aligned}
\Delta x^{\prime}-i \Delta y^{\prime} & =\frac{k_{n} L}{n!}\left(x+d_{x}+i y\right)^{n} \\
& =\frac{k_{n} L}{n!}(x+i y)^{n}+\frac{k_{n} L}{n!} \sum_{k=0}^{n-1}\binom{n}{k} d_{x}^{n-k}(x+i y)^{k}
\end{aligned}
$$

- binomial expansion, such as $(z+d)^{2}=z^{2}+2 z d+d^{2}$
- Displaced multipole still works as intended, but also generates all lower multipoles.

Feed-down from sextupoles

- Horizontally displaced by d_{x}

$$
\left.\Delta x^{\prime}-i \Delta y^{\prime}=\frac{k_{2} L}{2}\left[(x+i y)^{2}+2 d_{x}(x+i y)+d_{x}^{2}\right)\right]
$$

- additional quadrupolar and dipolar kicks.
- Vertically displaced by d_{y}

$$
\left.\Delta x^{\prime}-i \Delta y^{\prime}=\frac{k_{2} L}{2}\left(x+i y+i d_{y}\right)^{2}=\frac{k_{2} L}{2}\left[(x+i y)^{2}+2 i d_{y}(x+i y)-d_{y}^{2}\right)\right]
$$

- Additional skew-quadrupolar and dipole kicks.
- Vertically displaced sextupoles cause coupling.

Detrimental effects

- Dipole fields cause beam to be in wrong place
- losses, bad if you have a multi-MJ beam;
- Background in the experiments.
- Gradients change the beam size, this spoils
- Luminosity, if you work on a collider;
- Coherence, if you work on a light source.
- Breaks the symmetry of the optics of a ring
- more resonances;
- reduces dynamic aperture.
- Need observations to figure out what's wrong.

Beam Position Monitors

- Transverse offset
- (Longitudinal position)
- Electrical offset
- Scale error

$$
x=k_{x} \frac{\left(S_{A}+S_{D}\right)-\left(S_{B}+S_{C}\right)}{S_{A}+S_{B}+S_{C}+S_{D}}
$$

- BPM+Quadrupole are often mounted next to each other on the same girder

- Modulate gradient of quadrupole
- Deflection from quadrupole $x^{\prime}=x^{\prime}(\omega)$ is also modulated.
- Observe on BPM2 and minimize signal by moving beam with a bump \rightarrow quadrupole center.
- Reading of BPM1 gives BPM1 offset relative to quad.

Screens et al. and their Bugs

- Transverse position
- Scale errors from the optical system
- place fiducial marks on the screen
- Looking at an angle

Photo taken by M. Jacewicz

- Depth of focus limitations, especially at large magnification levels
- Burnt-out spots on fluorescent screens
- Non-linear response of screen and saturation

That's all for today, folks

- Take-home messages
- Imperfections are characterized by the multipolarity of an equivalent magnet in the wrong place.
- Describe them by coordinate transformations.
- Diagnostics can be in the wrong place, show scale errors, or non-linear response.
- Tomorrow
- Beamlines and linacs.
- What can go wrong and how to fix it.

Things to think about...

- Construct the transfer matrix of a longitudinally displaced (along the beam line) thin quad.
- Does a vertically displaced octupole cause linear coupling?
- When is a magnet "short" and the thin-lens approximation justified?

Imperfections and their Correction in Beam Lines or Linacs

- Dipole errors
- Gradient errors
- Skew-gradient errors
- Filamentation

Transfer matrices in linacs

- Just a reminder...
- The beam energy at the location for the kick and the observation point may be different.
- Adiabatic damping
- transverse momentum p_{x} is constant
- longitudinal momentum p_{s} increases (acceleration!)
- $x^{\prime}=p_{x} / p_{s}$ scales with $p_{s}=\beta \gamma m c$
- R_{12} then scales with $(\beta \gamma)_{\text {kick }} /(\beta \gamma)_{\text {look }}$

UPPSALA UNIVERSITET

Two displaced quads

Many, many dipole errors

- Each misaligned element with label k may add a misalignment dipole-kick \vec{q}_{k}

$$
\begin{aligned}
\vec{x}_{n} & =R_{n} \cdots\left(\vec{q}_{k+1}+R_{k+1}\right)\left(\vec{q}_{k}+R_{k}\right) \cdots\left(\vec{q}_{1}+R_{1}\right) \vec{x}_{0} \\
& =R_{n} \cdots R_{1} \vec{x}_{0}+\sum_{j=1}^{n-1}\left(R_{n} \cdots R_{j+1}\right) \vec{q}_{j}
\end{aligned}
$$

- Simple interpretation
- at the look-point (BPM) n all perturbing kicks are added with the transfer matrix from
 kick to end

Correct with orbit correctors

- small dipole magnet, here for both planes (steerer for CTF3-TBTS)
- affects the beam like any other error

$$
\begin{aligned}
\binom{x_{1}}{x_{1}^{\prime}} & =\binom{0}{\theta}+\binom{x_{0}}{x_{0}^{\prime}} \\
\vec{x}_{1} & =\vec{q}+\tilde{R} \vec{x}_{0}
\end{aligned}
$$

