

Beam Instrumentation & Diagnostics Part 2

CAS Introduction to Accelerator Physics Kaunas, 23rd of September 2022

Peter Forck

Gesellschaft für Schwerionenforschnung (GSI)
p.forck@gsi.de

2nd part of this lecture covers:

- > Transverse profile techniques
- > Emittance determination at transfer lines
- > Diagnostics for bunch shape determination

Copyright statement and speaker's release for video publishing

The author consents to the photographic, audio and video recording of this lecture at the CERN Accelerator School. The term "lecture" includes any material incorporated therein including but not limited to text, images and references.

The author hereby grants CERN a royalty-free license to use his image and name as well as the recordings mentioned above, in order to post them on the CAS website.

The material is used for the sole purpose of illustration for teaching or scientific research. The author hereby confirms that to his best knowledge the content of the lecture does not infringe the copyright, intellectual property or privacy rights of any third party. The author has cited and credited any third-party contribution in accordance with applicable professional standards and legislation in matters of attribution.

Measurement of Beam Profile

The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing.

→ Profiles have to be controlled at many locations.

Synchrotrons: Lattice functions β (s) and D(s) are fixed \Rightarrow width σ and emittance ε are:

$$\sigma_x^2(s) = \varepsilon_x \beta_x(s) + \left(D(s) \frac{\Delta p}{p}\right)^2$$
 and $\sigma_y^2(s) = \varepsilon_y \beta_y(s)$ (no vertical bend)

Transfer lines: Lattice functions are 'smoothly' defined due to variable input emittance.

Typical beam sizes:

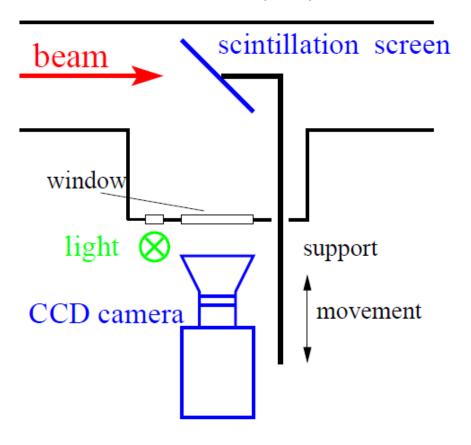
e-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

A great variety of devices are used:

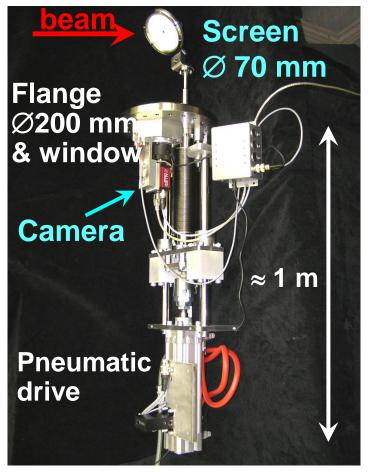
- ➤ Optical techniques: Scintillating screens (all beams), synchrotron light monitors (e⁻), optical transition radiation (e⁻, high-energetic p), ionization profile monitors (protons)
- Electronics techniques: Secondary electron emission SEM grids, wire scanners (all)

Measurement of Beam Profile

Outline:


- Scintillation screens:emission of light, universal usage, limited dynamic range
- Optical Transition Radiation
- > SEM-Grid
- ➤ Wire scanner
- > Ionization Profile Monitor
- > Synchrotron Light Monitors
- Summary

Scintillation Screen



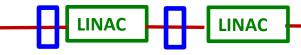
Scintillation: Particle's energy loss in matter causes emission of light

 \rightarrow the most direct way of profile observation as used from the early days on!

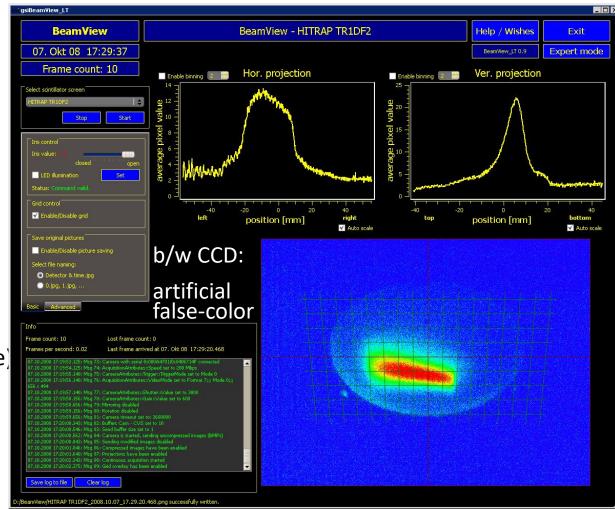
Pneumatic drive with Ø70 mm screen:

Example of Screen based Beam Profile Measurement

Advantage of screens:

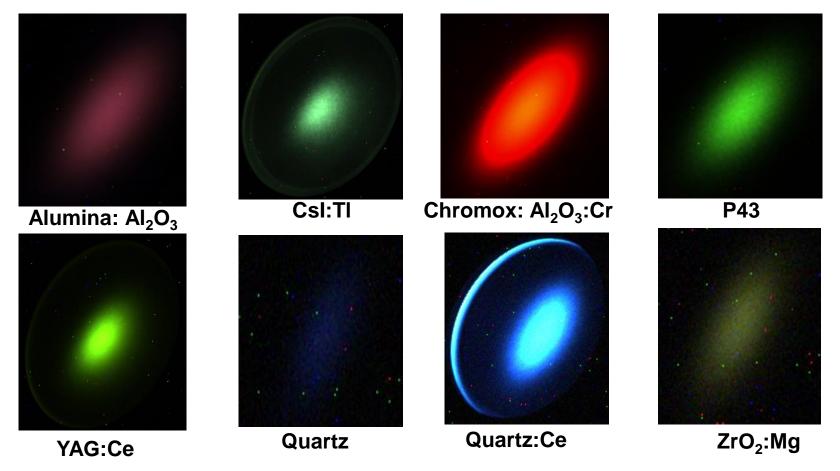

- ➤ Direct 2-dim measurement
- ➤ High spatial resolution
- ➤ Cheap realization
- ⇒ widely used at transfer lines

Disadvantage of screens:


- ➤ Intercepting device
- > Some material might be brittle
- > Possible low dynamic range
- ➤ Might be destroyed by the beam (radiation demage)

Observation with CMOS camera

Scintillation Screen (beam stopped)

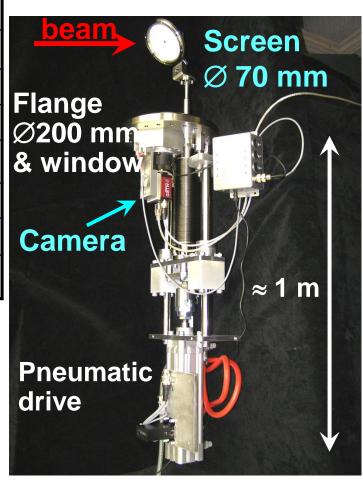

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen

Light output from various Scintillating Screens

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u

- > Very different light yield i.e. photons per ion's energy loss
- > Different wavelength of emitted light

Material Properties for Scintillating Screens


Some materials and their basic properties:

Name	Туре	Material	Activ.	Мах. λ	Decay
Chromox	Cera- mics	Al ₂ O ₃	Cr	700nm	≈ 10ms
Alumina		Al ₂ O ₃	Non	380nm	≈ 10ns
YAG:Ce	Crystal	Y ₃ Al ₅ O ₁₂	Ce	550nm	200ns
LYSO		Lu _{1.8} Y _{.2} SiO ₅	Ce	420nm	40ns
P43	Powder of gains Ø≈10μm on glass	Gd ₂ O ₃ S	Tb	545nm	1ms
P46		Y ₃ Al ₅ O ₁₂	Ce	530nm	300ns
P47		Y ₂ SiO ₅	Ce&Tb	400nm	100ns

Properties of a good scintillator:

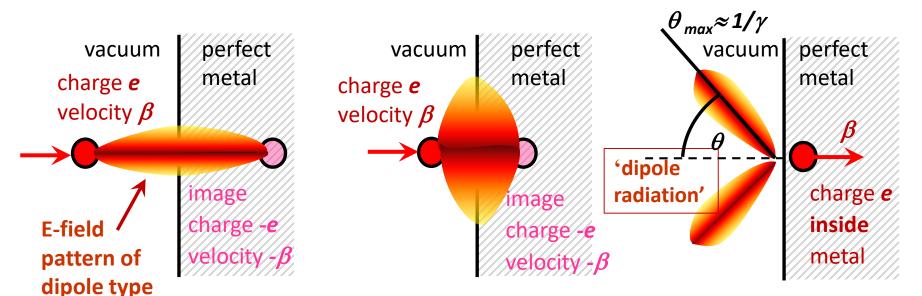
- Large light output at optical wavelength
 - → standard CCD camera can be used
- \triangleright Large dynamic range \rightarrow usable for different currents
- \triangleright Short decay time \rightarrow observation of variations
- ➤ Radiation hardness → long lifetime
- ightharpoonup Good mechanical properties ightharpoonup typ. size up to ho 10 cm (Phosphor Pxx grains of ho \approx 10 μ m on glass or metal).

Standard drive with P43 screen

Measurement of Beam Profile

Outline:

- Scintillation screens:emission of light, universal usage, limited dynamic range
- Optical Transition Radiation:
 light emission due to crossing material boundary, mainly for relativistic beams
- > SEM-Grid
- **≻Wire scanner**
- > Ionization Profile Monitor
- > Synchrotron Light Monitors
- > Summary


Optical Transition Radiation: Depictive Description

Optical Transition Radiation OTR for a single charge *e***:**

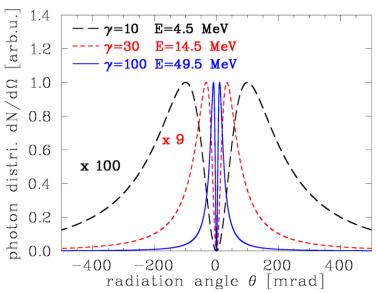
Assuming a charge *e* approaches an ideal conducting boundary e.g. metal foil

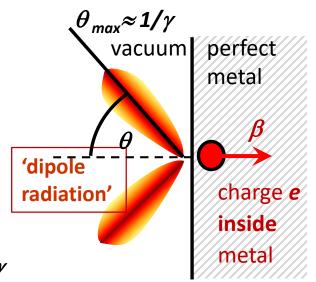
- image charge is created by electric field
- dipole type field pattern
- \succ field distribution depends on velocity $oldsymbol{eta}$ and Lorentz factor γ due to relativistic trans. field increase
- \triangleright penetration of charge through surface within t < 10 fs: sudden change of source distribution
- emission of radiation with dipole characteristic

sudden change charge distribution rearrangement of sources ⇔ radiation

Other physical interpretation: Impedance mismatch at boundary leads to radiation

Optical Transition Radiation: Depictive Description


Optical Transition Radiation OTR can be described in classical physics:


approximated formula for normal incidence & in-plane polarization:

$$\frac{d^2W}{d\theta \,d\omega} \approx \frac{2e^2\beta^2}{\pi \,c} \cdot \frac{\sin^2\theta \cdot \cos^2\theta}{\left(1 - \beta^2 \cos^2\theta\right)^2}$$

W: radiated energy

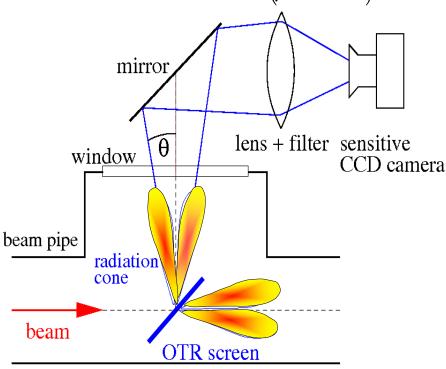
 ω : frequency of wave

Angular distribution of radiation in optical spectrum:

- \triangleright lope emission pattern depends on velocity or Lorentz factor γ
- \triangleright peak at angle $\theta \approx 1/\gamma$
- \triangleright emitted energy i.e. amount of photons scales with $W \propto \beta^2$
- \blacktriangleright broad wave length spectrum (i.e. no dependence on ω)
- → suited for high energy electrons

sudden change charge distribution rearrangement of sources ⇔ radiation

Technical Realization of Optical Transition Radiation OTR

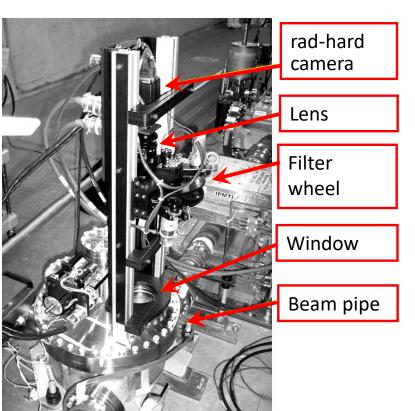

OTR is emitted by charged particle passage through a material boundary.

