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2nd part of this lecture covers:

➢ Transverse profile techniques

➢ Emittance determination at transfer lines

➢ Diagnostics for bunch shape determination 
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Measurement of Beam Profile

The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing.

→ Profiles have to be controlled at many locations.
Synchrotrons: Lattice functions  (s) and D(s) are fixed  width  and emittance  are: 

Transfer lines: Lattice functions are ‘smoothly’ defined due to variable input emittance.
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A great variety of devices are used:

➢ Optical techniques: Scintillating screens (all beams),

synchrotron light monitors (e−), optical transition radiation (e−, high-energetic p), 

ionization profile monitors (protons)

➢ Electronics techniques: Secondary electron emission SEM grids, wire scanners (all) 

Typical beam sizes:

e−-beam: typically Ø 0.01 to 3 mm,    protons: typically Ø 1 to 30 mm
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Outline:

➢ Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

➢ Optical Transition Radiation  

➢ SEM-Grid

➢Wire scanner

➢ Ionization Profile Monitor 

➢ Synchrotron Light Monitors    

➢ Summary

Measurement of Beam Profile
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Scintillation Screen

Scintillation: Particle’s energy loss in matter causes emission of light   

→ the most direct way of profile observation  as used from the early days on!

Pneumatic drive with Ø70 mm screen:

Flange 
200 mm
& window

Screen

 70 mm

beam

Pneumatic
drive

Camera

 1 m
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Example of Screen based Beam Profile Measurement

Observation with CMOS camera

Advantage of screens:

➢Direct 2-dim measurement

➢High spatial resolution

➢Cheap realization

 widely used at transfer lines

Disadvantage of screens:

➢ Intercepting device

➢ Some material might be brittle

➢ Possible low dynamic range

➢Might be destroyed 

by the beam (radiation demage)

b/w CCD:

artificial 
false-color

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen

LINACLINAC

Scintillation Screen (beam stopped)
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Alumina: Al2O3
CsI:Tl Chromox: Al2O3:Cr P43

YAG:Ce Quartz Quartz:Ce ZrO2:Mg

➢ Very different light yield i.e. photons per ion‘s energy loss

➢ Different wavelength of emitted light  

Light output from various Scintillating Screens

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u
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Material Properties for Scintillating Screens

Some materials and their basic properties:

Properties of a good scintillator:

➢ Large light output at optical wavelength 

→ standard CCD camera can be used

➢ Large dynamic range → usable for different currents

➢ Short decay time → observation of variations

➢ Radiation hardness → long lifetime

➢ Good mechanical properties → typ. size up to Ø 10 cm

(Phosphor Pxx grains of Ø  10 μm on glass or metal).

Standard drive with P43 screen

Flange 
200 mm
& window

Screen

 70 mm

beam

Pneumatic
drive

Camera

 1 m

Name Type Material Activ. Max. λ Decay

Chromox Cera-

mics

Al2O3 Cr 700nm  10ms

Alumina Al2O3 Non 380nm  10ns

YAG:Ce Crystal Y3Al5O12 Ce 550nm 200ns

Lu1.8Y.2SiO5 Ce 420nm 40nsLYSO

P43 Powder

of gains

Ø10μm

on glass 

Gd2O3S Tb 545nm 1ms

P46 Y3Al5O12 Ce 530nm 300ns

P47 Y2SiO5 Ce&Tb 400nm 100ns
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Outline:

➢ Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

➢ Optical Transition Radiation:  

light emission due to crossing material boundary, mainly for relativistic beams 

➢ SEM-Grid

➢Wire scanner

➢ Ionization Profile Monitor 

➢ Synchrotron Light Monitors    

➢ Summary

Measurement of Beam Profile
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Optical Transition Radiation: Depictive Description

Optical Transition Radiation OTR for a single charge e:

Assuming a charge e approaches an ideal conducting boundary e.g. metal foil 
➢ image charge is created by electric field

➢ dipole type field pattern

➢ field distribution depends on velocity  and Lorentz factor  due to relativistic trans. field increase 

➢ penetration of charge through surface within t < 10 fs: sudden change of source distribution 

➢ emission of  radiation with dipole characteristic  

perfect 
metal

vacuum

charge e
velocity 

E-field 
pattern of
dipole type

image 

charge -e

velocity -

perfect 
metal

vacuum

charge e
velocity 

image 

charge -e

velocity -

perfect 
metal

vacuum

charge e

inside

metal

‘dipole 
radiation’

 

  max 1/

sudden change charge distribution

rearrangement of sources  radiation

Other physical interpretation: Impedance mismatch at boundary leads to radiation


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Optical Transition Radiation OTR can be described in classical physics:

approximated formula

for normal incidence

& in-plane polarization: 

Angular distribution of radiation in optical spectrum:

➢ lope emission pattern depends on velocity or Lorentz factor 

➢ peak at angle   1/

➢ emitted energy i.e. amount of photons scales with W   2

➢ broad wave length spectrum (i.e. no dependence on )

→ suited for high energy electrons
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Optical Transition Radiation: Depictive Description

W: radiated energy

: frequency of wave

perfect 
metal

vacuum

‘dipole 
radiation’

 

  max 1/



charge e

inside

metal

sudden change charge distribution

rearrangement of sources  radiation
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Technical Realization of Optical Transition Radiation OTR

OTR is  emitted by charged particle passage through a material boundary.

➢ Insertion of thin Al-foil under 45o

➢ Observation of low light by CCD.