- treat just as additional misalignment

Local trajectory Bumps

- Occasionally a particular displacement or angle of the orbit at a given point might be required
- Displace orbit at IP to bring beams into collision

- or a slight excursion (3-bump)

- Differential changes ('by' not 'to')

Trajectory knob

 UNIVERSITET- Change position and angle at reference point

- Remember that kicks add up with TM from source to observation or reference point

$$
\binom{\Delta x_{0}}{\Delta x_{0}^{\prime}}=\left(\begin{array}{ll}
R_{12}^{01} & R_{12}^{02} \\
R_{22}^{01} & R_{22}^{02}
\end{array}\right)\binom{\theta_{1}}{\theta_{2}}
$$

- and the columns of the inverse matrix are the knobs

$$
\binom{\theta_{1}}{\theta_{2}}=\left(\begin{array}{ll}
R_{12}^{01} & R_{2}^{00} \\
R_{22}^{20} & R_{22}^{20}
\end{array}\right)^{-1}\binom{\Delta x_{0}}{\Delta x_{0}^{\prime}}
$$

A trivial example

UNIVERSITET

- Two steering magnets with drift between them

$$
R^{02}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right) \quad R^{01}=\left(\begin{array}{cc}
1 & 2 L \\
0 & 1
\end{array}\right)
$$

- Response matrix

$$
\binom{\Delta x_{0}}{\Delta x_{0}^{\prime}}=\left(\begin{array}{ll}
R_{12}^{01} & R_{12}^{02} \\
R_{22}^{01} & R_{22}^{02}
\end{array}\right)\binom{\theta_{1}}{\theta_{2}}=\left(\begin{array}{cc}
2 L & L \\
1 & 1
\end{array}\right)\binom{\theta_{1}}{\theta_{2}}
$$

- Knobs

$$
\binom{\theta_{1}}{\theta_{2}}=\frac{1}{L}\left(\begin{array}{cc}
1 & -L \\
-1 & 2 L
\end{array}\right)\binom{\Delta x_{0}}{\Delta x_{0}^{\prime}} \longrightarrow\binom{\theta_{1}}{\theta_{2}}=\frac{1}{L}\binom{1}{-1} \Delta x_{0}
$$

Almost common sense!

Remark about Orthogonality

- Knobs are orthogonal
- Optimize one parameter without screwing up the other(s).
- Faster convergence
- Enables heuristic optimization
- Deterministic
- Use physics rather than hardware
 parameters

4-Bump

- Use four steerers to adjust angle and position at a center point and then flatten orbit downstream of the last steerer.
- Invert matrix and express thetas as a function of the constraints x_{0} and $x_{0}{ }^{\prime}$
- Gives the required steering excitations θ_{j} as a function of x_{0} and $x_{0}{ }^{\prime} \rightarrow$ Multiknob

Orbit Correction in Beamline \#1

- Observe the orbit on beam-position monitors
- and correct with steering dipoles
- How much do we have to change the steering magnets in order to compensate the observed orbit either to zero or some other 'golden orbit'.
- In a beam line the effect of a corrector on the downstream orbit is given by transfer matrix element R_{12}
- One-to-one steering

Orbit correction in a Beamline \#2

UNIVERSITET

$\mathrm{R}(\mathrm{B} 3<-\mathrm{C} 1)$

$$
\left(\begin{array}{c}
-x_{1} \\
-x_{2} \\
-x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
R_{12}^{11} & 0 & 0 \\
R_{12}^{21} & R_{12}^{22} & 0 \\
R_{12}^{31} & R_{12}^{32} & R_{12}^{33}
\end{array}\right)\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right)
$$

- Observed beam positions $\mathrm{x}_{1}, \mathrm{x}_{2}$, and x_{3}
- Only downstream BPM can be affected
- Linear algebra problem to invert matrix and find required corrector excitations θ_{j} to produce negative of observed x_{i}
- Include BPM errors by left-multiplying the equation with This weights each BPM measurement by its
$\bar{\Lambda}=\operatorname{diag}\left(\frac{1}{\sigma_{1}}, \ldots, \frac{1}{\sigma_{n}}\right)$ inverse error. Good BPMs are trusted more!

How to get the response matrix?

UNIVERSITET

- With the computer (MADX or any other code)
- tables of transfer matrix elements
- but it is based on a model and somewhat idealized
- no BPM or COR scale errors known
- Experimentally by measuring difference orbits
- record reference orbit \vec{x}_{0}
- change steering magnet $\Delta \theta_{j}$
- record changed orbit \vec{x}_{j}
- Build response matrix one column at a time

$$
A=\left(\frac{\vec{x}_{1}-\vec{x}_{0}}{\Delta \theta_{1}}, \quad \frac{\vec{x}_{2}-\vec{x}_{0}}{\Delta \theta_{2}}, \quad \cdots\right)
$$

Solving $-x=A \theta$

- A is an $n \times m$ matrix, n BPM and m correctors
- $n=m$ and matrix A is non-degenerate:

$$
\vec{\theta}=-A^{-1} \vec{x}
$$

- $m<n$: too few correctors, least squares $\chi^{2}=\mid-\vec{x}-A \overrightarrow{\|^{2}}$

$$
\vec{\theta}=-\left(A^{t} A\right)^{-1} A^{t} \vec{x}
$$

- MICADO: pick the most effective, fix orbit, the next effective, fix residual orbit, the next...
- good for large rings with many BPM and COR
- $m>n$ or degenerate: singular-value dec. (SVD)