Photon distribution: within a solid angle $d\Omega$ and

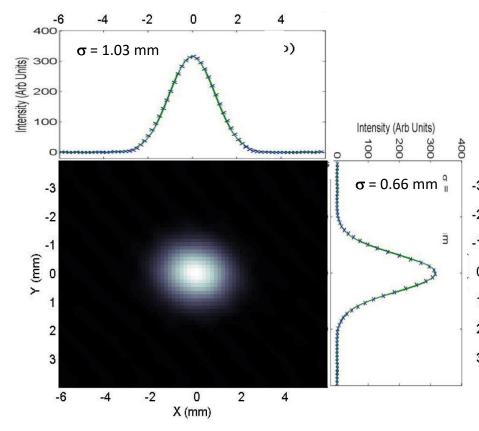
Photon distribution: within a solid angle
$$d\Omega$$
 and $\frac{dN_{photon}}{d\Omega} = N_{be}$ Wavelength interval λ_{begin} to λ_{end}

 $\frac{dN_{photon}}{d\Omega} = N_{beam} \cdot \frac{2e^{2}\beta^{2}}{\pi c} \cdot \log\left(\frac{\lambda_{begin}}{\lambda_{end}}\right) \cdot \frac{\theta^{2}}{\left(v^{-2} + \theta^{2}\right)^{2}}$

- \triangleright Detection: Optical 400 nm < λ < 800 nm using image intensified CCD
- \triangleright Larger signal for relativistic beam $\gamma \gg 1$
- \triangleright Low divergence for $\gamma \gg 1 \Rightarrow$ large signal
- ⇒ well suited for e beams
- \Rightarrow p-beam used for $E_{kin} \gtrsim$ 10 GeV $\Leftrightarrow \gamma \gtrsim$ 10


- ➤ Insertion of thin Al-foil under 45°
- Observation of low light by CCD.

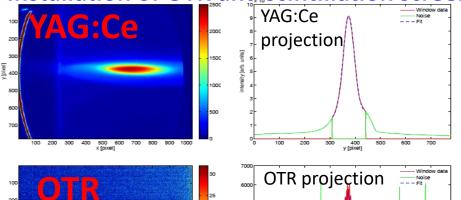
OTR-Monitor: Technical Realization and Results



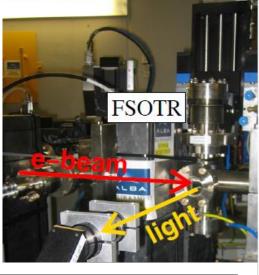
Example of realization at TERATRON:

Insertion of foil e.g. 5 μ m Kapton coated with 0.1 μ m Al Advantage: thin foil \Rightarrow low heating & straggling 2-dim image visible

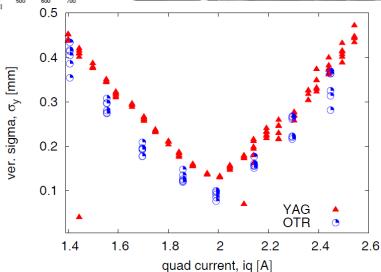
Results at FNAL-TEVATRON synchrotron with 150 GeV proton Using fast camera: Turn-by-turn measurement



Courtesy V.E. Scarpine (FNAL) et al., BIW'06


Optical Transition Radiation compared to Scintillation Screen

Example: ALBA LINAC 100 MeV


700 100 200 300 400 500 600 700 800 900 1000 x [givel]

Results:

Much more light from YAG:Ce for 100 MeV (γ =200) electrons light output $I_{YAG} \approx 10^{-5} I_{OTR}$

Broader image from YAG:Ce due to finite YAG:Ce thickness

Courtesy of U. Iriso et al., DIPAC'09

Comparison between Scintillation Screens and OTR

OTR: electrodynamic process \rightarrow beam intensity linear to # photons, high radiation hardness

Scint. Screen: complex atomic process \rightarrow saturation possible, for some low radiation hardness

OTR: thin foil Al or Al on Mylar, down to 0.25 µm thickness

→ minimization of beam scattering (Al is low Z-material e.g. plastics like Mylar)

Scint. Screen: thickness ≈ 1 mm inorganic, fragile material, not always radiation hard

OTR: low number of photons \rightarrow expensive image intensified CCD

Scint. Screen: large number of photons \rightarrow simple CCD sufficient

OTR: complex angular photon distribution \rightarrow resolution limited

Scint. Screen: isotropic photon distribution \rightarrow simple interpretation

OTR: large γ needed \rightarrow e⁻-beam with $E_{kin} > 100$ MeV, proton-beam with $E_{kin} > 100$ GeV

Scint. Screen: for all beams

Remark:

- **1. OTR:** beam angular distribution measurable \rightarrow beam emittance
- 2. OTR not suited for LINAC-FEL due to coherent light emission (not covered here) but scintillation screens can be used.

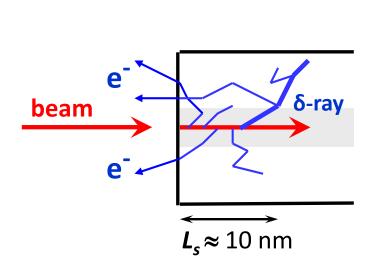
Measurement of Beam Profile

Outline:

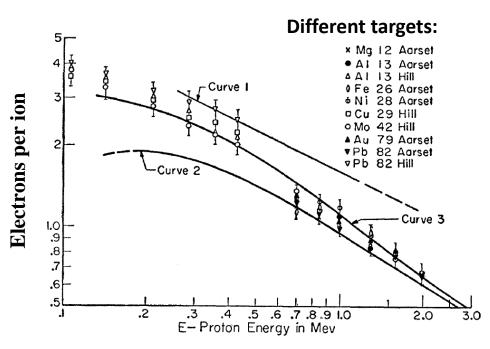
- Scintillation screens:emission of light, universal usage, limited dynamic range
- Optical Transition Radiation:
 light emission due to crossing material boundary, mainly for relativistic beams
- SEM-Grid: emission of electrons, workhorse, limited resolution
- ➤ Wire scanner
- > Ionization Profile Monitor
- > Synchrotron Light Monitors
- Summary

Secondary Electron Emission by Ion Impact

Energy loss of ions in metals close to a surface:


Closed collision with large energy transfer: \rightarrow fast e with $E_{kin} >> 100 \text{ eV}$

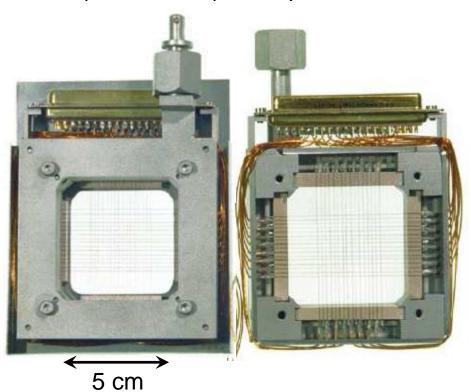
Distant collision with low energy transfer : \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$


- \rightarrow 'diffusion' & scattering with other e: scattering length $L_s \approx 1$ 10 nm
- \rightarrow at surface \approx 90 % probability for escape

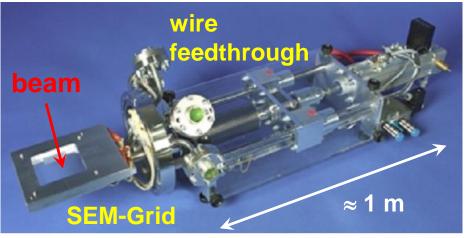
Secondary **electron yield** and energy distribution comparable for all metals!

 \Rightarrow **Y = const.** * **dE/dx** (Sternglass formula)

From E.J. Sternglass, Phys. Rev. 108, 1 (1957)



Secondary Electron Emission Grids = SEM-Grid



Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:

SEM-Grid drive on \varnothing 200 mm flange:

Parameter	Typ. value		
# wires per plane	10100		
Active area	(520 cm) ²		
Wire ∅	25100 μm		
Spacing	0.32 mm		
Material	e.g. W or Carbon		
Max. beam power	1 W/mm		

Secondary Electron Emission Grids = SEM-Grid

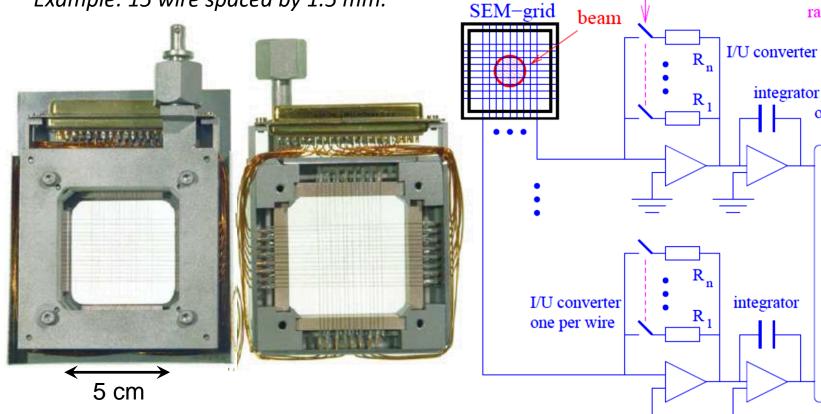
range

ADC

address

digital

electronics


range select

one per wire

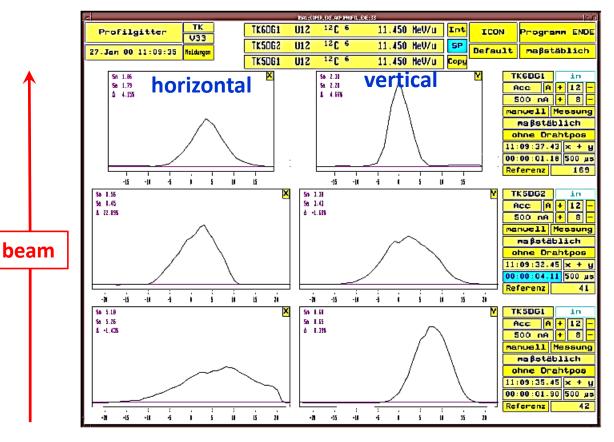
analog multiplexer

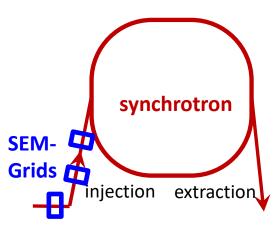
Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:

Each wire is equipped with one I/U converter different ranges settings by R_i

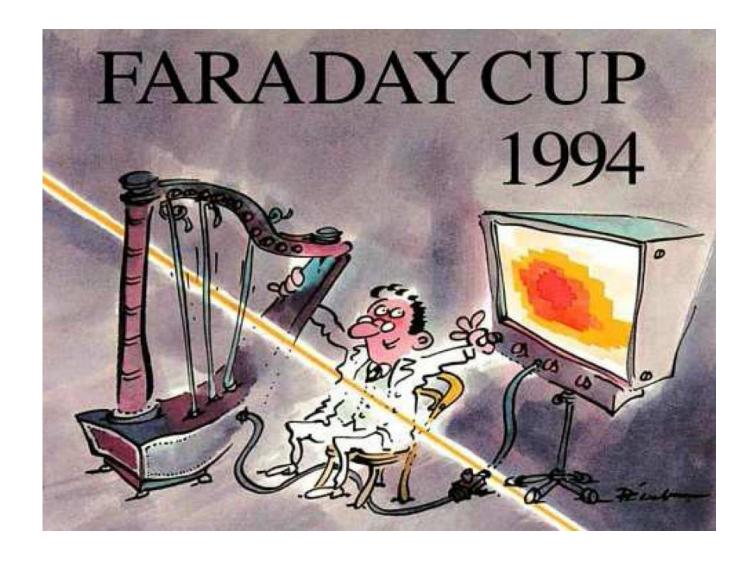
 \rightarrow very large dynamic range up to 10⁶.