Photon distribution:

within a solid angle d and 

Wavelength interval begin to end
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➢ Detection: Optical 400 nm <  < 800 nm

using image intensified CCD

➢ Larger signal for relativistic beam  ≫ 1

➢ Low divergence for  ≫ 1  large signal

 well suited for e- beams

 p-beam used for Ekin≳ 10 GeV    ≳ 10
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OTR-Monitor: Technical Realization and Results

Example of realization at TERATRON:

➢ Insertion of foil 
e.g. 5 m Kapton coated  with 0.1m Al

Advantage: thin foil  low heating & straggling
2-dim image visible

Courtesy V.E. Scarpine (FNAL) et al., BIW’06 

 = 0.66 mm

 = 1.03 mmrad-hard
camera

Beam pipe

Window

Filter 
wheel

Lens

Results at FNAL-TEVATRON synchrotron 

with 150 GeV proton 
Using fast camera: Turn-by-turn measurement
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Optical Transition Radiation compared to Scintillation Screen

Installation of OTR and scintillation screens on same drive: 

Courtesy of U. Iriso et al., DIPAC’09 

Example: ALBA  LINAC 100 MeV

Results:

➢ Much more light from YAG:Ce

for 100 MeV ( =200) electrons

light output IYAG  10 5 IOTR

➢ Broader image from YAG:Ce

due to finite YAG:Ce thickness 

OTR
YAG:Ce

OTR

YAG:Ce
projection

OTR projection



Peter Forck, CAS 2022, Kaunas Beam Instrumentation & Diagnostics, Part 215

Comparison between Scintillation Screens and OTR

OTR: electrodynamic process → beam intensity linear to # photons, high radiation hardness

Scint. Screen: complex atomic process → saturation possible, for some low radiation hardness

OTR: thin foil Al or Al on Mylar, down to 0.25 μm thickness

→ minimization of beam scattering (Al is low Z-material e.g. plastics like Mylar)

Scint. Screen: thickness  1 mm inorganic, fragile material, not always radiation hard

OTR: low number of photons → expensive image intensified CCD

Scint. Screen: large number of photons → simple CCD sufficient

OTR: complex angular photon distribution → resolution limited

Scint. Screen: isotropic photon distribution → simple interpretation

OTR: large γ needed → e−-beam with Ekin > 100 MeV, proton-beam with Ekin > 100 GeV

Scint. Screen: for all beams

Remark: 

1. OTR: beam angular distribution measurable → beam emittance

2. OTR not suited for LINAC-FEL due to coherent light emission (not covered here)

but scintillation screens can be used.
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Outline:

➢ Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

➢ Optical Transition Radiation:  

light emission due to crossing material boundary, mainly for relativistic beams    

➢ SEM-Grid: 

emission of electrons, workhorse, limited resolution  

➢Wire scanner

➢ Ionization Profile Monitor 

➢ Synchrotron Light Monitors    

➢ Summary

Measurement of Beam Profile
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17

Secondary Electron Emission by Ion Impact 

Energy loss of ions in metals close to a surface:

Closed collision with large energy transfer: → fast e- with Ekin >> 100 eV 

Distant collision with low energy transfer :  → slow e- with Ekin  10 eV 

→ ‘diffusion’ & scattering with other e-: scattering length Ls   1 - 10 nm

→ at surface  90 % probability for escape

Secondary electron yield and  energy distribution comparable for all metals!

 Y = const. * dE/dx (Sternglass formula)

beam

Ls  10 nm

e-

e-

δ-ray
E

le
ct

ro
n

s 
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Different targets:

From E.J. Sternglass, Phys. Rev. 108, 1 (1957)
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Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e− emission → measurement of current.

Example: 15 wire spaced by 1.5 mm:

Parameter Typ. value

# wires per plane 10 ...100

Active area (5...20 cm) 2

Wire  25....100 m

Spacing 0.3...2 mm

Material e.g. W or Carbon

Max. beam power 1 W/mm

5 cm

SEM-Grid drive on  200 mm flange:

 1 m
SEM-Grid

wire

feedthrough

beam
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Secondary Electron Emission Grids = SEM-Grid

Each wire is equipped with one I/U converter 

different ranges settings by Ri

→ very large dynamic range up to 106.

Example: 15 wire spaced by 1.5 mm:

5 cm

Beam surface interaction: e− emission → measurement of current.
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Example of Profile Measurement with SEM-Grids

Even for low energies, several SEM-Grid can be used due to the  80 % transmission

 frequently used instrument beam optimization: setting of quadrupoles, energy….

Example: C6+ beam of 11.4 MeV/u at different locations at GSI-LINAC

injection extraction

SEM-
Grids

synchrotron

horizontal vertical

beam
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The Artist view of a SEM-Grid = Harp
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Outline:

➢ Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

➢ Optical Transition Radiation:  

light emission due to crossing material boundary, mainly for relativistic beams    

➢ SEM-Grid: 

emission of electrons, workhorse, limited resolution  

➢Wire scanner:

emission of electrons, workhorse, scanning method 

➢ Ionization Profile Monitor 

➢ Synchrotron Light Monitors    

➢ Summary

Measurement of Beam Profile
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Slow, linear Wire Scanner

Idea: One wire is scanned through the beam!