Digression on SVD

- Singular Value Decomposition $A=O \Lambda U^{t}$
- may need to zero-pad
- U is orthogonal, a coordinate rotation
- Λ is diagonal, it stretches the coordinates by λ_{i}
- O is orthogonal and rotates, but differently
- If A is symmetric \rightarrow eigenvalue decomposition
- Inversion is trivial

$$
" A^{-1} "=U \Lambda^{-1} O^{t}
$$

- invert only in sub-space where you can if $\lambda \neq 0$
- and set projection onto degenerate subspace to zero " $1 / 0=0$ " (see Numerical Recipes for a discussion)

Comment on Matrix Inversion

UNIVERSITET

- Many correction problems can be brought into a generic form, if you
- pretend you know the excitation of all controllers (think correctors, θ)
- determine the response matrix (expt. or numerically)

$$
C_{i j}=\partial \text { Observable }_{\mathrm{i}} / \partial \text { Controller }_{\mathrm{j}}
$$

- to predict the changes of the observable y (think BPM)
- Then invert the response matrix C to determine the controller values required to change the observable by some value.

Effect of gradient errors

UPPSALA UNIVERSITET

Eight 90° FODO cells, first quad 10% too low

Unperturbed lattice
Nice and repetitive beta functions

Repeats after 2 cells or $2 \times 90^{\circ}$

Beta-function "beats"

Injection into following beam line or ring is compromised

Beam lines: Gradient errors

- Gradient errors cause the beam matrix or beta functions β to differ from their design values $\hat{\beta}$
- Downstream beam size

$$
\bar{\sigma}_{x}^{2}=\varepsilon \bar{\beta}\left[B_{m a g}+\sqrt{B_{m a g}^{2}-1} \cos (2 \mu-\varphi)\right]
$$

- enlarged effective emittance, beta-beat oscillations with twice the betatron phase advance μ
- This is called mismatch and is quantified by

$$
B_{\text {mag }}=\frac{1}{2}\left[\left(\frac{\hat{\beta}}{\beta}+\frac{\beta}{\hat{\beta}}\right)+\beta \hat{\beta}\left(\frac{\alpha}{\beta}-\frac{\hat{\alpha}}{\hat{\beta}}\right)^{2}\right]
$$

- For a single thin quad we have

$$
B_{m a g}=1+\frac{\hat{\beta}^{2}}{2 f^{2}}
$$

Filamentation \#1

- What happens when we inject a mismatched beam into a ring with chromaticity Q^{\prime} ?

$$
\sigma_{n}^{2}=\varepsilon \bar{\beta}\left[B_{\text {mag }}+\sqrt{B_{\text {mag }}^{2}-1} \cos \left(4 \pi n\left(Q+Q^{\prime} \delta\right)-\varphi\right)\right]
$$

- with momentum distribution

$$
\psi(\delta)=\frac{1}{\sqrt{2 \pi} \sigma_{\delta}} e^{-\delta^{2} / 2 \sigma_{\delta}^{2}}
$$

- Averaging over δ gives

$$
\sigma_{n}^{2}=\varepsilon \bar{\beta}\left[B_{m a g}+e^{-2\left(2 \pi Q^{\prime} \sigma_{\delta}\right)^{2} n^{2}} \sqrt{B_{\text {mag }}^{2}-1} \cos (4 \pi n Q-\varphi)\right]
$$

- Oscillates with $2 \times Q$, 'damps' with $\exp \left(-n^{2}\right)$, and leaves an increased beam size (by $B_{\text {mag }}$).

Filamentation \#2

 UNIVERSITET

You've seen it before...
CERN Accelerator School: Introductory Course
Example for an unmatched and matched beam (taken from B. Schmidt):

Injecting with transverse offset also leads to filamentation

Final distribution is not Gaussian

Measuring Beam Matrices

UPPSALA UNIVERSITET

$$
\bar{\sigma}=R(f) \sigma R(f)^{t}
$$

Vary quadrupole and observe changes on a screen, usually one plane at a time

- Beam size on screen depends on quad setting

$$
\bar{\sigma}_{x}^{2}=\bar{\sigma}_{11}=R_{11}^{2} \sigma_{11}+2 R_{11} R_{12} \sigma_{12}+R_{12}^{2} \sigma_{22}
$$

- where $R=R(f)$, use several measurement and solve for the three sigma matrix elements

$$
\varepsilon_{x}^{2}=\sigma_{11} \sigma_{22}-\sigma_{12}^{2} \quad \beta_{x}=\sigma_{11} / \varepsilon_{x} \quad \alpha_{x}=-\sigma_{12} / \varepsilon_{x}
$$

A worked example: Quad scan

UPPSALA UNIVERSITET

$1 / f[1 / \mathrm{m}]$	$\bar{\sigma}_{x}[\mathrm{~mm}]$
0.1	6.0
0.2	3.5
0.3	2.5
0.4	4.3
0.5	7.0

- Transfer matrix

$$
R=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)=\left(\begin{array}{cc}
1-l / f & l \\
-1 / f & 1
\end{array}\right)
$$