Example of Profile Measurement with SEM-Grids



Even for low energies, several SEM-Grid can be used due to the \approx 80 % transmission

⇒ frequently used instrument beam optimization: setting of quadrupoles, energy....


Example: C^{6+} beam of 11.4 MeV/u at different locations at GSI-LINAC

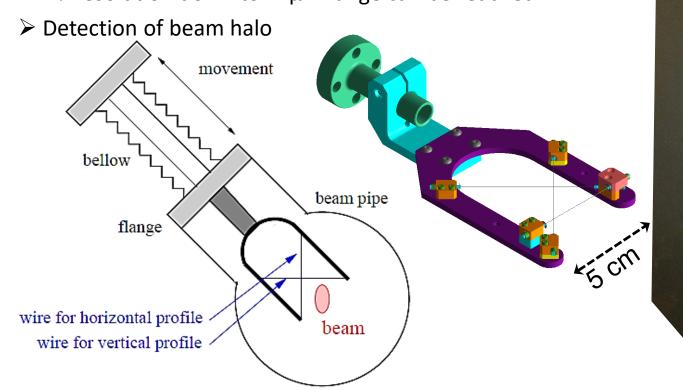
The Artist view of a SEM-Grid = Harp

Measurement of Beam Profile

Outline:

- Scintillation screens:emission of light, universal usage, limited dynamic range
- Optical Transition Radiation:
 light emission due to crossing material boundary, mainly for relativistic beams
- SEM-Grid:emission of electrons, workhorse, limited resolution
- Wire scanner:emission of electrons, workhorse, scanning method
- Ionization Profile Monitor
- > Synchrotron Light Monitors
- > Summary

Slow, linear Wire Scanner


Idea: One wire is scanned through the beam!

Wire diameter 100 μ m < d_{wire} < 10 μ m

Slow, linear scanner are used for:

Low energy protons

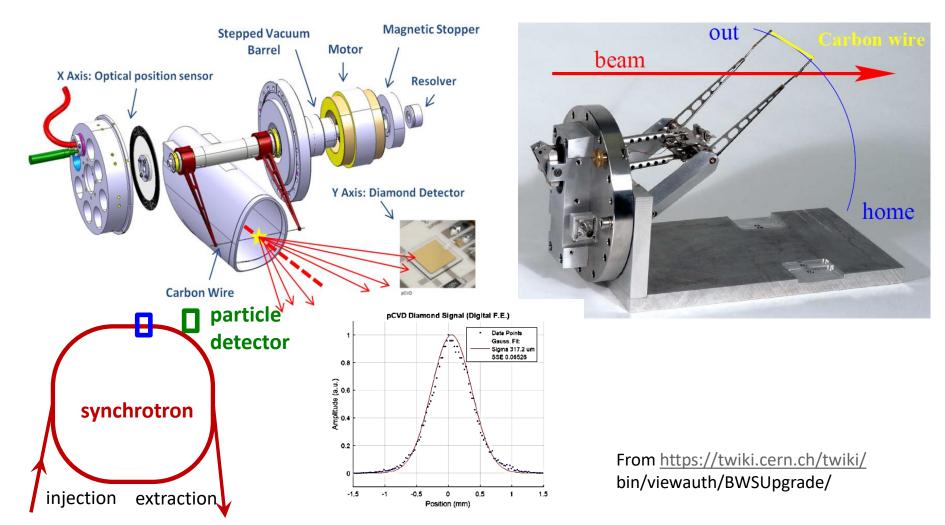
➤ High resolution measurements for e⁻ beam by de-convolution $\sigma^2_{beam} = \sigma^2_{meas} - d^2_{wire}$ ⇒ resolution down to 1 µm range can be reached

Example: Wires scanner at CERB LINAC4

Be

23

The Artist view of a Beam Scraper or Scanner

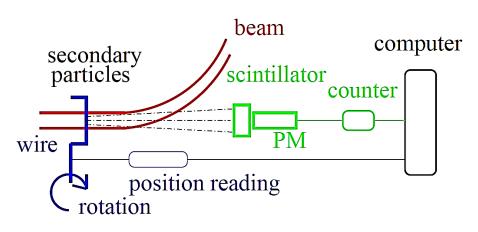


Fast, Flying Wire Scanner

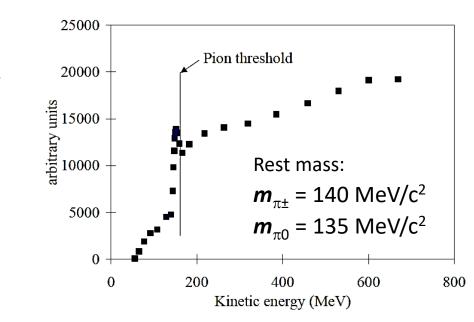
In a synchrotron one wire is scanned though the beam as fast as possible.

Fast pendulum scanner for synchrotrons; sometimes it is called 'flying wire':

Usage of Flying Wire Scanners


Material: carbon or SiC \rightarrow low Z-material for low energy loss and high temperature.

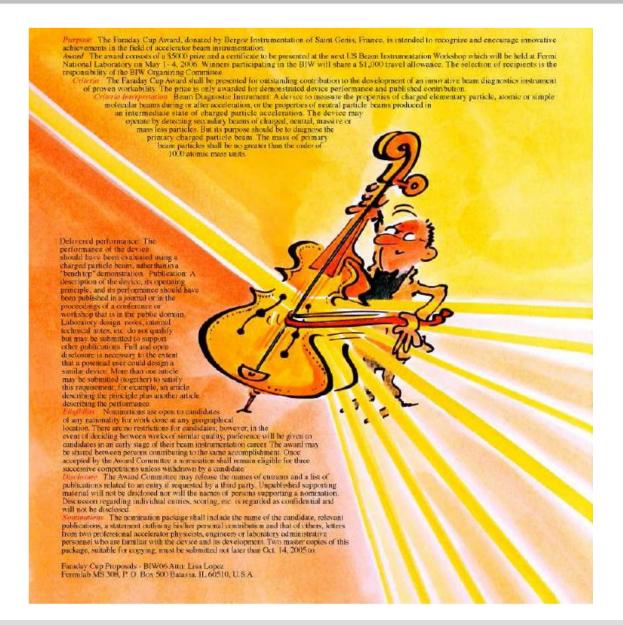
Thickness: down to 10 μ m \rightarrow high resolution.


Detection: High energy **secondary particles** with a detector like a beam loss monitor

Secondary particles:

Proton beam \rightarrow hadrons shower (π , n, p...) **Electron beam** \rightarrow Bremsstrahlung photons.

Proton impact on scanner at CERN-PS Booster:


Kinematics of flying wire:

Velocity during passage typically 10 m/s = 36 km/h and typical beam size \varnothing 10 mm \Rightarrow time for traversing the beam $t \approx 1$ ms Challenges: Wire stability for fast movement with high acceleration

U. Raich et al., DIPAC 2005

The Artist View of a Wire Scanner

Comparison between SEM-Grid and slow linear Wire Scanners

Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored

→ for pulsed LINACs precise synchronization is needed

Grid: Resolution of a grid is fixed by the wire distance (typically 1 mm)

Scanner: For slow scanners the resolution is about the wire thickness (down to 10 μm)

 \rightarrow used for e-beams having small sizes (down to 10 µm)

Grid: Needs one electronics channel per wire

→ expensive electronics and data acquisition

Scanner: Needs a precise movable feed-through \rightarrow expensive mechanics.

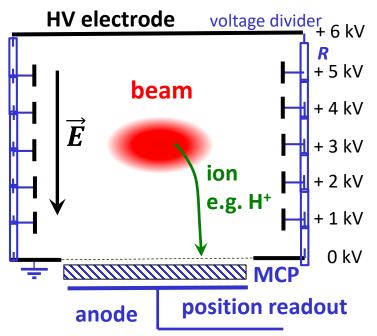
Flying wire:

Grid: Not adequate at synchrotrons for stored beam parameters

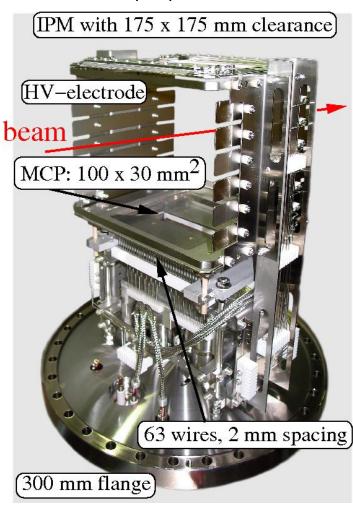
Scanner: At high energy synchrotrons: flying wire scanners are nearly non-destructive

Measurement of Beam Profile

Outline:


- Scintillation screens:emission of light, universal usage, limited dynamic range
- Optical Transition Radiation:
 light emission due to crossing material boundary, mainly for relativistic beams
- SEM-Grid:
 emission of electrons, workhorse, limited resolution
- Wire scanner:emission of electrons, workhorse, scanning method
- ➤ Ionization Profile Monitor: secondary particle detection from interaction beam-residual gas
- > Synchrotron Light Monitors
- > Summary

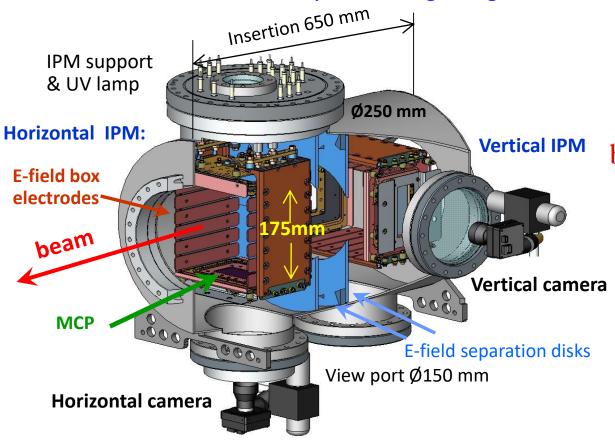
Ionization Profile Monitor at GSI Synchrotron


Non-destructive device for proton synchrotron:

- > Beam ionizes the residual gas by electronic stopping
- ➤ Gas ions or e⁻ accelerated by E -field ≈1 kV/cm
- Spatial resolved single particle detection

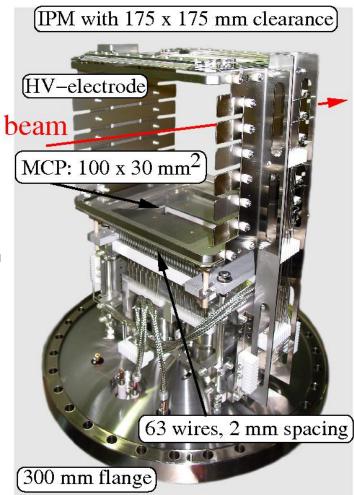
Typical vacuum pressure:

Transfer line: $N_2 \ 10^{-8} ... 10^{-6} \ mbar \cong 3.10^8 ... 3.10^{10} cm^{-3}$ Synchrotron: $H_2 \ 10^{-11} ... 10^{-9} \ mbar \cong 3.10^5 ... 3.10^7 cm^{-3}$ Realization at GSI synchrotron: One monitor per plane