Wire diameter 100 µm < dwire < 10 µm

Slow, linear scanner are used for:
➢ Low energy protons 

➢ High resolution measurements for e− beam 

by de-convolution σ2
beam=σ

2
meas−d

2
wire

 resolution down to 1 μm range can be reached

➢ Detection of beam halo

Example: Wires scanner at CERB LINAC4 
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The Artist view of a Beam Scraper or Scanner
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Fast, Flying Wire Scanner

In a synchrotron one wire is scanned though the beam as fast as possible.

Fast pendulum scanner for synchrotrons; sometimes it is called ’flying wire’:

From https://twiki.cern.ch/twiki/
bin/viewauth/BWSUpgrade/

injection extraction

particle
detector

synchrotron

https://twiki.cern.ch/twiki/
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Usage of Flying Wire Scanners

Material: carbon or SiC → low Z-material for low energy loss and high temperature.

Thickness: down to 10 μm → high resolution.

Detection: High energy secondary particles with a detector like a beam loss monitor

Proton impact on
scanner at CERN-PS Booster:

Secondary particles:

Proton beam → hadrons shower (π, n, p...) 
Electron beam → Bremsstrahlung photons.

Rest mass: 

m± = 140 MeV/c2

m0 = 135 MeV/c2

Kinematics of flying wire: 

Velocity during passage typically 10 m/s = 36 km/h and

typical beam size  10 mm  time for traversing the beam t  1 ms

Challenges: Wire stability for fast movement with high acceleration

U. Raich et al., DIPAC 2005
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The Artist View of a Wire Scanner
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Comparison between SEM-Grid and slow linear Wire Scanners

_______________________________________________________________________ 

Grid: Resolution of a grid is fixed by the wire distance (typically 1 mm)

Scanner: For slow scanners the resolution is about the wire thickness (down to 10 μm)

→ used for e−-beams having small sizes (down to 10 μm)

Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored 

→ for pulsed LINACs precise synchronization is needed 

__________________________________________________________________________

Flying wire:

Grid: Not adequate at synchrotrons for stored beam parameters

Scanner: At high energy synchrotrons: flying wire scanners are nearly non-destructive

__________________________________________________________________________

Grid: Needs one electronics channel per wire 

→ expensive electronics and data acquisition

Scanner: Needs a precise movable feed-through → expensive mechanics.
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Outline:

➢ Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

➢ Optical Transition Radiation:  

light emission due to crossing material boundary, mainly for relativistic beams    

➢ SEM-Grid: 

emission of electrons, workhorse, limited resolution  

➢Wire scanner:

emission of electrons, workhorse, scanning method 

➢ Ionization Profile Monitor: 

secondary particle detection from interaction beam-residual gas

➢ Synchrotron Light Monitors    

➢ Summary

Measurement of Beam Profile
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Ionization Profile Monitor at GSI Synchrotron

Non-destructive device for proton synchrotron:

➢ Beam ionizes the residual gas by electronic stopping

➢ Gas ions or e- accelerated by E -field 1 kV/cm

➢ Spatial resolved single particle detection

Realization at GSI synchrotron:
One monitor per plane

Typical vacuum pressure:

Transfer line: N2 10−8...10−6 mbar  3108...31010cm-3

Synchrotron: H2 10−11...10−9 mbar  3105...3107cm-3

R

voltage divider
+ 6 kV

+ 5 kV

+ 4 kV

+ 2 kV

+ 3 kV

+ 1 kV

0 kV
MCP

anode position readout

HV electrode

𝑬
ion
e.g. H+

beam



Peter Forck, CAS 2022, Kaunas Beam Instrumentation & Diagnostics, Part 231

Ionization Profile Monitor Realization

The realization for the  heavy ion storage ring ESR at GSI:

Horizontal camera 

Horizontal  IPM:

E-field box

MCP

IPM support 
& UV lamp

Ø250 mm

E-field separation disks
View port Ø150 mm

electrodes

175mm

Vertical IPM

Vertical camera

Realization at GSI synchrotron:
One monitor per plane

Typical vacuum pressure:

Transfer line: N2 10−8...10−6 mbar  3108...31010cm-3

Synchrotron: H2 10−11...10−9 mbar  3105...3107cm-3
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Horizontal camera 

Horizontal  IPM:

E-field box

MCP

IPM support 
& UV lamp

Ø250 mm

E-field separation disks
View port Ø150 mm

electrodes

175mm

Vertical IPM

Vertical camera

Ionization Profile Monitor Realization

Realization at COSY synchrotron 
for one plane:

The realization for the  heavy ion storage ring ESR at GSI:
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The emittance 𝜀 = 𝑑𝑥𝑑𝑥′is defined via the position deviation and angle in lab-frame׬

After acceleration the longitudinal velocity is increased   angle  is smaller
The angle is expressed in momenta: x’ = p⊥ / p|| the emittance is <xx’> = 0 :   =  x  x’   =   x  p⊥ / p||

 under ideal conditions the emittance can be normalized to the momentum p || =   m  c

 normalized emittance norm =    is preserved  with the Lorentz factor  and velocity  =v/c

Example: Acceleration in GSI-synchrotron for C6+ from 

6.7 → 600 MeV/u ( = 12 → 79 %) observed by IPM

theoretical width: 𝑥 𝑓 =
𝛽𝑖 ∙ 𝛾𝑖

𝛽𝑓 ∙ 𝛾𝑓
∙ 𝑥 𝑖

= 0.33 ∙ 𝑥 𝑖

measured width:    𝑥 𝑓 ≈ 0.37 ∙ 𝑥 𝑖

‘Adiabatic’ Damping during Acceleration

slow
v⊥

v||

v
before acceleration

fast

v
after acceleration

v⊥

v||

IPM is well suited

for long time observations 

without beam disturbance 

→ mainly used at proton synchrotrons.