- Relate unknown beam matrix to measurements

$$
\begin{aligned}
\bar{\sigma}_{x}^{2} & =R_{11}^{2} \sigma_{11}+2 R_{11} R_{12} \sigma_{12}+R_{12}^{2} \sigma_{22} \\
& =(1-l / f)^{2} \sigma_{11}+2 l(1-l / f) \sigma_{12}+l^{2} \sigma_{22} \\
& =\left(\frac{l}{f}\right)^{2} \sigma_{11}-\left(\frac{l}{f}\right)\left(2 \sigma_{11}+2 l \sigma_{12}\right)+\left(\sigma_{11}+2 l \sigma_{12}+l^{2} \sigma_{22}\right)
\end{aligned}
$$

- Indeed a parabola in I/f

Quad scan \#2

 UNIVERSITET- Build matrix of the type $y=A x$
- and with error bars $\Sigma_{k}=2 \sigma_{k} \Delta \sigma_{k}$
- Solve by least-squares pseudo-inverse

$$
x=\left(A^{t} A\right)^{-1} A^{t} y
$$

- with the covariance matrix $\operatorname{Cov}=\left(A^{t} A\right)^{-1}$
- diagonal elements are square of error bars of fit parameter x

Or use several wire scanners

 UNIVERSITETwire 3
wire 2
wire 1
sigma

$$
\begin{aligned}
\bar{\sigma}_{1}^{2} & =\left(R^{1}\right)_{11}^{2} \sigma_{11}+2 R_{11}^{1} R_{12}^{1} \sigma_{12}+\left(R^{1}\right)_{12}^{2} \sigma_{22} \\
\bar{\sigma}_{2}^{2} & =\left(R^{2}\right)_{11}^{2} \sigma_{11}+2 R_{11}^{2} R_{12}^{2} \sigma_{12}+\left(R^{2}\right)_{12}^{2} \sigma_{22} \\
\bar{\sigma}_{3}^{2} & =\left(R^{3}\right)_{11}^{2} \sigma_{11}+2 R_{11}^{3} R_{12}^{3} \sigma_{12}+\left(R^{3}\right)_{12}^{2} \sigma_{22}
\end{aligned}
$$

$$
\left(\begin{array}{c}
\bar{\sigma}_{1}^{2} \\
\bar{\sigma}_{2}^{2} \\
\bar{\sigma}_{3}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
\left(R^{1}\right)_{11}^{2} & 2 R_{11}^{1} R_{12}^{1} & \left(R^{1}\right)_{12}^{2} \\
\left(R^{2}\right)_{11}^{2} & 2 R_{11}^{2} R_{12}^{2} & \left(R^{2}\right)_{12}^{2} \\
\left(R^{3}\right)_{11}^{2} & 2 R_{11}^{3} R_{12}^{3} & \left(R^{3}\right)_{12}^{2}
\end{array}\right)\left(\begin{array}{c}
\sigma_{11} \\
\sigma_{12} \\
\sigma_{22}
\end{array}\right)
$$

- $\left(A^{t} A\right)^{-1} A^{t}$ - gymnastics with error bar estimates
- Derive emittance and betas after σ_{ij} is found by inversion

$$
\varepsilon_{x}^{2}=\sigma_{11} \sigma_{22}-\sigma_{12}^{2} \quad \beta_{x}=\sigma_{11} / \varepsilon_{x} \quad \alpha_{x}=-\sigma_{12} / \varepsilon_{x}
$$

- Can use several more wire scanners which allows χ^{2} calculation for goodness-of-fit estimate

Fix beam matrix a.k.a. Beta match

 UNIVERSITET- Uncoupled beam matrix

$$
\varepsilon_{x}\left(\begin{array}{cc}
\beta_{x} & -\alpha_{x} \\
-\alpha_{x} & \gamma_{x}
\end{array}\right)
$$

$\gamma_{x}=\frac{1+\alpha_{x}^{2}}{\beta_{x}}$

- need four quadrupoles to adjust $\alpha_{x}, \beta_{x}, \alpha_{y}$, and β_{y}
- non-linear optimizer (MADX matching module)

V. Ziemann: Imperfections and Correction

Waist knob

- Finding quad-excitations to match beta functions (or sigma matrix) is a non-linear problem
- and depends on the incoming beam matrix.
- Tricky, but one sometimes can build knobs, based on the design optics, to correct some observable
- conceptually: linearizing around a working point
- Example:
- IP-waist knob
- dax /dQuad $_{1,2}$ and da $_{y} /$ dQuad $_{1,2}$

Beam lines: Skew-gradient errors

- Transfer matrix for a skew-quadrupole
- Vertical part of the sigma-matrix after skew quad

$$
\left(\begin{array}{ll}
\hat{\sigma}_{33} & \hat{\sigma}_{34} \\
\hat{\sigma}_{34} & \hat{\sigma}_{44}
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{33} & \sigma_{34} \\
\sigma_{34} & \sigma_{44}+\sigma_{11} / f^{2}
\end{array}\right)
$$

 on paper!