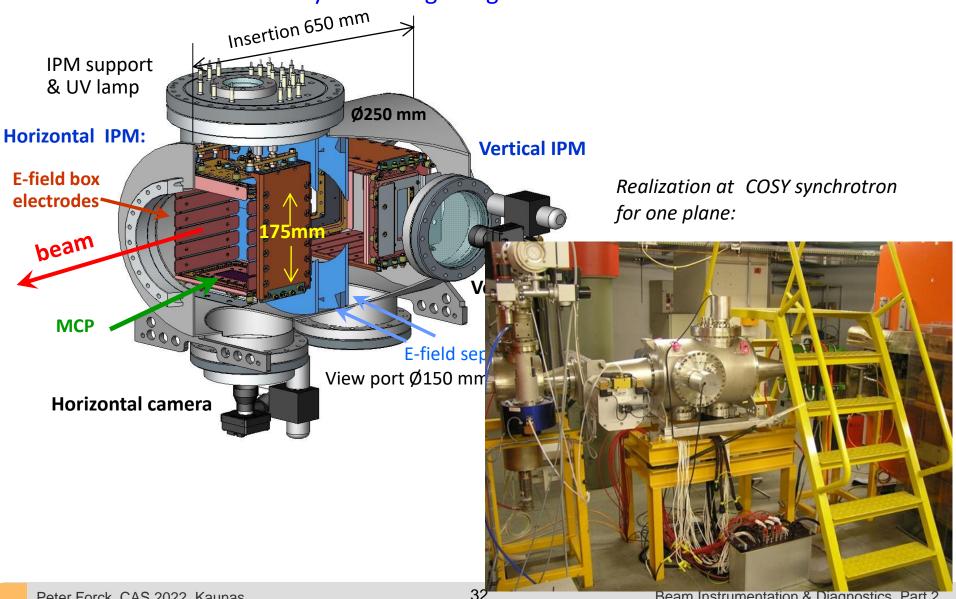
Ionization Profile Monitor Realization

The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:

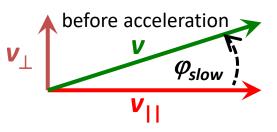

One monitor per plane

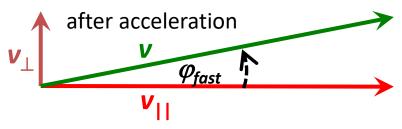
Typical vacuum pressure:

Transfer line: $N_2 10^{-8} ... 10^{-6}$ mbar $\approx 3.10^8 ... 3.10^{10}$ cm⁻³


Synchrotron: $H_2^{-10^{-11}}...10^{-9}$ mbar $\approx 3.10^{5}...3.10^{7}$ cm⁻³

Ionization Profile Monitor Realization


The realization for the heavy ion storage ring ESR at GSI:



'Adiabatic' Damping during Acceleration

The emittance $\varepsilon = \int dx dx'$ is defined via the position deviation and angle in **lab-frame**

After acceleration the longitudinal velocity is increased \Rightarrow angle φ is smaller

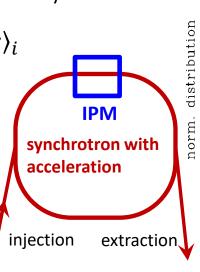
The angle is expressed in momenta: $x' = p_{\perp}/p_{||}$ the emittance is $\langle xx' \rangle = 0$: $\varepsilon = x \cdot x' = x \cdot p_{\perp}/p_{||}$

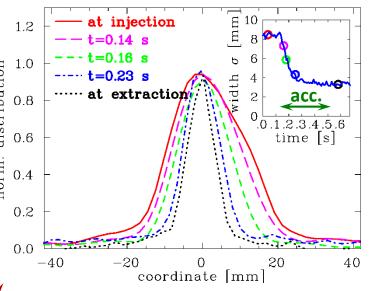
- \Rightarrow under ideal conditions the emittance can be normalized to the momentum $p_{||} = \gamma \cdot m \cdot \beta c$
- \Rightarrow normalized emittance $\varepsilon_{norm} = \beta \gamma \cdot \varepsilon$ is preserved with the Lorentz factor γ and velocity $\beta = v/c$

Example: Acceleration in GSI-synchrotron for C⁶⁺ from

6.7
ightarrow 600 MeV/u ($oldsymbol{\beta}$ = 12 ightarrow 79 %) observed by IPM

theoretical width: $\langle x \rangle_f = \sqrt{\frac{\beta_i \cdot \gamma_i}{\beta_f \cdot \gamma_f}} \cdot \langle x \rangle_i$


 $= 0.33 \cdot \langle x \rangle_i$


measured width: $\langle x \rangle_f \approx 0.37 \cdot \langle x \rangle_i$

IPM is well suited

for long time observations without beam disturbance

→ mainly used at proton synchrotrons

Measurement of Beam Profile

Outline:

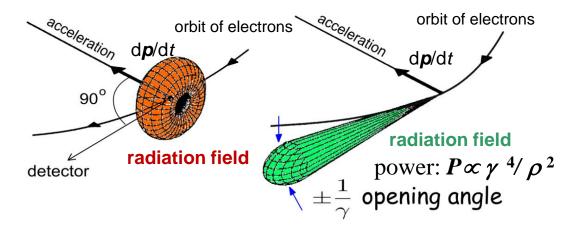
- Scintillation screens:emission of light, universal usage, limited dynamic range
- Optical Transition Radiation:
 light emission due to crossing material boundary, mainly for relativistic beams
- SEM-Grid:emission of electrons, workhorse, limited resolution
- Wire scanner:emission of electrons, workhorse, scanning method
- Ionization Profile Monitor:secondary particle detection from interaction beam-residual gas
- ➤ Synchrotron Light Monitors: photon detection of emitted synchrotron light in optical and X-ray range
- > Summary

Synchrotron Radiation Monitor

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light see lecture 'Electron Beam Dynamics' by Lenny Rivkin

This light is emitted

into a cone of

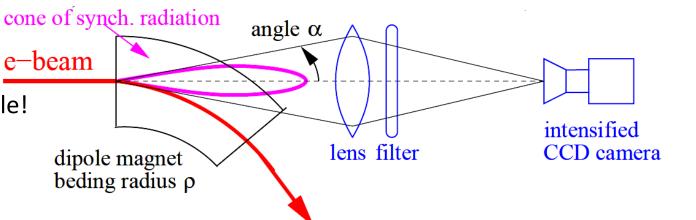

opening $2/\gamma$ in lab-frame.

⇒Well suited for rel. e⁻

For protons:

Only for energies $E_{kin} > 100 \text{ GeV}$

Rest frame of electron: Laboratory frame:

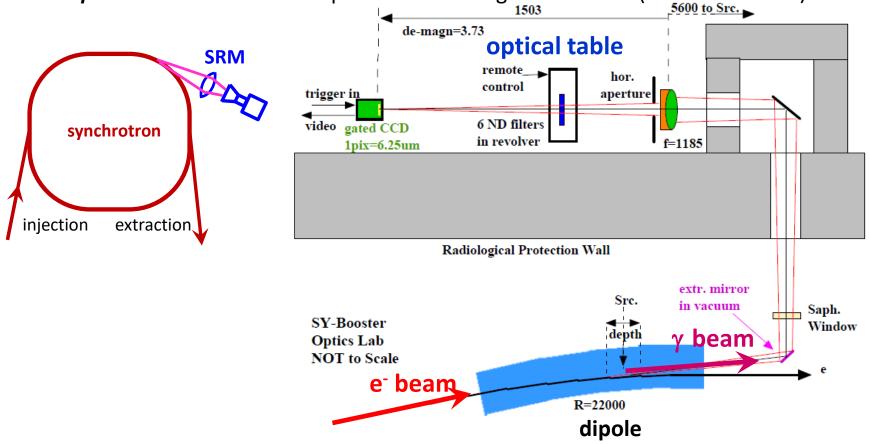


The light is focused to a

intensified CCD.

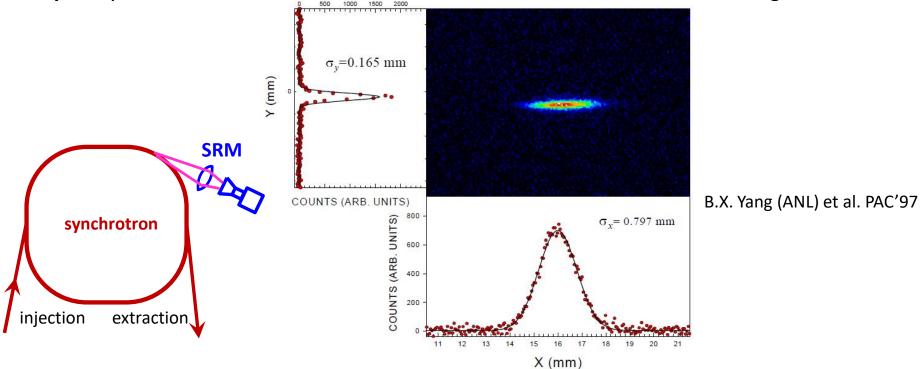
Advantage:

Signal anyhow available!


Realization of a Synchrotron Radiation Monitor

Extracting out of the beam's plane by a (cooled) mirror

- → Focus to a slit + wavelength filter for optical wavelength
- → Image intensified CCD camera

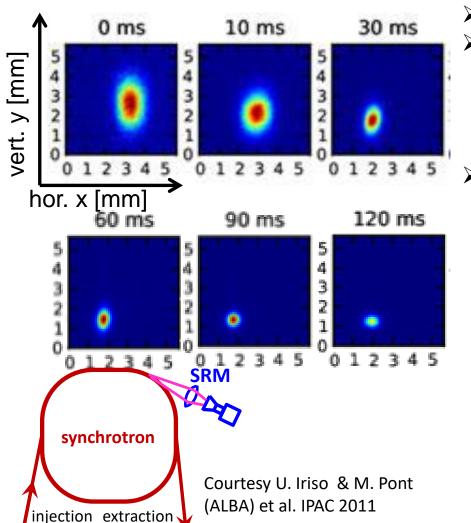

Example: ESRF monitor from dipole with bending radius 22 m (blue or near UV)

Result from a Synchrotron Light Monitor

Example: Synchrotron radiation facility APS accumulator ring and blue wavelength:

Advantage: Direct measurement of 2-dim distribution, good optics for visible light

Realization: Optics outside of vacuum pipe

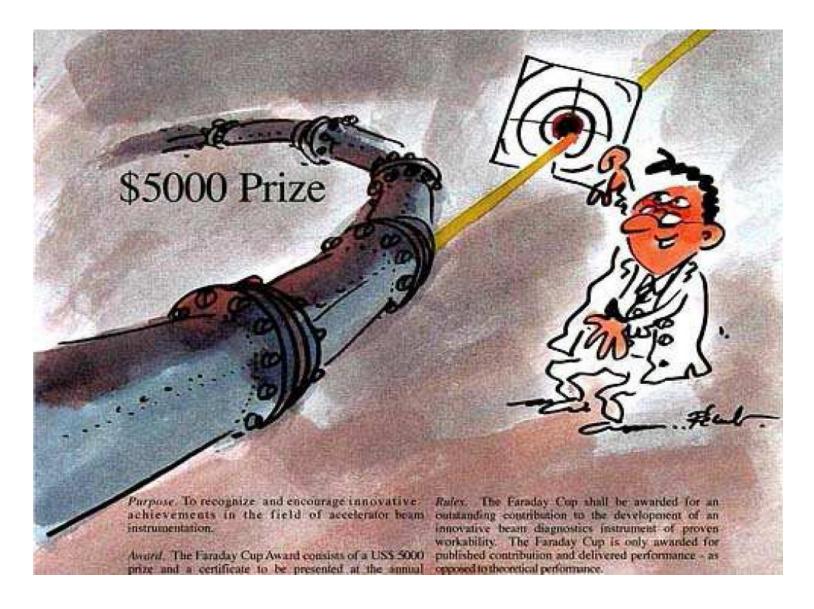

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.

'Adiabatic Damping' for an Electron Beam

Example: Booster at the light source ALBA acceleration from $0.1 \rightarrow 3$ GeV within 130 ms

Profile measure by synchrotron radiation monitor: The beam emittance in influenced by:

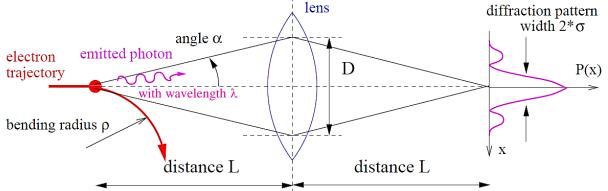
- Adiabatic damping
 - Longitudinal momentum contribution via dispersion $\Delta x_D(s) = D(s) \cdot \frac{\Delta p}{s}$


total width
$$\Delta x_{tot}(s) = \sqrt{\varepsilon \beta(s) + D(s) \cdot \frac{\Delta p}{p}}$$

Quantum fluctuation due to light emission

The Artist View of a Synchrotron Light Monitor

Diffraction Limit of Synchrotron Light Monitor



Limitations:

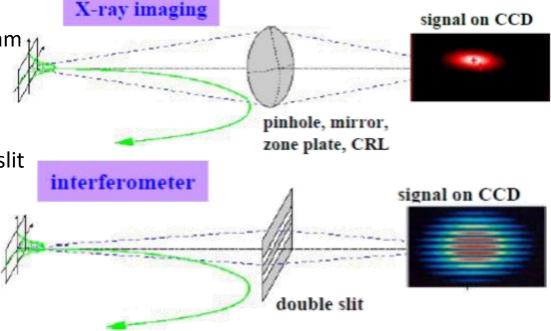
Diffraction limits the resolution due to Fraunhofer diffraction Pattern width for 1:1 image:

$$\sigma \simeq \frac{\lambda}{2D/L} \simeq 0.6 \cdot \left(\frac{\lambda^2}{\varrho}\right)^{1/3}$$

 $\Rightarrow \sigma \simeq 100 \ \mu m$ for typical cases

Improvements:

> Shorter wavelength:


Using X-rays and an aperture of Ø 1mm 1/1

ightarrow 'X-ray pin hole camera', achievable resolution $\sigma \simeq 10~\mu m$

➤ Interference technique:

At optical wavelength using a double slit

 \rightarrow interference fringe blurring compared to point source achievable resolution $\sigma \simeq 1 \ \mu m$.