acc.

injection extraction

IPM

synchrotron with 
acceleration

→magnetic field 
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Outline:

➢ Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

➢ Optical Transition Radiation:  

light emission due to crossing material boundary, mainly for relativistic beams    

➢ SEM-Grid: 

emission of electrons, workhorse, limited resolution  

➢Wire scanner:

emission of electrons, workhorse, scanning method 

➢ Ionization Profile Monitor: 

secondary particle detection from interaction beam-residual gas

➢ Synchrotron Light Monitors:

photon detection of emitted synchrotron light in optical and X-ray range

➢ Summary

Measurement of Beam Profile
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Synchrotron Radiation Monitor

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light
see lecture ‘Electron Beam Dynamics’ by Lenny Rivkin

This light is emitted 

into a cone of  

opening 2/ in lab-frame.

Well suited for rel. e-

For protons: 

Only for energies Ekin > 100 GeV 

The light is focused to  a 
intensified CCD.

Advantage: 

Signal anyhow available!

orbit of electrons
orbit of electrons

dp/dt dp/dt

radiation field
radiation field

power: P  4/  2

Rest frame of electron: Laboratory frame:
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Realization of a Synchrotron Radiation Monitor

Extracting out of the beam’s plane by a (cooled) mirror

→ Focus to a slit + wavelength filter for optical wavelength

→ Image intensified CCD camera

Example: ESRF monitor from dipole with bending radius 22 m  (blue or near UV)

 beam

dipole

optical table 

e- beam

Courtesy K. Scheidt et al., DIPAC 2005

injection extraction

SRM

synchrotron
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Result from a Synchrotron Light Monitor

Example: Synchrotron radiation facility APS accumulator ring and blue wavelength:

Advantage: Direct measurement of 2-dim distribution, good optics for visible light

Realization: Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.

B.X. Yang (ANL) et al. PAC’97 

injection extraction

SRM

synchrotron
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‘Adiabatic Damping’ for an Electron Beam 

The beam emittance in influenced by:
➢ Adiabatic damping 
➢ Longitudinal momentum contribution

via dispersion ∆𝑥𝐷(𝑠) = 𝐷(𝑠) ∙
∆𝑝

𝑝

total width Δ𝑥𝑡𝑜𝑡(𝑠) = 𝜀𝛽(𝑠) + 𝐷(𝑠) ∙
∆𝑝

𝑝

➢ Quantum fluctuation due to light emission

Example: Booster at the light source ALBA acceleration from 0.1 → 3 GeV within 130 ms

Courtesy U. Iriso & M. Pont 
(ALBA) et al. IPAC 2011 

v
e
rt

. 
y
 [

m
m

]

hor. x [mm]

injection extraction

SRM

synchrotron

Profile measure by synchrotron radiation monitor:
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The Artist View of a Synchrotron Light Monitor



Peter Forck, CAS 2022, Kaunas Beam Instrumentation & Diagnostics, Part 240

Diffraction Limit of Synchrotron Light Monitor

Limitations: 
Diffraction limits the resolution
due to Fraunhofer diffraction
Pattern width for 1:1 image:

𝜎 ≃ 𝜆
2𝐷/𝐿

≃ 0.6 ∙ 𝜆2

𝜚

1/3

 𝜎 ≃ 100 µm for typical cases

Improvements:

➢ Shorter wavelength:

Using X-rays and an aperture of Ø 1mm
→ ‘X-ray pin hole camera’, 

achievable resolution  ≃ 10 m

➢ Interference technique:

At optical wavelength using a double slit

→ interference fringe blurring 
compared to point source 

achievable resolution  ≃ 1 m.

with wavelength 
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Summary for Beam Profile Measurement

Different techniques are suited for different beam parameters:

e−-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

Intercepting  non-intercepting methods

Direct observation of electrodynamics processes:

➢ Optical synchrotron radiation monitor: non-destructive, for e−-beams, complex, limited res.

➢ X-ray synchrotron radiation monitor: non-destructive, for  e−-beams, very complex

➢ OTR screen: nearly non-destructive, large relativistic γ needed, e−-beams mainly

Detection of secondary photons, electrons or ions:

➢ Scintillation screen: destructive, large signal, simple setup, all beams

➢ Ionization profile monitor: non-destructive, expensive, limited resolution, for protons

Wire based electronic methods:

➢ SEM-grid: partly destructive, large signal and dynamic range, limited resolution

➢ Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.
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Measurement of transverse Emittance

The emittance characterizes the whole beam quality, assuming linear

behavior as described by second order differential equation.

It is defined within the phase space as: 

The measurement is based on determination of:

Either profile width σx and angular width σx′ at one location  
Or profile width σx at different locations and linear transformations.

=
A

x dxdx'
1




Synchrotron: lattice functions results in stability criterion 

 beam width delivers emittance: 
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
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Different devices are used at transfer lines:

➢ Lower energies Ekin < 100 MeV/u: slit-grid device, pepper-pot

(suited in case of non-linear forces).

➢ All beams: Quadrupole variation method using linear transformations

(not well suited in the presence of non-linear forces)



Peter Forck, CAS 2022, Kaunas Beam Instrumentation & Diagnostics, Part 243

Trajectory and Characterization of many Particles

➢ Single particle trajectories are 
forming a beam

➢ They have a distribution of

start positions and angles 

 Characteristic quantity is

the beam envelope

➢ Goal: 

Transformation of envelope

 behavior of whole ensemble

Courtesy K.Wille

Focus. 
quad.