- Projected emittance after skew quadrupole

$$
\hat{\varepsilon}_{y}^{2}=\varepsilon_{y}^{2}+\frac{\sigma_{11} \sigma_{33}}{f^{2}}=\varepsilon_{y}^{2}\left(1+\frac{\varepsilon_{x}}{\varepsilon_{y}} \frac{\beta_{x} \beta_{y}}{f^{2}}\right)
$$

- Problem with flat beams. Increases with ratio $\varepsilon_{x} / \varepsilon_{y}$ and is proportional to both beta functions.
- Problem in Final-Focus Systems with flat beams. Solenoid fields need compensation.

Exercise 44: add skewquadrupoles to the code ${ }^{54}$ and play around with it

That's all for today, folks

- Take-home messages
- Linear superposition of dipole-like errors.
- Gradient errors mess up beam sizes.
- Beta beat and $B_{\text {mag }}$
- Skew gradients cause problems with flat beams.
- Next time
- same thing as today, but in rings, where the beam bites its own tail.

Things to think about...

- Can you determine the relative excitation of the three steering magnets without doing matrix algebra?

- You've carefully checked the optics of your linac before powering the RF and found it to be perfect, but then nothing works when you power the accelerating structures. Any ideas why?
- How many steerers and quads do you need to adjust the vertical position and angle and, additionally, the horizontal Twiss parameters?

Imperfections in a Ring

- Effect of a localized kick on orbit
- Effect of a localized gradient error
- Effect of a skew gradient error
- Stop-bands and resonances

Dipole errors in a Ring

- Beam bites its tail \rightarrow periodic boundary conditions \rightarrow closed orbit
- Orbit after perturbation at j

$$
\vec{x}_{j}=R^{j j} \vec{x}_{j}+\vec{q}_{j}
$$

$$
\vec{x}_{j}=\left(1-R^{j j}\right)^{-1} \vec{q}_{j}
$$

- Propagate to BPM i

$$
\vec{x}_{i}=R^{i j} \vec{x}_{j}=R^{i j}\left(1-R^{j j}\right)^{-1} \vec{q}_{j}=C^{i j} \vec{q}_{j}
$$

- Response coefficients $\quad C^{i j}=R^{i j}\left(1-R^{j j}\right)^{-1}$
- just like transfer matrix in beam line, but with built-in closed-orbit constraint.

Response coefficients with beta functions

- Express transfer-matrices through beta functions

$$
\binom{x}{x^{\prime}}_{j}=\left(\begin{array}{cc}
\cos (2 \pi Q) & \beta_{j} \sin (2 \pi Q) \\
-\sin (2 \pi Q) / \beta_{j} & \cos (2 \pi Q)
\end{array}\right)\binom{x}{x^{\prime}}_{j}+\binom{0}{\theta}
$$

- Solve for closed orbit

$$
\binom{x}{x^{\prime}}_{j}=\frac{\theta}{2}\binom{\beta_{j} \cot (\pi Q)}{1}
$$

- Transfer matrix to BPM i

$$
R^{i j}=\left(\begin{array}{cc}
\sqrt{\beta_{i}} & 0 \\
-\alpha_{i} / \sqrt{\beta_{i}} & 1 / \sqrt{\beta_{i}}
\end{array}\right)\left(\begin{array}{cc}
\cos \mu_{i j} & \sin \mu_{i j} \\
-\sin \mu_{i j} & \cos \mu_{i j}
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{\beta_{j}} & 0 \\
0 & \sqrt{\beta_{j}}
\end{array}\right)
$$

- Response coefficient

$$
x_{i}=\left[\frac{\sqrt{\beta_{i} \beta_{j}}}{2 \sin (\pi Q)} \cos \left(\mu_{i j}-\pi Q\right)\right] \theta \quad \begin{gathered}
\text { at integer tunes } \\
C_{12}^{i j}=\frac{\partial B P M_{i}(x)}{\partial \operatorname{COR}_{j}(x}
\end{gathered}
$$

Quadrupole alignment amplification factor

- Consider randomly displaced quadrupoles

$$
\theta_{j}=d_{j} / f \quad\left\langle d_{j}\right\rangle=0 \quad\left\langle d_{j} d_{k}\right\rangle=\sigma_{d}^{2} \delta_{j k}
$$

- Incoherently (RMS) add all contributions

$$
\begin{aligned}
\left\langle x_{i}^{2}\right\rangle & =\left\langle\left[\sum_{j} \frac{\sqrt{\beta_{i} \beta_{j}}}{2 \sin \pi Q} \cos \left(\mu_{i j}-\pi Q\right) \frac{d_{j}}{f_{j}}\right]\left[\sum_{k} \frac{\sqrt{\beta_{i} \beta_{k}}}{2 \sin \pi Q} \cos \left(\mu_{i k}-\pi Q\right) \frac{d_{k}}{f_{k}}\right]\right\rangle \\
& =\sum_{j} \frac{\beta_{i} \beta_{j}}{(2 \sin \pi Q)^{2}} \cos ^{2}\left(\mu_{i j}-\pi Q\right) \frac{\sigma_{d}^{2}}{f_{j}^{2}}
\end{aligned}
$$

- Misalignment amplification factor $\sqrt{\left\langle x_{i}^{2}\right\rangle} \approx \sqrt{N_{q}} \frac{\bar{\beta} / \bar{f}}{2 \sqrt{2} \sin \pi Q}{ }^{\sigma_{d}}$
- large rings with large N_{q} are sensitive,
- such as LHC and FCC.