Summary for Beam Profile Measurement

Different techniques are suited for different beam parameters:

e-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

Intercepting ↔ non-intercepting methods

Direct observation of electrodynamics processes:

- ➤ Optical synchrotron radiation monitor: non-destructive, for e⁻-beams, complex, limited res.
- > X-ray synchrotron radiation monitor: non-destructive, for e⁻-beams, very complex
- > OTR screen: nearly non-destructive, large relativistic γ needed, e⁻-beams mainly

Detection of secondary photons, electrons or ions:

- > Scintillation screen: destructive, large signal, simple setup, all beams
- Ionization profile monitor: non-destructive, expensive, limited resolution, for protons

Wire based electronic methods:

- > SEM-grid: partly destructive, large signal and dynamic range, limited resolution
- Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.

Measurement of transverse Emittance

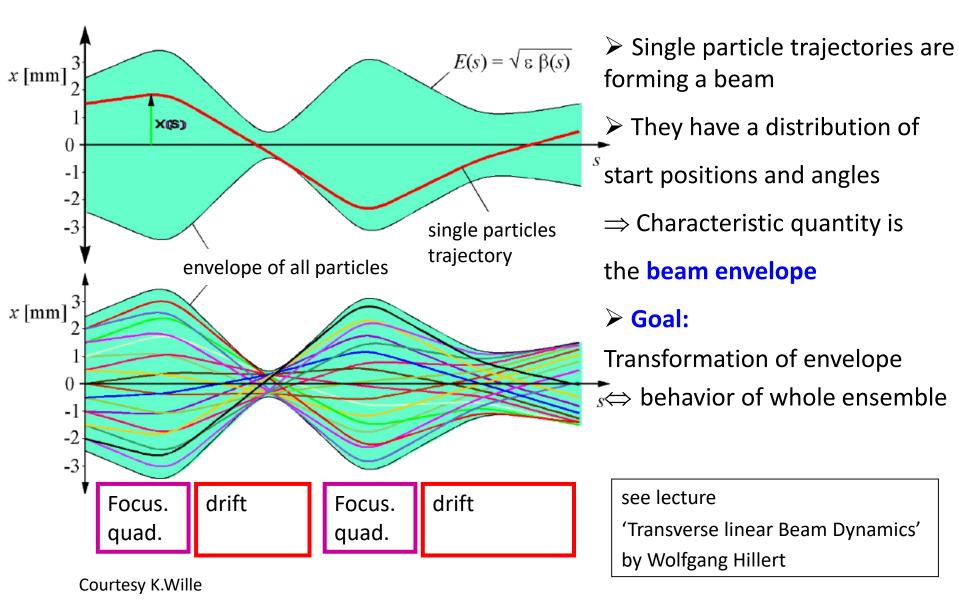
The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation.

It is defined within the phase space as: $\varepsilon_x = \frac{1}{\pi} \int_A dx dx'$

The measurement is based on determination of:

Either profile width σ_x and angular width $\sigma_{x'}$ at one location **Or** profile width σ_x at different locations and linear transformations.

Different devices are used at transfer lines:


- \succ Lower energies E_{kin} < 100 MeV/u: slit-grid device, pepper-pot (suited in case of non-linear forces).
- ➤ All beams: Quadrupole variation method using linear transformations (**not** well suited in the presence of non-linear forces)

Synchrotron: lattice functions results in stability criterion

$$\Rightarrow \text{ beam width delivers emittance: } \varepsilon_x = \frac{1}{\beta_x(s)} \left[\sigma_x^2 - \left(D(s) \frac{\Delta p}{p} \right) \right] \text{ and } \varepsilon_y = \frac{\sigma_y^2}{\beta_y(s)}$$

Trajectory and Characterization of many Particles

Definition of Coordinates and basic Equations

The basic vector is 6 dimensional:
$$\vec{x} = \begin{pmatrix} x \\ x' \\ y \\ y' \\ l \end{pmatrix} = \begin{pmatrix} \text{hori. spatial deviation} \\ \text{horizontal divergence} \\ \text{vert. spatial deviation} \\ \text{vertical divergence} \\ \text{long. deviation} \\ \text{momentum deviation} \end{pmatrix} = \begin{pmatrix} [mm] \\ [mrad] \\ [mm] \\ [mm] \\ [10^{-3}] \end{pmatrix}$$

The transformation of a single particle from a location
$$s_0$$
 to s_1 is given by the

Transfer Matrix R:
$$\vec{x}(s_1) = R(s) \cdot \vec{x}(s_0)$$

The transformation of a the envelope from a location s_0 to s_1 is given by the

Beam Matrix
$$\sigma$$
: $\sigma(s_1) = R(s) \cdot \sigma(s_0) \cdot R^T(s)$

6-dim Beam Matrix with <u>decoupled</u> hor., vert. and long. plane:

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & 0 & 0 & 0 & 0 \\ \sigma_{12} & \sigma_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{34} & \sigma_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{55} & \sigma_{56} \\ 0 & 0 & 0 & 0 & \sigma_{56} & \sigma_{66} \end{pmatrix} \text{ horizontal the three coordinates: beam matrix: } the three coordinates: beam matrix:
$$x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{11} = \langle x^2 \rangle$$
 the three coordinates: beam matrix:
$$x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{11} = \langle x^2 \rangle$$
 the three coordinates: beam matrix:
$$x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{11} = \langle x^2 \rangle$$
 the three coordinates: beam matrix:
$$x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{11} = \langle x^2 \rangle$$
 the three coordinates: beam matrix:
$$x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{11} = \langle x^2 \rangle$$
 the three coordinates: beam matrix:
$$x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{11} = \langle x^2 \rangle$$
 the three coordinates: beam matrix:
$$x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{11} = \langle x^2 \rangle$$
 the three coordinates: beam matrix:
$$x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{11} = \langle x^2 \rangle$$
 the three coordinates: beam matrix:
$$x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{12} = \langle x \rangle$$$$

Beam width for

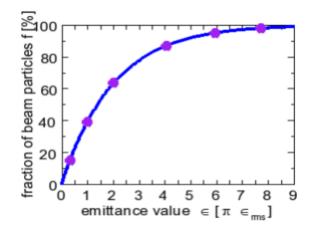
The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:

- Beams behind ion source
- > Space charged dominated beams at LINAC & synchrotron
- Cooled beams in storage rings

General description of emittance using terms of 2-dim distribution:

It describes the value for 1 standard derivation

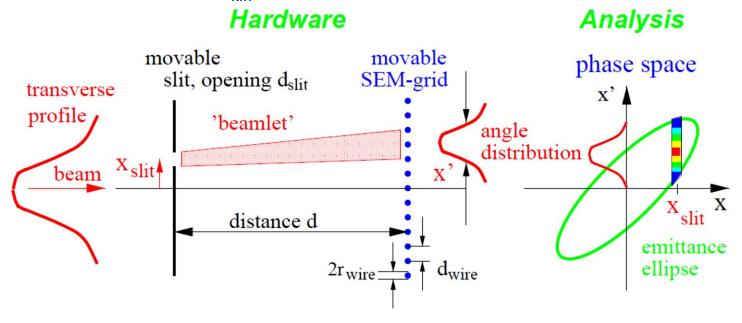

$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$
Variances Covariance
i.e. correlation

For <u>Gaussian</u> beams only: $\varepsilon_{rms} \leftrightarrow$ interpreted as area containing a fraction f of ions:

$$\varepsilon(f) = -2\pi\varepsilon_{rms} \cdot \ln(1-f)$$

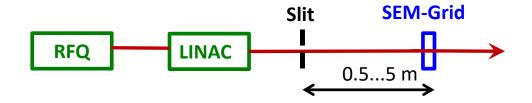
Care:

No common definition of emittance concerning the fraction f


Emittance ε (f)	Fraction f
$1 \cdot \epsilon_{rms}$	15 %
$\pi \cdot \epsilon_{\sf rms}$	39 %
$2\pi\cdot\epsilon_{rms}$	63 %
$4\pi \cdot \epsilon_{rms}$	86 %
$8\pi \cdot \epsilon_{rms}$	98 %

The Slit-Grid Measurement Device

Slit-Grid: Direct determination of position and angle distribution.


Used for protons with E_{kin} < 100 MeV/u \Rightarrow range R < 1 cm.

Slit: position **P(x)** with typical width: 0.1 to 0.5 mm

Distance: typ. 0.5 to 5 m (depending on beam energy 0. 1 ... 100 MeV)

SEM-Grid: angle distribution P(x')

Display of Measurement Results

The distribution is depicted as a function of position [mm] & angle [mrad]

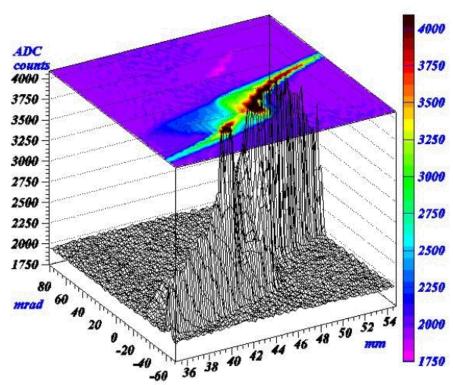
The distribution can be visualized by

- ➤ Mountain plot
- > Contour plot

Calc. of 2^{nd} moments $\langle x^2 \rangle$, $\langle x'^2 \rangle \& \langle xx' \rangle$

Emittance value $\boldsymbol{\mathcal{E}_{rms}}$ from

$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$



- > Finite **binning** results in limited resolution
- ightharpoonup Background ightharpoonup large influence on $\langle x^2 \rangle$, $\langle x'^2 \rangle$ and $\langle xx' \rangle$

Or fit of distribution with an ellipse

⇒ Effective emittance only

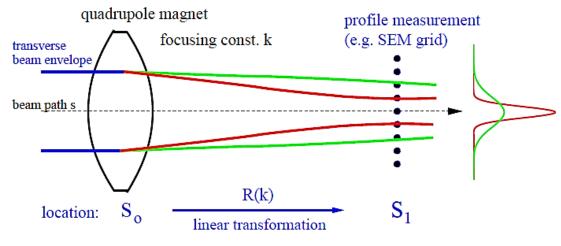
Remark: Behind a ion source the beam might very non-Gaussian due to plasma density and aberration at quadrupoles

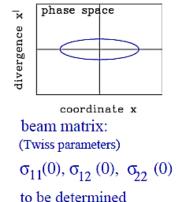
Beam: Ar⁴⁺, 60 keV, 15 μA

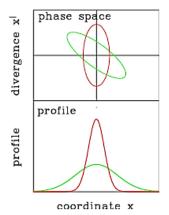
at Spiral 2Phoenix ECR source.

P. Ausset, DIPAC 2009

Measurement of transverse Emittance


Outline:


- > Definition and some properties of transverse emittance
- Slit-Grid device: scanning method
 scanning slit → beam position & grid → angular distribution
- Quadrupole strength variation and position measurement emittance from several profile measurement and beam optical calculation


Emittance Measurement by Quadrupole Variation

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.

Measurement of beam width $x_{max}^2 = \sigma_{11}(s_1, k)$

matrix R(k) describes the focusing.