Focus. 
quad.

drift drift

envelope of all particles

single particles 
trajectory

see lecture 

‘Transverse linear Beam Dynamics’

by Wolfgang Hillert
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Definition of Coordinates and basic Equations

The basic vector is 6 dimensional:

The transformation of a single particle from a location s0 to s1 is given  by the 
Transfer Matrix R:

The transformation of a the envelope from a location s0 to s1 is given  by the 
Beam Matrix  :

6-dim Beam Matrix  with decoupled hor.,  vert. and long. plane:   

Horizontal 

beam matrix:

𝝈𝟏𝟏 = 𝒙𝟐

𝝈𝟏𝟐 = 𝒙 𝒙′

𝝈𝟐𝟐 = 𝒙′𝟐

Beam width for  
the three 
coordinates:

𝒙𝒓𝒎𝒔 = 𝝈𝟏𝟏

𝒚𝒓𝒎𝒔 = 𝝈𝟑𝟑

𝒍𝒓𝒎𝒔 = 𝝈𝟓𝟓

𝛔 =

𝝈𝟏𝟏 𝝈𝟏𝟐 𝟎 𝟎 𝟎 𝟎
𝝈𝟏𝟐 𝝈𝟐𝟐 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝝈𝟑𝟑 𝝈𝟑𝟒 𝟎 𝟎
𝟎 𝟎 𝝈𝟑𝟒 𝝈𝟒𝟒 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝝈𝟓𝟓 𝝈𝟓𝟔
𝟎 𝟎 𝟎 𝟎 𝝈𝟓𝟔 𝝈𝟔𝟔

horizontal
vertical
longitudinal
hor.-long. coupling 
→ 9 values

𝒙 =

𝒙
𝒙′
𝒚

𝒚′
𝒍
𝜹

=

𝐡𝐨𝐫𝐢. 𝐬𝐩𝐚𝐭𝐢𝐚𝐥 𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧
𝐡𝐨𝐫𝐢𝐳𝐨𝐧𝐭𝐚𝐥 𝐝𝐢𝐯𝐞𝐫𝐠𝐞𝐧𝐜𝐞
𝐯𝐞𝐫𝐭. 𝐬𝐩𝐚𝐭𝐢𝐚𝐥 𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧
𝐯𝐞𝐫𝐭𝐢𝐜𝐚𝐥 𝐝𝐢𝐯𝐞𝐫𝐠𝐞𝐧𝐜𝐞
𝐥𝐨𝐧𝐠. 𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧

𝐦𝐨𝐦𝐞𝐧𝐭𝐮𝐦 𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧

=

[𝑚𝑚]
[𝑚𝑟𝑎𝑑]

[𝑚𝑚]
[𝑚𝑟𝑎𝑑]

[𝑚𝑚]

[10−3]

𝒙 𝒔𝟏 = 𝐑 𝒔 ∙ 𝒙 𝒔𝟎

𝛔 𝒔𝟏 = 𝐑 𝒔 ∙ 𝛔 𝒔𝟎 ∙ 𝐑𝐓 𝒔
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The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:

➢ Beams behind ion source

➢ Space charged dominated beams at LINAC & synchrotron

➢ Cooled beams in storage rings

General description of emittance 
using terms of 2-dim distribution:

It describes the value for 1 standard derivation 

222 '' xxxxrms −=

Variances Covariance

i.e. correlation

Care:

No common definition 

of emittance concerning 

the fraction f

)1ln(2)( ff rms −−= 

For Gaussian beams only: εrms   interpreted as area containing a fraction f of ions:   

Emittance  (f) Fraction f

1  rms 15 %

  rms 39 %

2  rms 63 %

4  rms 86 %

8  rms 98 %
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The Slit-Grid Measurement Device

Slit-Grid: Direct determination of position and angle distribution.

Used for protons with Ekin < 100 MeV/u  range R < 1 cm.

Slit: position P(x) with typical width: 0.1 to 0.5 mm

Distance: typ. 0.5 to 5 m (depending on beam energy 0. 1 ... 100 MeV)

SEM-Grid: angle distribution P(x′)

LINACRFQ

SEM-GridSlit 

0.5...5 m 
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Display of Measurement Results

The distribution is depicted as a function of
position [mm] & angle [mrad]
The distribution can be visualized by 
➢ Mountain plot
➢ Contour plot

Calc. of 2nd moments <x2> , <x’2> & <xx’> 

Emittance value εrms from 

 Problems:

➢ Finite binning results in limited resolution

➢ Background → large influence on <x2>, <x’2> and <xx’>

Or fit of distribution with an ellipse 

 Effective emittance only

Beam: Ar4+, 60 keV, 15 μA

at Spiral2 Phoenix ECR source.

P. Ausset, DIPAC 2009

222 '' xxxxrms −=

Remark: Behind a ion source the beam might very non-Gaussian

due to plasma density and aberration at quadrupoles
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Outline:

➢ Definition and some properties of transverse emittance  

➢ Slit-Grid device: scanning method 

scanning slit → beam position & grid → angular distribution  

➢ Quadrupole strength variation and position measurement

emittance from several profile measurement and beam optical calculation    

Measurement of transverse Emittance
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Emittance Measurement by Quadrupole Variation

From a profile determination, the emittance can be calculated via linear transformation,

if a well known and constant distribution (e.g. Gaussian) is assumed.