Response Coefficients with RF

- Radio-frequency system constrains the revolution time

$$
\frac{\Delta T}{T}=\frac{\Delta C}{C}-\frac{\Delta v}{v}=\left(\alpha-\frac{1}{\gamma^{2}}\right) \delta
$$

- but a horizontal kick causes a horizontal closed orbit distortion which causes the circumference to change by $\Delta C=D_{x} \theta_{x}$ (6×6 TM is symplectic, and if uncoupled: $R_{16}=R_{52}$)
- Since RF fixes the revolution frequency the momentum of the particle has to adjust to $\delta=-D_{j} \theta / \eta C$
- ...and the particle moves on a dispersion trajectory.
- Complete response coefficient between BPM $_{i}$ and dipole error or $\mathrm{COR}_{\mathrm{j}}$

$$
C_{12}^{i j}=\left[\frac{\sqrt{\beta_{i} \beta_{j}}}{2 \sin (\pi Q)} \cos \left(\mu_{i j}-\pi Q\right)-\frac{D_{i} D_{j}}{\eta C}\right]
$$

Orbit Correction in a Ring

UNIVERSITET

- Every steering magnet affects every BPM
- orbit response coefficients and matrix $C^{i j}=R^{i j}\left(1-R^{j j}\right)^{-1}$
- Compensate measured positions x_{i} by inverting

$$
\left(\begin{array}{c}
-x_{1} \\
-x_{2} \\
\vdots \\
-x_{m}
\end{array}\right)=\left(\begin{array}{cccc}
C_{12}^{11} & C_{12}^{12} & \ldots & C_{12}^{1 n} \\
C_{12}^{21} & C_{12}^{22} & \ldots & C_{12}^{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{12}^{m 1} & C_{12}^{m 2} & \cdots & C_{12}^{m n}
\end{array}\right)\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right)
$$

- and also in the vertical plane
- left-multiply with diagonal BPM error matrix $\bar{\Lambda}=\operatorname{diag}\left(\frac{1}{\sigma_{1}}, \ldots, \frac{1}{\sigma_{n}}\right)$
- use either calculated or measured response matrix
- inversion with pseudo-inverse, MICADO, or SVD

Example: orbit correction

UPPSALA UNIVERSITET

Vertical orbit in LHC, before and after correction

Steering synchrotron beam lines

- steer synchrotron light beam onto experiment
- fix angle at source point
- incorporate in orbit correction by +L,vBPM,-L

Dispersion-free steering

- Steering magnets are small dipoles and also affect the dispersion (in ring and linac) besides the orbit.
- Take into account with dispersion response matrix $S_{i j}=d D_{i} / d \theta_{j}=d^{2} x_{i} / d \delta d \theta_{j}$ ($\left.D_{i}=d x_{i} / d \delta\right)$
- Either numerically or from measurements
- Simultaneously correct orbit and dispersion
- weight with Σs
- more constraints
- same number of correctors

Gradient Errors in a Ring

- Add a gradient error (modeled as a thin quad) to a ring with $\mu=2 \pi Q$

$$
\begin{aligned}
R_{Q} R & =\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\frac{1+\alpha^{2}}{\beta} \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-(\cos \mu+\alpha \sin \mu) / f+\gamma \sin \mu & \cos \mu-\alpha \sin \mu-(\beta / f) \sin \mu
\end{array}\right)
\end{aligned}
$$

- Trace gives the perturbed tune $\bar{Q}=Q+\Delta Q$

$$
2 \cos (2 \pi(Q+\Delta Q))=2 \cos (2 \pi Q)-\frac{\beta}{f} \sin (2 \pi Q)
$$

- and if β / f is small, the tune-shift is

$$
\Delta Q \approx \frac{\beta}{4 \pi f}
$$

- Gradient errors change the tune!

Changes of the beta function and stop bands

- From R_{12} get the change in the beta function

$$
\begin{gathered}
\bar{\beta}=\frac{\beta \sin (2 \pi Q)}{\sin (2 \pi(Q+\Delta Q))} \approx \beta[1+2 \pi \Delta Q \cot (2 \pi Q)] \\
\frac{\Delta \beta}{\beta}=2 \pi \Delta Q \cot (2 \pi Q) \approx \frac{\beta}{2 f} \cot (2 \pi Q)
\end{gathered}
$$

- Divergences at half-integer values of the tune
- Stability requires

$$
\left|\cos (2 \pi Q)-\frac{\beta}{2 f} \sin (2 \pi Q)\right| \leq 1
$$

- stop-band width

Measuring the Tune

- Kick beam and look at BPM difference-signal on spectrum analyzer
- and dividing the observed frequency by the revolution frequency gives the fractional part of the tune
- Turn by turn BPM recordings and FFT
- is it Q or $1-\mathrm{Q}$?

```
Qx=0.616;
n=1:1024;
    x=sin(2*pi*Qx*n);
```

- change QF and see which way the tune moves
- PLL in LHC: Beam is band-pass, tickle it, and detect synchronously