- With the drift matrix the transfer is $\mathbf{R}(k_i) = \mathbf{R}_{\text{drift}} \cdot \mathbf{R}_{\text{focus}}(k_i)$
- Transformation of the beam matrix

$$\sigma(s_1, k_i) = \mathbf{R}(k_i) \cdot \sigma(s_0) \cdot \mathbf{R}^\mathsf{T} (k_i)$$

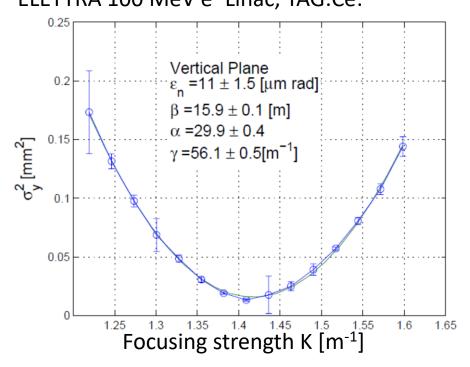
Task: Calculation of $\sigma(0)$

at entrance s_0 i.e. all three elements

measurement:

$$\mathbf{x}^{2}(\mathbf{k}) = \sigma_{11}(1, \mathbf{k})$$

Measurement of transverse Emittance



Using the 'thin lens approximation' i.e. the quadrupole has a focal length of **f**:

$$R_{focus}(K) = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix} \Rightarrow R(L, K) = R_{drift}(L) \cdot R_{focus}(K) = \begin{pmatrix} 1 + LK & L \\ K & 1 \end{pmatrix}$$

Measurement of matrix-element $\sigma_{11}(s_1, K)$ from matrices $\sigma(s_1, K_i) = \mathbf{R}(K_i) \cdot \sigma(s_0) \cdot \mathbf{R}^\mathsf{T}(K_i)$

Example: Square of the beam width at ELETTRA 100 MeV e⁻ Linac, YAG:Ce:

G. Penco (ELETTRA) et al., EPAC'08

For completeness: The relevant formulas

$$\sigma_{11}(1,K) = L^2 \sigma_{11}(0) \cdot K^2$$

$$+ 2 \cdot (L\sigma_{11}(0) + L^2 \sigma_{12}(0)) \cdot K$$

$$+ L^2 \sigma_{22}(0) + \sigma_{11}(0)$$

$$\equiv a \cdot K^2 - 2ab \cdot K + ab^2 + c$$

The three matrix elements at the quadrupole:

Summary for transverse Emittance Measurement

Emittance is the important quantity for comparison to theory.

It includes absolute value (value of ε) & orientation in phase space (σ_{ij} or α , β and γ)

three independent values $\varepsilon_{rms} = \sqrt{\sigma_{11} \cdot \sigma_{22} - \sigma_{12}} \equiv \sqrt{\langle x^2 \rangle \langle x'^2 \rangle} - \langle xx' \rangle^2$ assuming no coupling between horizontal, vertical and longitudinal planes

Transfer line, low energy beams \rightarrow direct measurement of x- and x'-distribution:

 \triangleright *Slit-grid:* movable slit \rightarrow *x*-profile, grid \rightarrow *x'*-profile

Transfer line, all beams → profile measurement + linear transformation:

- > Quadrupole variation: one location, different setting of a quadrupole
 - **Assumptions:** ➤ well aligned beam, no steering
 - > no emittance blow-up due to space charge

Remark: Non-linear transformation possible via tomographic reconstruction

Important remark: For a synchrotron with a stable beam storage,

width measurement is sufficient using $x_{rms} = \sqrt{\varepsilon_{rms} \cdot \beta}$

Measurement of Iongitudinal Parameters

Measurement of longitudinal parameter:

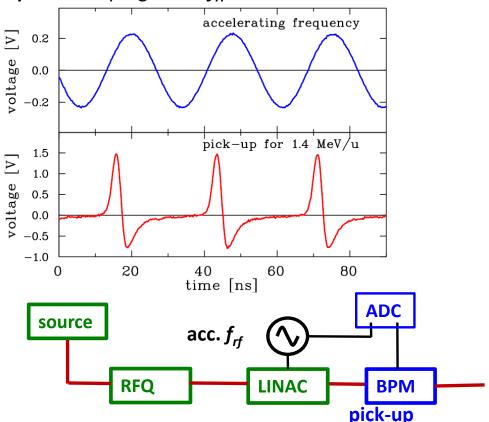
Bunch length measurement at

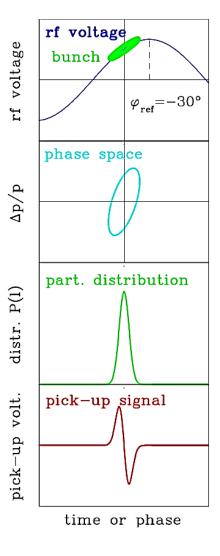
- Synchrotron light sources
- Linear light sources
- > Summary

Longitudinal ↔ transverse correspondences:

➤ position relative to rf
↔ transverse center-of-mass

➤ bunch structure in time
 ↔ transverse profile

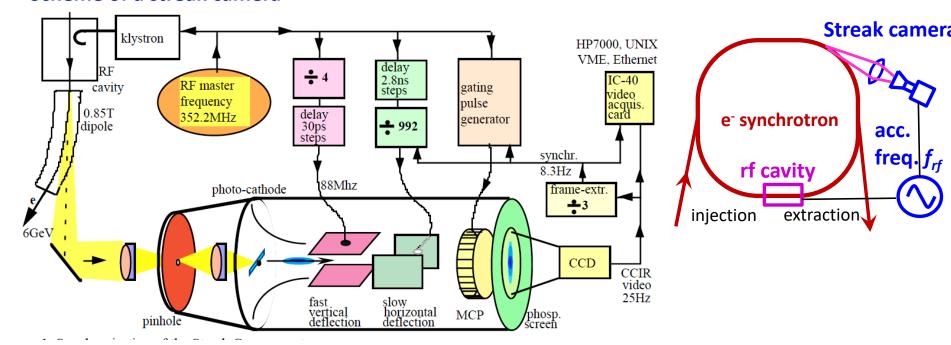

The Bunch Position measured by a Pick-Up



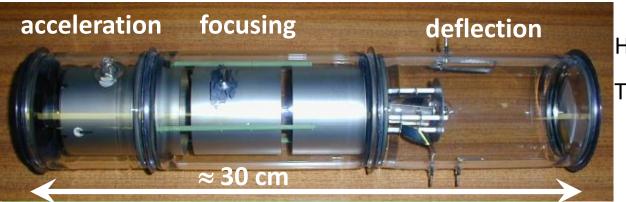
The **bunch position** is given relative to the accelerating rf.

e.g. φ_{ref} =-30° inside a rf cavity must be well aligned for optimal acceleration Transverse correspondence: Beam position

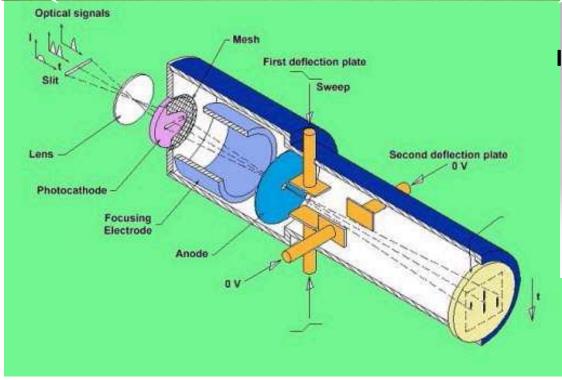
Example: Pick-up signal for f_{rf} = 36 MHz rf at GSI-LINAC:

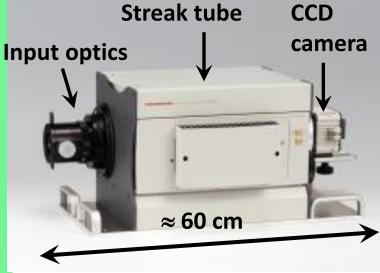

Bunch Length Measurement for relativistic Electrons

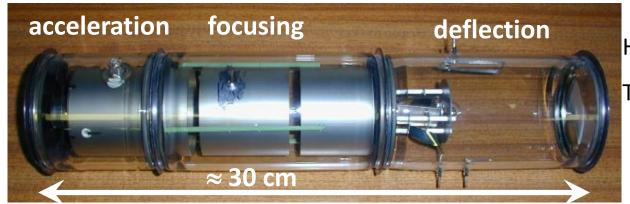
Electron bunches are too short (σ_t < 100 ps) to be covered by the bandwidth of pick-ups (f < 3 GHz $\Leftrightarrow t_{rise}$ > 100 ps) for structure determination.

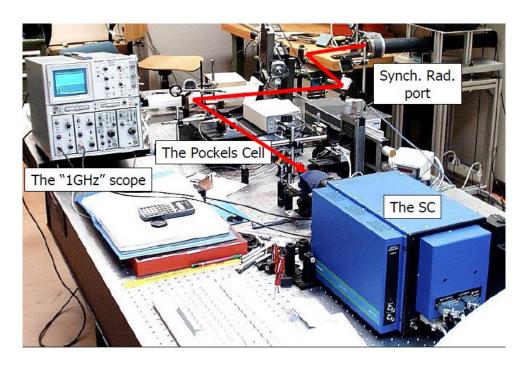

 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution ≈ 1 ps.

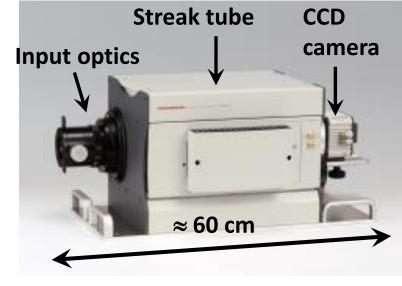
Scheme of a streak camera



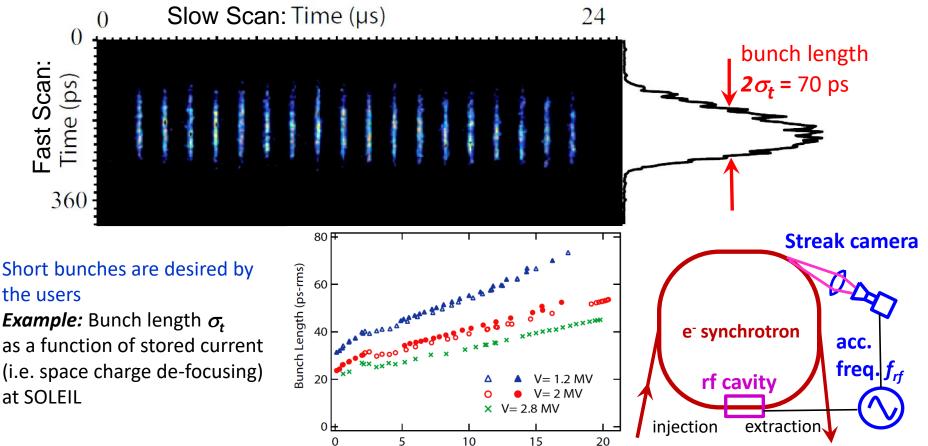

Technical Realization of a Streak Camera


Hardware of a streak camera
Time resolution down to 0.5 ps:




Technical Realization of a Streak Camera

Hardware of a streak camera
Time resolution down to 0.5 ps:


Results of Bunch Length Measurement by a Streak Camera

The streak camera delivers a fast scan in vertical direction (here 360 ps full scale) and a slower scan in horizontal direction (24 μ s).

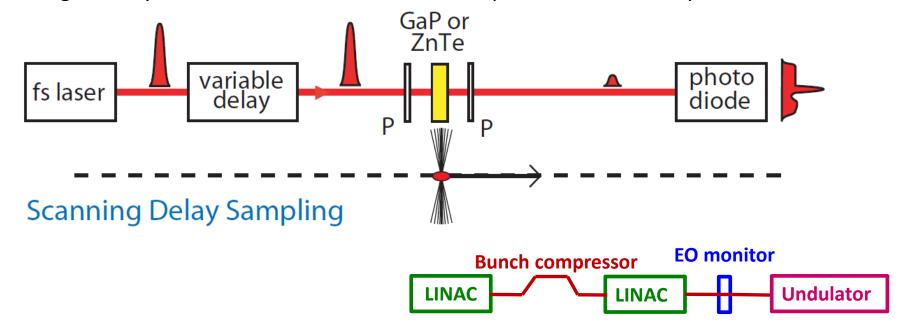
Example: Bunch length at the synchrotron light source SOLEIL for U_{rf} = 2 MV

for slow direction 24 μ s and scaling for fast scan 360 ps: measure σ_t = 35 ps.