➢ Measurement of beam width

x2
max = σ11(s1, k)

matrix R(k) describes the focusing.

➢ With the drift matrix the transfer is 

R(ki ) = Rdrift  Rfocus(ki )

➢ Transformation of the beam matrix 

(s1,ki) = R(ki )  (s0)  RT (ki )

Task: Calculation of (0) 

at entrance s0 i.e. all three elements
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Measurement of transverse Emittance

Example: Square of the beam width at 
ELETTRA 100 MeV e- Linac, YAG:Ce:

Using the ‘thin lens approximation’ i.e. the quadrupole has a focal length of f: 








 +
==








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


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



−
=

1

1

1

01

11

01

K

LLK
KLKL

Kf
K focusdriftfocus )()(),(     

/
)( RRRR

Measurement of matrix-element 𝝈𝟏𝟏 𝑠1, 𝐾 from matrices (s1,Ki) = R(Ki )  (s0)  RT (Ki )

G. Penco (ELETTRA) et al., EPAC’08

Focusing strength K [m-1]

For completeness: The relevant formulas 

The three matrix elements at the quadrupole: 
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Summary for transverse Emittance Measurement

Emittance is the important quantity for comparison to theory.

It includes absolute value (value of ε) & orientation in phase space (ij or α,  and γ)

three independent values 𝜀𝑟𝑚𝑠 = 𝜎11 ∙ 𝜎22 − 𝜎12 ≡ 𝑥2 𝑥′2 − 𝑥𝑥′ 2

assuming no coupling between horizontal, vertical and longitudinal planes

Transfer line, low energy beams → direct measurement of x- and x′-distribution:

➢ Slit-grid: movable slit → x-profile, grid → x′-profile

Transfer line, all beams → profile measurement + linear transformation:

➢ Quadrupole variation: one location, different setting of a quadrupole

Assumptions: ➢ well aligned beam, no steering

➢ no emittance blow-up due to space charge

Remark: Non-linear transformation possible via  tomographic reconstruction

Important remark: For a synchrotron with a stable beam storage, 

width measurement is sufficient using 𝑥𝑟𝑚𝑠 = 𝜀𝑟𝑚𝑠 ∙ 𝛽
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Measurement of longitudinal parameter:

Bunch length measurement at 

➢ Synchrotron light sources

➢ Linear light sources 

➢ Summary

Longitudinal  transverse correspondences:

➢ position relative to rf  transverse center-of-mass
➢ bunch structure in time  transverse profile 
➢ momentum or energy spread    transverse divergence
➢ longitudinal emittance  transverse emittance.     

Measurement of longitudinal Parameters
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The Bunch Position measured by a Pick-Up

The bunch position is given relative to the accelerating rf.

e.g. φref=-30o inside a rf cavity

must be well aligned for optimal acceleration
Transverse correspondence: Beam position

Example: Pick-up signal for frf =36 MHz rf at GSI-LINAC:

LINACRFQ

source

BPM

pick-up

ADC
acc. frf
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Bunch Length Measurement for relativistic Electrons

Electron bunches are too short (t < 100 ps) to be covered by the bandwidth of

pick-ups (f < 3 GHz  trise > 100 ps) for structure determination.

→ Time resolved observation of synchr. light with a streak camera: Resolution  1 ps.

injection extraction

Streak camera

e- synchrotron acc. 
freq. frfrf cavity

Scheme of a streak camera
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Technical Realization of a Streak Camera

Hardware of a streak camera

Time resolution down to 0.5 ps: 

acceleration focusing deflection

 30 cm

Input optics

Streak tube CCD
camera

 60 cm
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Technical Realization of a Streak Camera

Hardware of a streak camera

Time resolution down to 0.5 ps: 

acceleration focusing deflection

 30 cm

Input optics

Streak tube CCD
camera

 60 cm
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Results of Bunch Length Measurement by a Streak Camera

The streak camera delivers a fast scan in vertical direction (here 360 ps full scale) 

and a slower scan in horizontal direction (24 μs).
Example: Bunch length at the synchrotron light source SOLEIL for Urf = 2 MV

for slow direction 24 μs and scaling for fast scan 360 ps: measure t = 35 ps.

Slow Scan:

F
a
s
t 
S

c
a
n
: bunch length

2t = 70 ps

Short bunches are desired by
the users 
Example: Bunch length t

as a function of stored current 
(i.e. space charge de-focusing) 
at SOLEIL 

Courtesy of M. Labat et al., DIPAC’07

injection extraction

Streak camera

e- synchrotron acc. 
freq. frfrf cavity
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The Artist View of a Streak Camera

→ conclusion
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Bunch Length Measurement by electro-optical Method

For Free Electron Lasers → bunch length below 1 ps is achieved 
➢ Below the resolution of streak camera

➢ Short laser pulses with t  10 fs and electro-optical modulator

Electro optical modulator: Birefringent, rotation angle depends on external electric field

Relativistic electron bunch: transverse ele. field 𝐸⊥,𝑙𝑎𝑏 = 𝛾𝐸⊥,𝑟𝑒𝑠𝑡 carries the time information

Scanning of delay between bunch and laser → time profile after several pulses. 