Tune Correction

- Use a variable quadrupole with $1 / f=\Delta k_{1} l$
- Changes both Q_{x} and $Q_{y} \quad \Delta Q_{x}=\frac{\beta_{1 x}}{4 \pi f_{1}} \quad$ and $\quad \Delta Q_{y}=-\frac{\beta_{1 y}}{4 \pi f_{1}}$
- Use two independent quadrupoles

$$
\begin{aligned}
\Delta Q_{x} & =\frac{\beta_{1 x}}{4 \pi f_{1}}+\frac{\beta_{2 x}}{4 \pi f_{2}} \\
\Delta Q_{y} & =-\frac{\beta_{1 y}}{4 \pi f_{1}}-\frac{\beta_{2 y}}{4 \pi f_{2}}
\end{aligned} \quad\binom{\Delta Q_{x}}{\Delta Q_{y}}=\frac{1}{4 \pi}\left(\begin{array}{rr}
\beta_{1 x} & \beta_{2 x} \\
-\beta_{1 y} & -\beta_{2 y}
\end{array}\right)\binom{1 / f_{1}}{1 / f_{2}}
$$

- Solve by inversion

$$
\binom{1 / f_{1}}{1 / f_{2}}=\frac{-4 \pi}{\beta_{1 x} \beta_{2 y}-\beta_{2 x} \beta_{1 y}}\left(\begin{array}{cc}
-\beta_{2 y} & -\beta_{2 x} \\
\beta_{1 y} & \beta_{1 x}
\end{array}\right)\binom{\Delta Q_{x}}{\Delta Q_{y}}
$$

- Quads on same power supply \rightarrow sum of betas

Measuring beta functions

- Change quadrupole and observe tune variation

$$
\Delta Q_{x}=\frac{\beta_{1 x}}{4 \pi f_{1}} \quad \text { and } \quad \Delta Q_{y}=-\frac{\beta_{1 y}}{4 \pi f_{1}}
$$

- Need independent power supplies
- or piggy-back boost supply
- or a shunt resistor
- May get sums of betas in quads-on-the-same-power-supply.

Model Calibration \#1

- Compare measured $\hat{C}^{i j}$ orbit response matrix to computer model $C^{i j}$
- enormous amount of data $2 \times N_{\text {bom }} X N_{\text {cor }}$
- and blame the difference on quad gradients g_{k} or other parameters p_{1}
- much fewer fit-parameters $\mathrm{N}_{\text {quad }}$ and $\mathrm{N}_{\text {para }}$

$$
\hat{C}^{i j}-C^{i j}=\sum_{k} \frac{\partial C^{i j}}{\partial g_{k}} \Delta g_{k}+\sum_{l} \frac{\partial C^{i j}}{\partial p_{l}} \Delta p_{l}
$$

- First used in SPEAR and later perfected in NSLS \rightarrow LOCO

Model Calibration \#2

- Normally the parameters p_{l} are BPM and corrector scale errors
- fit for $N_{\text {quad }}$ gradients and $2 x\left(N_{b p m}+N_{\text {cor }}\right)$ scales

$$
\hat{C}^{i j}-C^{i j}=\sum_{k} \frac{\partial C^{i j}}{\partial g_{k}} \Delta g_{k}+C^{i j} \Delta x^{i}-C^{i j} \Delta y^{j}
$$

- Determine derivatives $\partial C^{i j} / \partial g_{k}$ numerically by changing a gradient and re-calculating all response coefficients, then taking differences
- BPM-cor degeneracy \rightarrow SVD needed to invert
- Converges, if $X^{2} / D O F$ is close to unity

micro-LOCO

- 2 Quads, 2 BPM, 2 COR, only horizontal " C_{12} "
- ill-defined, but useful to see the structure of matrix
- gradient errors Δg, BPM scales Δx, corrector scales Δy
- Blame difference on $\Delta \mathrm{g}, \Delta \mathrm{x}, \Delta \mathrm{y} \quad C^{i j}=R^{i j}\left(1-R^{j j}\right)^{-1}$

Experience

- SPEAR: could explain measured tunes to within 4×10^{-3} from quadrupole settings which had percent errors (J. Corbett, M. Lee, VZ, PAC93).
- NSLS: LOCO, $\Delta \beta / \beta=10^{-3}$, dispersion fixed, emittance factor 2 improved (J. Safranek, NIMA 388, 1997)

- and practically every light source since then uses it.

Skew-gradient stop bands

- Why are skew-gradient errors bad?
- they also add stop bands along the diagonals
- Ring with single skew
- with strength $\sqrt{\beta_{x} \beta_{y}} / f=0.2$
- Calculate the eigentunes
- Edwards-Teng algorithm
- for each pair Q_{x}, Q_{y}
- make cross if unstable
- complex or NAN in Matlab

 UNIVERSITET- BPM turn-by-turn data cross talk, beating

- Closest tune
- try to make the tunes equal with an upright quad
- measure tunes
- coupling 'repels' the tunes

UPPSALA UNIVERSITET

Coupling: mechanical analogy

- Two weakly coupled oscillators: simple to find the
equations of motion

$$
\begin{aligned}
& 0=m \ddot{x}+\left(k_{x}+c\right) x-c y \\
& 0=m \ddot{y}+\left(k_{y}+c\right) y-c x
\end{aligned}
$$

- and eigen-frequencies

$$
\omega^{2}=\frac{k_{x}+k_{y}+2 c}{2 m} \pm \sqrt{\left(\frac{k_{x}-k_{y}}{2 m}\right)^{2}+\frac{c^{2}}{m^{2}}}
$$

- Minimum tune separation
- Excite one mass, get beating
V. Ziemann: Imperfections and Correction

Coupling correction

- Use a single skew-quad if that is all you have to minimize the closest tune.
- Otherwise build knobs for the four resonance-driving terms with normalized skew gradients

$$
\begin{aligned}
& \left(\begin{array}{c}
\operatorname{Re}\left(F_{-}\right) \\
\operatorname{Im}\left(F_{-}\right) \\
\operatorname{Re}\left(F_{+}\right) \\
\operatorname{Im}\left(F_{+}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(\mu_{x 1}-\mu_{y 1}\right) & \cdots & \cos \left(\mu_{x 4}-\mu_{y 4}\right) \\
\sin \left(\mu_{\mu_{1}}-\mu_{y 1} 1\right. & \cdots & \sin \left(\mu_{x 4}-\mu_{y y}\right) \\
\cos \left(\mu_{x 1}+\mu_{y 1}\right) & \cdots & \cos \left(\mu_{x 4}+\mu_{y y}\right) \\
\sin \left(\mu_{x 1}+\mu_{y 1}\right) & \cdots & \sin \left(\mu_{x 4}+\mu_{y 4}\right)
\end{array}\right)\left(\begin{array}{c}
\kappa_{1} \\
\kappa_{2} \\
\kappa_{3} \\
\kappa_{4}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \kappa_{i}=\sqrt{\beta_{x i} \beta_{y i}} / 2 f_{i}
\end{aligned}
$$

- and empirically minimize each RDT,
- often F. (if tunes are close) is sufficient
- Choose phases μ to make the condition number of the matrix as close to unity as possible.

Measuring Chromaticity Q'

- Reminder: chromaticity is the momentumdependence of the tunes: $Q=Q_{0}+Q^{\prime} \delta$
- Force the momentum to change by changing the RF frequency. The beam follows, because synchrotron oscillations are stable.

$$
-\frac{\Delta f_{r f}}{f_{r f}}=\frac{\Delta T}{T}=\eta \delta=\left(\alpha-\frac{1}{\gamma^{2}}\right) \delta \quad \rightarrow \quad \delta=-\frac{1}{\eta} \frac{\Delta f_{r f}}{f_{r f}}
$$

- Plot tune change ΔQ versus $\Delta f_{r f} / f_{r f}$. The slope is proportional to (1/chromaticity Q') [can also use PLL]

$$
Q^{\prime}=\frac{\Delta Q}{\delta}=-\eta \frac{\Delta Q}{\Delta f_{r f} / f_{r f}}
$$

Chromaticity correction

- Need controllable and momentum-dependent quadrupole to compensate or at least change the natural chromaticity $Q^{\prime}=d Q / d \delta$.
- Momentum dependent feed-down: Use sextupole with dispersion, replace d_{x} by $D_{x} \delta$

$$
\left.\Delta x^{\prime}-i \Delta y^{\prime}=\frac{k_{2} L}{2}\left[(x+i y)^{2}+2 D_{x} \delta(x+i y)+D_{x}^{2} \delta^{2}\right)\right]
$$

- Linear (quadrupolar) term with effective focal length that is momentum dependent

$$
\frac{1}{f_{\delta}}=k_{2} L D_{x} \delta
$$

Chromaticity correction \#2

- Momentum-dependent tune shifts

$$
\Delta Q_{x}=\frac{k_{2} L D_{x} \beta_{x}}{4 \pi} \delta \quad \Delta Q_{y}=-\frac{k_{2} L D_{x} \beta_{y}}{4 \pi} \delta
$$

- Build correction matrix in the same way as for the tune correction for $\Delta Q^{\prime}=\Delta Q / \delta$

$$
\binom{\Delta Q_{x}^{\prime}}{\Delta Q_{y}^{\prime}}=\frac{1}{4 \pi}\left(\begin{array}{cc}
D_{1 x} \beta_{1 x} & D_{2 x} \beta_{2 x} \\
-D_{1 x} \beta_{1 y} & -D_{2 x} \beta_{2 y}
\end{array}\right)\binom{\left(k_{2} L\right)_{1}}{\left(k_{2} L\right)_{2}}
$$

- Invert to find sextupole excitations $k_{2} L$ that add chromaticities to partially compensate the natural

Winding down

- We looked at the sources of all evil, the imperfections,
- and how they affect
- the orbit
- the optics (beta functions, etc)
- and figured out how to fix it.
- Lots of things to think about, for example...

Things to think about...

- In your 3 GeV electron ring ($\mathrm{B} \boldsymbol{\rho} \approx 10 \mathrm{Tm}$) you have 0.5 m long quads with a gradient of $d B_{y} / d x=5 \mathrm{~T} / \mathrm{m}$. What is their approximate focal length?
- The beta function at the quad is about 8.5 m . By what percentage do you have to change the quad excitation in order to change the tune by 3×10^{-3} ?
- Find out what's wrong in your accelerator at home and fix it.

Bloopers

- LEP vacuum pipe soldering
- Beer bottle in LEP
- Stand-up metal-piece in magnet
- Shielding in SLC damping ring
- These non-standard 'imperfections' are very difficult to identify, but it is good to keep in mind that even such odd-balls occur.