Courtesy of M. Labat et al., DIPAC'07

I (mA)

The Artist View of a Streak Camera


Bunch Length Measurement by electro-optical Method

For Free Electron Lasers → bunch length below 1 ps is achieved

- Below the resolution of streak camera
- \triangleright Short laser pulses with $t \approx 10$ fs and electro-optical modulator

Electro optical modulator: Birefringent, rotation angle depends on external electric field Relativistic electron bunch: transverse ele. field $E_{\perp,lab} = \gamma E_{\perp,rest}$ carries the time information Scanning of delay between bunch and laser \rightarrow time profile after several pulses.

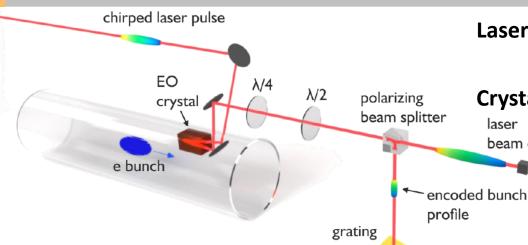
Courtesy S.P.Jamison et al., EPAC 2006

Bunch Length Measurement by electro-optical Method

For Free Electron Lasers → bunch length below 1 ps is achieved

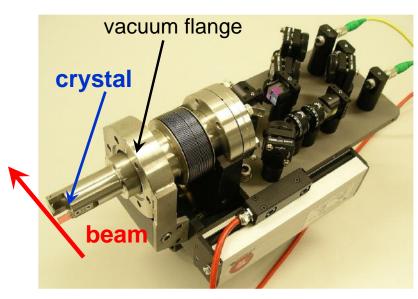
Short laser pulse ⇔ broad frequency spectrum (property of Fourier Transformation)

Optical stretcher: Separation of colors by different path length

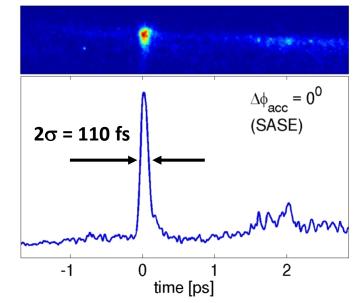

 \Rightarrow different colors at different time \Rightarrow single-shot observation

Courtesy S.P.Jamison et al., EPAC 2006

Hardware of a spectral-decoded EOSD Scanning Setup


Laser: Commercial Ti:Sa or Yb-fibre, 10 fs duration, near IR,

Crystal: GaP or ZnTe, 100 µm thickness


laser beam dump

> **Example:** Bunch length at FLASH 100 fs bunch duration = 30 μ m length!

S. Funkner et al., arXiv1912.01323 (2019)

ultra-fast line array camera

B. Steffen et al, DIPAC 2009

B. Steffen et al., Phys. Rev. AB 12, 032802 (2009)

Summary of longitudinal Measurements

Devices for bunch length at light sources:

Streak cameras:

- > Time resolved monitoring of synchrotron radiation
 - \rightarrow for relativistic e⁻-beams, 10 ps < t_{bunch} < 1 ns

Time resolution limit of streak camera ≈ 1 ps

Laser-based electro-optical modulation:

- > Electro-optical modulation of short laser pulse
 - → very high time resolution down to some fs time resolution Technical complex installation

Conclusion for Beam Diagnostics Course

Diagnostics is the 'sensory organ' for the beam.

It required for operation and development of accelerators

Several categories of demands leads to different installations:

- Quick, non-destructive measurements leading to a single number or simple plots
- > Complex instrumentation used for hard malfunction and accelerator development
- > Automated measurement and control of beam parameters i.e. feedback

The goal and a clear interpretation of the results is a important design criterion.

General comments:

- > Quite different technologies are used, based on various physics processes
- > Accelerator development goes parallel to diagnostics development

Thank you for your attention!

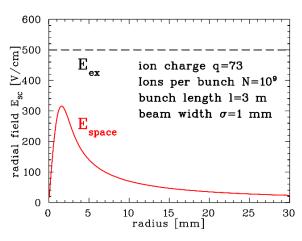
General Reading on Beam Instrumentation

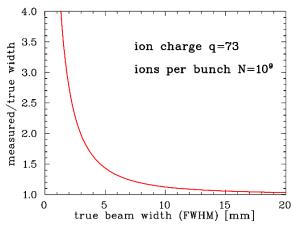
- H. Schmickler (Ed.) Beam Instrumentation, Proc. CERN Accelerator School, Tuusula 2018 in prep.
- D. Brandt (Ed.), Beam Diagnostics for Accelerators, Proc. CERN Accelerator School, Dourdan, CERN-2009-005, 2009;
- > Proceedings of several CERN Acc. Schools (introduction & advanced level, special topics).
- ➤ V. Smaluk, Particle Beam Diagnostics for Accelerators: Instruments and Methods, VDM Verlag Dr. Müller, Saarbrücken 2009.
- > P. Strehl, Beam Instrumentation and Diagnostics, Springer-Verlag, Berlin 2006.
- ➤ M.G. Minty and F. Zimmermann, *Measurement and Control of Charged Particle Beams*, Springer-Verlag, Berlin 2003.
- > S-I. Kurokawa, S.Y. Lee, E. Perevedentev, S. Turner (Eds.), *Proceeding of the School on Beam Measurement*, Proceedings Montreux, World Scientific Singapore (1999).
- P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS School, JUAS Indico web-site.
- Contributions to conferences, in particular to International Beam Instrumentation Conference IBIC.

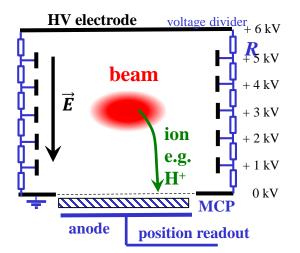
Backup slides

Broadening due to the Beam's Space Charge: Ion Detection

Influence of the residual gas ion trajectory by:

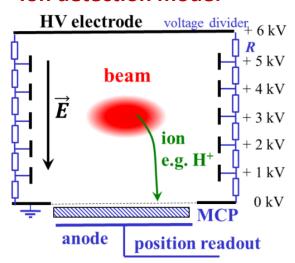

- External electric field E_{ex}
- Electric field of the beam's space charge E_{space}


e.g. Gaussian density distribution for round beam: $E_{space}(r) = \frac{1}{2\pi\varepsilon_0} \cdot \frac{qeN}{l} \cdot \frac{1}{r} \cdot \left| 1 - \exp\left(-\frac{r^2}{2\sigma^2}\right) \right|$


Estimation of correction:
$$\sigma_{corr}^2 \approx \frac{e^2 \ln 2}{4\pi\varepsilon_0 \sqrt{m_p c^2}} \cdot \frac{qN}{l} \cdot d_{gap} \cdot \sqrt{\frac{1}{eU_{ex}}} \propto N \cdot d_{gap} \cdot \sqrt{\frac{1}{U_{ex}}}$$

With the measured beam width is given by convolution: $\sigma_{meas}^2 = \sigma_{true}^2 + \sigma_{corr}^2$

Example: U^{73+} , 10^9 particles per 3 m bunch length, cooled beam with σ_{true} = 1 mm FWHM.



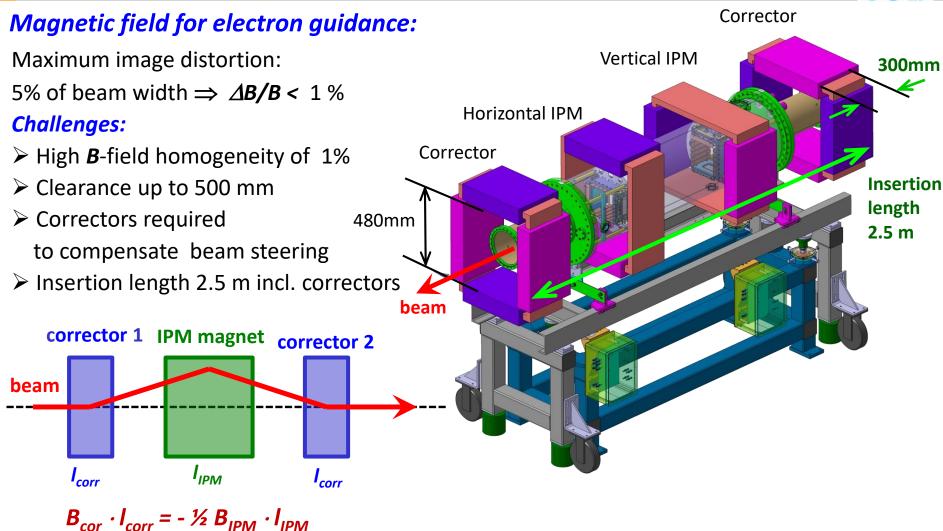

Electron Detection and Guidance by Magnetic Field

Ion detection mode:

⇒ broadening by beam's electric field

Electron detection mode:

e $^-$ detection in an external magnetic field ightarrow cyclotron radius $r_C=\frac{mv_\perp}{eB}$ for $E_{kin,\perp}=10$ eV & B=0.1 T \Rightarrow $r_c\approx 100$ μ m E_{kin} from atomic physics, $\approx \! 100$ μ m resolution of MCP


Time-of-flight: \approx 1 - 2 ns \Rightarrow 2 - 3 cycles.

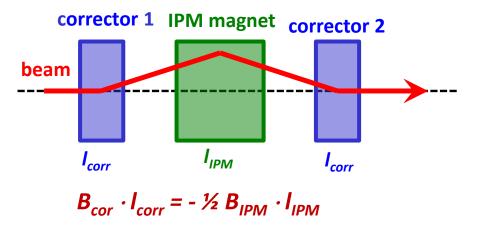
B-field: Dipole with large aperture

→ IPM is expensive & large device!

IPM: Magnet Design

Remark: For MCP wire-array readoutlower clearance required

IPM: Magnet Design


Magnetic field for electron guidance:

Maximum image distortion:

5% of beam width $\Rightarrow \Delta B/B < 1\%$

Challenges:

- ➤ High **B**-field homogeneity of 1%
- ➤ Clearance up to 500 mm
- Correctors required to compensate beam steering
- ➤ Insertion length 2.5 m incl. correctors

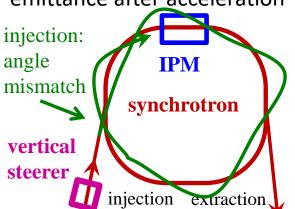
Magnet: B = 250 mT, Gap 220 mm **IPM:** Profile 32 strips, 2.5 mm width

Remark for electron beams:

Resolution of 50 μm is insufficient, but sometimes used for photon beams

Remark: For MCP wire-array readout lower clearance required

Emittance Enlargement by Injection Mis-steering



Emittance conservation requires precise injection matching

Wrong angle

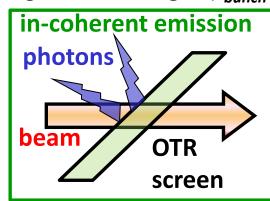
of injected beam:

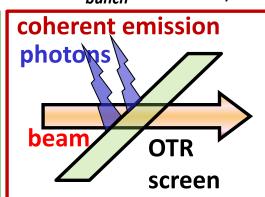
- ightharpoonup injection into outer phase space ightharpoonup large ho-amplitude i.e. large beam
- might result in 'hollow' beam
- filling of acceptancei.e. loss of particles
- ⇒ Hadron beams: larger emittance after acceleration

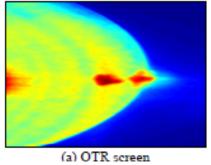
Example: Variation of vertical injection angle by magnetic steerer Beam: C^{6+} at 6.7 MeV/u acc. to 600 MeV/u, up to $6\cdot10^9$ ions per fill with multi-turn injection, IPM integration 0.5 ms i.e. \approx 100 turns

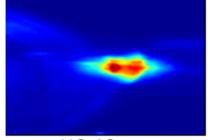
Vertical profile at injection: Horizontal profile at injection: -30 -20 -10 0 10 20 hor. coordinate x [mm] -30 -20 -10 0 10 20 30 vert. coordinate y [mm] Vertical profile **after** acc.: Horizontal profile after acc.: distribution 1.2 steering value [arb.u.] 0.6 0.2 20 -10 0 10 20 hor. coordinate x [mm] -100 vert. coordinate y [mm] larger emittance misplace injection filamentation x'Schematic simulation: Courtesy M. Syphers

Coherent Optical Transition Radiation

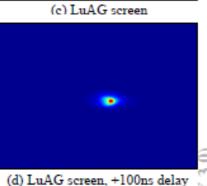



Observation of coherent OTR for compressed bunches at LINAC based light sources


Reason: Coherent emission if bunch length \approx wavelength (t_{bunch} =2 fs $\Leftrightarrow I_{bunch}$ =600 nm)


or bunch fluctuations ≈ wavelength Parameter reach for most LINAC-based FELs!