LINACLINAC

EO monitor

Undulator

Bunch compressor

Courtesy S.P.Jamison et al., EPAC 2006
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Bunch Length Measurement by electro-optical Method

For Free Electron Lasers → bunch length below 1 ps is achieved 

Short laser pulse  broad frequency spectrum (property of Fourier Transformation) 

Optical stretcher: Separation of colors by different path length 

 different colors at different time  single-shot observation

Courtesy S.P.Jamison et al., EPAC 2006

LINACLINAC

EO monitor

Undulator

Bunch compressor
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Hardware of a spectral-decoded EOSD Scanning Setup

B. Steffen et al, DIPAC 2009

B. Steffen et al., Phys. Rev. AB 12, 032802 (2009)

crystal

beam

Example: Bunch length at FLASH 

100 fs bunch duration = 30 µm length ! 

2 = 110 fs

vacuum flange 

S. Funkner et al., arXiv1912.01323 (2019)

Laser: Commercial Ti:Sa or Yb-fibre, 

10 fs duration, near IR, 

Crystal: GaP or ZnTe, 100 µm thickness

→proton BSM
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Summary of longitudinal Measurements 

Devices for bunch length at light sources:

Streak cameras:

➢ Time resolved monitoring of synchrotron radiation

→ for relativistic e−-beams, 10 ps < tbunch < 1 ns

Time resolution limit of streak camera  1 ps

Laser-based electro-optical modulation:

➢ Electro-optical modulation of short laser pulse

→ very  high time resolution down to some fs time resolution

Technical complex installation
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Conclusion for Beam Diagnostics Course 

Diagnostics is the ’sensory organ’ for the beam.
It required for operation and development of accelerators

Several categories of demands leads to different installations:

➢ Quick, non-destructive measurements leading to a single number or simple plots

➢ Complex instrumentation used for hard malfunction and accelerator development

➢ Automated measurement and control of beam parameters i.e. feedback

The goal and a clear interpretation of the results is a important design criterion.

General comments:

➢ Quite different technologies are used, based on various physics processes

➢ Accelerator development goes parallel to diagnostics development

Thank you for your attention!
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General Reading on Beam Instrumentation

➢ H. Schmickler (Ed.) Beam Instrumentation,  Proc. CERN Accelerator School,  Tuusula 2018  in prep.

➢ D. Brandt (Ed.), Beam Diagnostics for Accelerators, Proc. CERN Accelerator School, Dourdan,

CERN-2009-005, 2009; 

➢ Proceedings of several CERN Acc. Schools (introduction & advanced level, special topics).

➢ V. Smaluk, Particle Beam Diagnostics for Accelerators: Instruments and Methods, 

VDM Verlag Dr. Müller, Saarbrücken 2009. 

➢ P. Strehl, Beam Instrumentation and Diagnostics, Springer-Verlag, Berlin 2006.   

➢ M.G. Minty and F. Zimmermann, Measurement and Control of Charged Particle Beams, 

Springer-Verlag, Berlin 2003.

➢ S-I. Kurokawa, S.Y. Lee, E. Perevedentev, S. Turner (Eds.), Proceeding of the School on Beam

Measurement, Proceedings Montreux, World Scientific Singapore (1999). 

➢ P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS School, JUAS Indico web-site.

➢ Contributions to conferences, in particular to International Beam Instrumentation Conference IBIC.
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Backup slides
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Broadening due to the Beam’s Space Charge: Ion Detection

Example: U73+, 109 particles per 3 m bunch length, cooled beam with  true = 1 mm FWHM.

Influence of the residual gas ion trajectory by :

➢ External electric field Eex

➢ Electric field of the beam’s space charge Espace

e.g. Gaussian density distribution for round beam:  
















−−=

2

2

0 2
exp1

1

2

1
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

r

rl

qeN
rEspace

Estimation of correction:    
ex

gap

ex

gap

p

corr
U

dN
eU

d
l

qN

cmπε

e 11

4

2ln

2

0

2
2 

With the measured beam width is  given by convolution:                                         222  corrtruemeas  +=

R

voltage divider
+ 6 kV

+ 5 kV

+ 4 kV

+ 2 kV

+ 3 kV

+ 1 kV

0 kV
MCP

anode position readout

HV electrode

𝑬

ion

e.g. 

H+

beam
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Electron Detection and Guidance by Magnetic Field

e− detection in an external magnetic field

→ cyclotron radius 𝑟𝐶 =
𝑚𝑣⊥
𝑒𝐵

for 𝐸𝑘𝑖𝑛,⊥ = 10 eV & B = 0.1 T  rc  100 µm  

Ekin from atomic physics, 100 µm resolution of MCP

Time-of-flight: 1 - 2 ns  2 - 3 cycles.
B-field: Dipole with large aperture 

→ IPM is expensive & large device!

Ion detection mode: Electron  detection mode:

 broadening by beam’s electric field 

7 1010 charges 
per 10 m bunch
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IPM: Magnet Design

Maximum image distortion:

5% of beam width  B/B < 1 %

Challenges:

➢ High B-field homogeneity of  1%

➢ Clearance up to 500 mm 

➢ Correctors required 

to compensate  beam steering

➢ Insertion length 2.5 m incl. correctors

Magnetic field for electron guidance: Corrector

480mm

Corrector

Horizontal IPM

Vertical IPM

Insertion 
length
2.5 m

300mm

beam

beam

corrector 1 corrector 2 IPM magnet

Bcor  lcorr = - ½ BIPM  lIPM

lcorr lcorr
lIPM

Remark: For MCP wire-array readoutlower clearance required
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IPM: Magnet Design

Maximum image distortion:

5% of beam width  B/B < 1 %

Challenges:

➢ High B-field homogeneity of  1%

➢ Clearance up to 500 mm 

➢ Correctors required 

to compensate  beam steering

➢ Insertion length 2.5 m incl. correctors

Magnetic field for electron guidance:

beam

corrector 1 corrector 2 IPM magnet

Bcor  lcorr = - ½ BIPM  lIPM

lcorr lcorr
lIPM

Remark: For MCP wire-array readout lower clearance required

J-PARC: Horizontal IPM & comp. 

IPM magnet 

corrector
corrector

Magnet: B = 250 mT, Gap 220 mm

IPM: Profile 32 strips, 2.5 mm width

Remark for electron beams: 

Resolution of 50 µm is insufficient, 

but sometimes used for photon beams

→back: SRM
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Example: Variation of vertical injection angle by magnetic steerer
Beam: C6+ at 6.7 MeV/u acc. to 600 MeV/u, up to 6109 ions per fill

with multi-turn injection, IPM integration 0.5 ms i.e.  100 turns

Emittance Enlargement by Injection Mis-steering

Vertical profile at injection: Horizontal profile at injection:

Horizontal profile after acc.:Vertical profile after acc.:

before 
acc.

after acc.

Emittance conservation requires 
precise injection matching
Wrong angle 
of injected beam: 
➢ injection into outer 

phase space → large 
-amplitude i.e. large beam

➢ might result in 
‘hollow’ beam

➢ filling of acceptance
i.e. loss of particles

 Hadron beams: larger 
emittance after acceleration   

injection extraction

IPM

synchrotron

vertical

steerer

injection:

angle

mismatch

Schematic simulation:
Courtesy M. Syphers

misplace injection filamentation larger emittance 

x
x’
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100 ns delayed emission  
→ no OTR as expected (classical process)
→ emission by scint. screen due to lifetime

 correct profile image!  

71

Coherent Optical Transition Radiation

Observation of coherent OTR for compressed bunches at LINAC based light sources  

Reason: Coherent emission if bunch length  wavelength (tbunch=2 fs  lbunch =600 nm) 

or bunch fluctuations  wavelength

Contrary of M. Yan et al., DIPAC’11 & S. Wesch, DIPAC’11  

prompt emission for OTR and scint. screen 
→ coherent and in-coherent OTR  

OTR screen  scint. screen  

Parameter reach
for most LINAC-based FELs!

Beam parameter: FLASH, 700 MeV,
0.5 nC, with bunch compression

beam

photons

OTR 
screen

in-coherent emission

beam

photons

OTR 
screen

coherent emission
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X-ray Pin-Hole Camera

The diffraction limit is  shorter wavelength by X-rays.( ) 3/12 /6.0  

Example: PETRA III Courtesy K. Wittenburg, DESY

X-ray

optics

CCD

Monochromat

or

electron beam

X-ray beam

 = 44 µm


=

 3
2

µ
m

Example: PETRA III result:
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Double Slit Interference for Radiation Monitors

The blurring of interference pattern due to

finite size of the sources 

spatial coherence parameter  delivers rms beam 
size

i.e. ‘de-convolution’ of blurred image!

→ highest resolution, but complex method
Typical resolution for three methods:

➢ Direct optical observation:   100 µm 

➢ Direct x-ray observation :    10 µm

➢ Interference optical obser:   1 µm

Courtesy of V. Schlott PSI

Ideal double slit interference pattern:
x

P(x)

Blurring by finite source size: 
x

P(x)
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Bunch Length Measurement for relativistic Electrons

Electron bunches are too short (t < 100 ps) to be covered by the bandwidth of

pick-ups (f < 3 GHz  trise > 100 ps) for structure determination.

→ Time resolved observation of synchr. light with a streak camera: Resolution  1 ps.

injection extraction

Streak camera

e- synchrotron acc. 
freq. frfrf cavity

Scheme of a streak camera
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Realization of EOS Scanning 

Setup of a scanning EOS method. 

Delay line

X. Yan et al, Phys. Rev. Lett. 85, 3404 (2000)

Using 12fs pulses  from

Ti:Al2O3 laser at 800nm and 

ZnTe crystal 0.5mm thick 

with a e- - beam  46MeV of  200pC
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Bunch Structure at low Ekin: Not possible with Pick-Ups

Pick-ups are used for:
➢ precise for bunch-center relative to rf
➢ course image of bunch shape

But:
For  << 1 → long. E-field significantly modified:

Example: Comparison pick-up – particle counter:

Ar beam of 1.4 MeV/u (β = 5.5%) , frf = 108 MHz

 the pick-up signal is insensitive 

to bunch ’fine-structure’

ampl.

R
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Bunch Structure using secondary Electrons for low Ekin Protons

Secondary e− liberated from a wire carrying the time information.

→ Bunch Shape Monitor (BSM)

Working principle:

➢ insertion of a 0.1 mm wire at  10 kV

➢ emission of secondary e− within less than 10 ps

➢ secondary e− are accelerated

➢ toward an rf-deflector

➢ rf-deflector as ’time-to-space’ converter

➢ detector with a thin slit

➢ slow shift of the phase

➢ resolution  10 ps  1o @ 280 MHz

➢ Measurements are comparable

to that obtained with particle detectors.
SEM: secondary electron multiplier
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Realization of Bunch Shape Monitor at CERN LINAC2

ion beam

rf-deflector

movable

HV wire

Flange Ø 150 mm

electron detector
electrons

Example: The bunch shape behind RFQ with120 keV/u:

→back: Conclusion