Beam parameter: FLASH, 700 MeV, 0.5 nC, with bunch compression OTR screen scint. screen

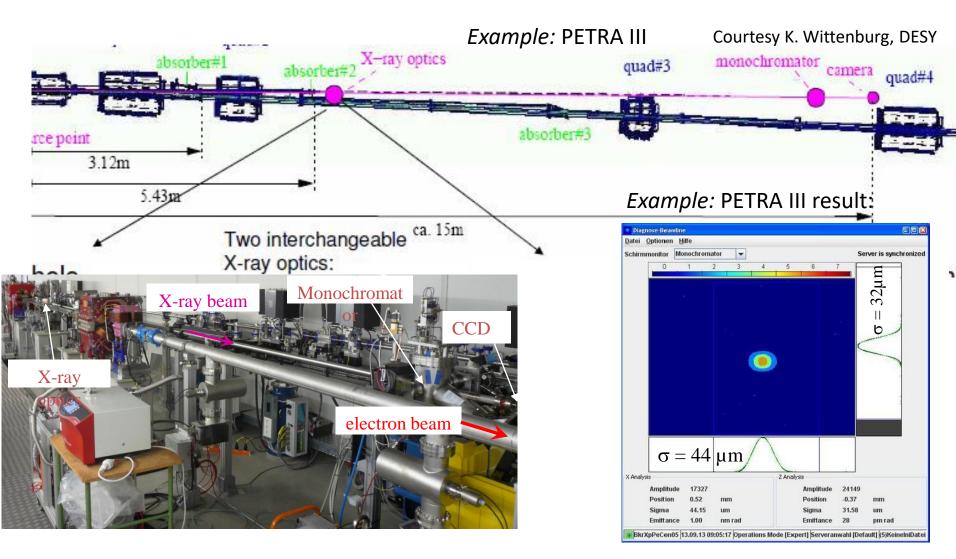


prompt emission for OTR and scint. screen

→ coherent and in-coherent OTR

(a) OTR screen (b) OTR screen, +100ns delay

- 100 ns delayed emission
- → no OTR as expected (classical process)
- → emission by scint. screen due to lifetime
 ⇔ correct profile image!


Contrary of M. Yan et al., DIPAC'11 & S. Wesch, DIPAC'11

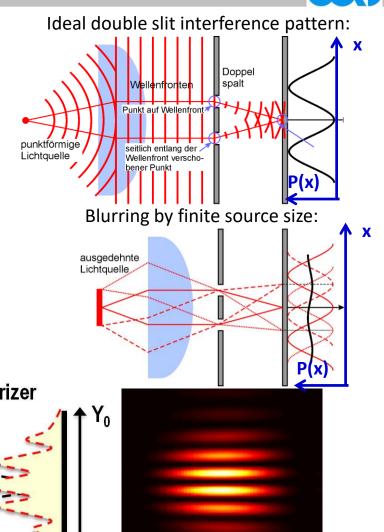
71

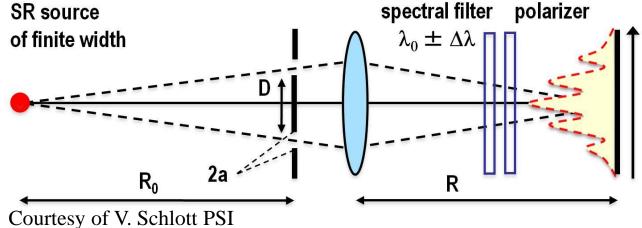
X-ray Pin-Hole Camera

The diffraction limit is $\Rightarrow \sigma \cong 0.6 \cdot \left(\lambda^2 / \rho\right)^{1/3} \Rightarrow$ shorter wavelength by X-rays.

Double Slit Interference for Radiation Monitors

The **blurring of interference pattern** due to finite size of the sources

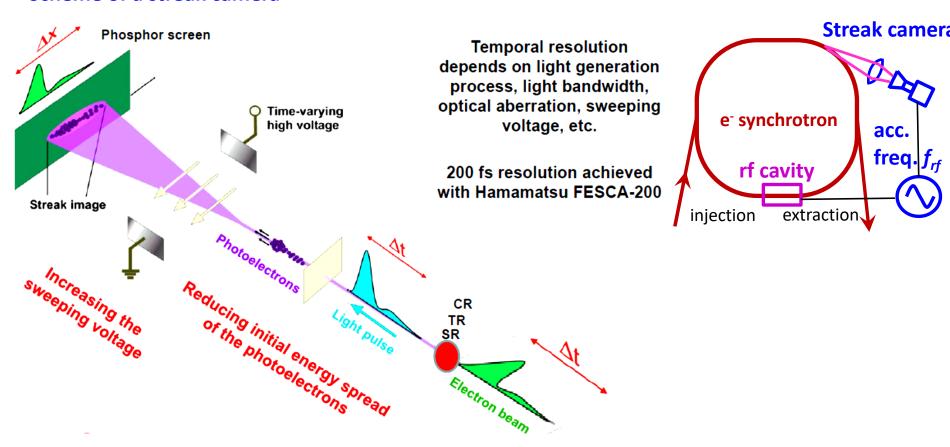

 \Rightarrow spatial coherence parameter γ delivers \emph{rms} beam size


i.e. 'de-convolution' of blurred image!

→ highest resolution, but complex method

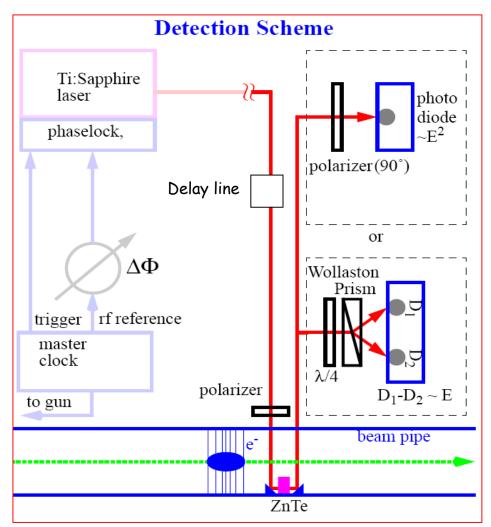
Typical resolution for three methods:

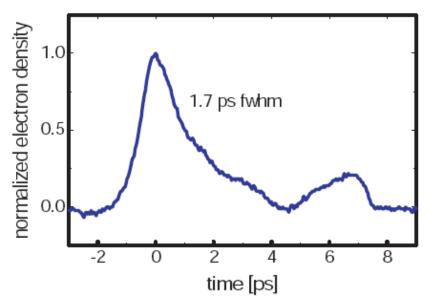
- \triangleright Direct optical observation: $\sigma \approx 100 \ \mu m$
- \triangleright Direct x-ray observation : $\sigma \approx 10 \, \mu m$
- \succ Interference optical obser: $\sigma pprox ~$ **1** μ m


Bunch Length Measurement for relativistic Electrons

Electron bunches are too short (σ_t < 100 ps) to be covered by the bandwidth of pick-ups (f < 3 GHz $\Leftrightarrow t_{rise}$ > 100 ps) for structure determination.

 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution \approx 1 ps.


Scheme of a streak camera



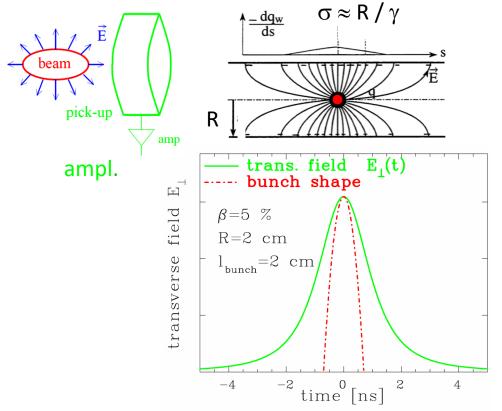
Realization of EOS Scanning

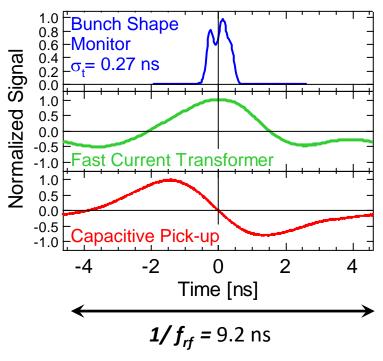
Setup of a scanning EOS method.

Using 12fs pulses from Ti:A₁₂O₃ laser at 800nm and ZnTe crystal 0.5mm thick with a e⁻ - beam 46MeV of 200pC

X. Yan et al, Phys. Rev. Lett. 85, 3404 (2000)

Bunch Structure at low E_{kin} : Not possible with Pick-Ups


Pick-ups are used for:


- precise for bunch-center relative to rf
- course image of bunch shape

Example: Comparison pick-up – particle counter: Ar beam of 1.4 MeV/u ($\boldsymbol{6}$ = 5.5%), \boldsymbol{f}_{rf} = 108 MHz

But:

For $\beta << 1 \rightarrow$ long. **E**-field significantly modified:

⇒ the pick-up signal is insensitive to bunch 'fine-structure'

Bunch Structure using secondary Electrons for low E_{kin} **Protons**

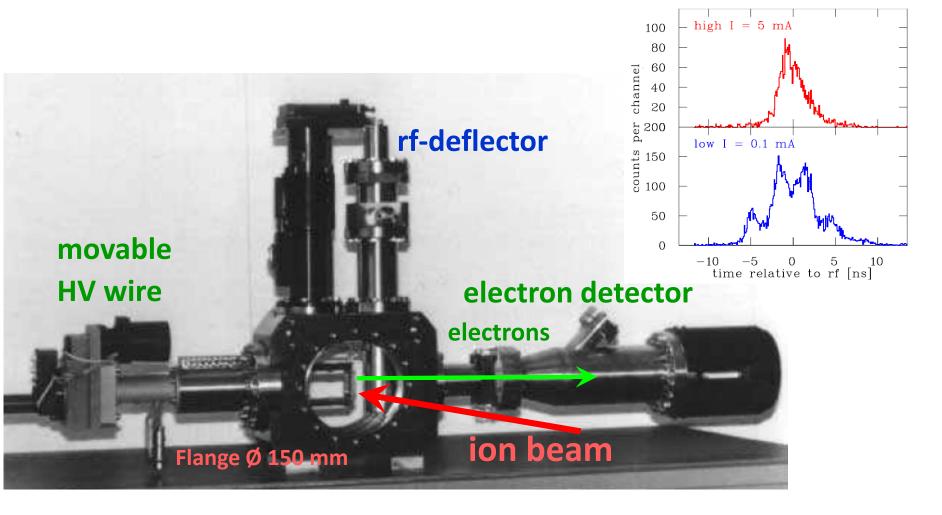
Secondary e⁻ liberated from a wire carrying the time information.

→ Bunch Shape Monitor (BSM)

Working principle:

- \triangleright insertion of a 0.1 mm wire at \approx 10 kV
- > emission of secondary e within less than 10 ps
- ➤ secondary e⁻ are accelerated
- > toward an rf-deflector
- rf-deflector as 'time-to-space' converter
- > detector with a thin slit
- > slow shift of the phase
- \triangleright resolution \approx 10 ps \approx 1° @ 280 MHz
- ➤ Measurements are comparable to that obtained with particle detectors.

detector: SEM or FC bunch shape rf-deflector (+ phase shifter) aperture: about 1 mm secondary electron from wire (0.1 mm, 10 kV beam


SEM: secondary electron multiplier

wire on HV

Realization of Bunch Shape Monitor at CERN LINAC2

Example: The bunch shape behind RFQ with 120 keV/u:

