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Study interaction between beam and RF

Complementary approaches for the same problem

* Describe particle motion by
differential equations

— Continuous trajectories of
particle motion

— Deduce useful parameters for

stable acceleration:
— RF bucket
— Synchrotron frequency
— Stable phase
— ...
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Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical Numerical: tracking

* Describe particle motion by * Track particle parameters from
differential equations turn to turn
— Continuous trajectories of — Profit from discretization of
particle motion motion: turn-by-turn,
— Deduce useful parameters for RF station-by-RF station
stable acceleration: — No notion of RF bucket,
— RF bucket synchrotron frequency, stable
— Synchrotron frequency phase, etc.
— Stable phase
o — Follow ensemble of particles to

study evolution of bunch



Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical Numerical: tracking

* Describe particle motion by * Track particle parameters from
differential equations turn to turn
— Continuous trajectories of — Profit from discretization of
particle motion motion: turn-by-turn,
— Deduce useful parameters for RF station-by-RF station
stable acceleration: — No notion of RF bucket,
— RF bucket synchrotron frequency, stable
— Synchrotron frequency phase, etc.
— Stable phase
o — Follow ensemble of particles to
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— Classical
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Objectives of longitudinal hands-on

1. Design RF system (upgrade)

LongitudinalHandsOnRFSystemCalculations empty.ipynb
* Study boundary constraints

* Derive requirements for RF system
 Choose main components

 Compare with existing facilities



RF system design



Introduction

What to do to design an RF system?

How to choose the right one?
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Simplified design work flow

Accelerator and Ramp rate
beam parameters limitations

$§ 3

Magnetic cycle, B(t)

4

— Revolution frequency swing
— Voltage gain per turn during cycle

\ 4

— Harmonic number, RF frequency range
— Voltage program during the cycle
— Choice of RF system: number of cavities, type, ...
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RF parameters of existing accelerators

Try to follow design choices of existing accelerator

« (Canwe understand the arguments?
* Are the choices reasonable?

/]

Good design?
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Example: RF System for CERN PS

« Attention e
— Present RF system designed in ~1969 'k

— Not the same energy range as today

Parameter Value

Circumference, 2nR 27T -100 M = 628 m
Acceleration time, £, . 18
Maximum ramp rate, dB/dt 2.3 T/s
Injection energy, E,.. 45 MeV
Flat-top energy, E, initially 28 GeV
¥ O

Revolution frequency at injection, f., ; 143 kHz

at flat-top, f, ., pr 477 kHz

Relative frequency swing 3.33



Example: CERN PS - choice of RF voltage

— Energy gain per turn defined by size and ramp rate

AFium = 21qpRB

— At 2.3 T/s ramp rate: ~100 keV gain per turn
— Just sufficient to accelerate svnchronous particle

1og = 90" 1 g = 30°
1 1
= 0\/\ S0
-1 -1
-2 -2
- -/2 0 /2 T - -/2 0 /2 T
¢ ¢
1 AFE
— Over-voltage for bucket area: Vir = ~ 200 kV

SIN Qg (
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Example: CERN PS - choice of RF harmonic

— Operate RF stations in phase with respect to beam
— Use common RF signal

* Time of flight, 7,
between RF cavities:

— Multiple of RF period
—> Tpq — N TRF — n/hTrev

\

Opq =n-21/h

— RF stations must be located an multiples of 27t/h
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Example: CERN PS - choice of harmonic

— Main elements: 100 bending magnets
— 100 possible location for RF stations in-between
—100 =2 - 2 - 5 - 5, hence divisible by 2, 4, 5, 10, 20, 25, 50

WL ) h=1
S g "
N _ h=2m
R W o ol
; ( T s g M=o
A || S h=10; |im— |
= ._\\ \\\ ~ E 1 N
? 2\_/ | % = h=20 —
0 5 10 15 20

Jrr [MHZ]

— Distribute total RF voltage over many cavities
— Possible harmonic numbers 20 or 25 — h = 20 retained
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Example: CERN PS choice of harmonic

— Distance between RF stations: multiples of 27t/20
— No need to use common RF with todays technology
— Injection energy at 1.4 GeV (2 GeV) = 10% (5%) swing
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Example: CERN PS choice of cavity
— RF system parameters: Parameter |

Harmonic, h 7eery 20, 21
Frequency;, fir 2.8-10 MHz
Voltage, Vi 10 (+1) x 20 kV

— Distribute voltage over 10 RF stations: 20 kV/cavity

Shortened A/4 coaxial resonators with ferrite tuning

Ferrite stacks for ~ Accelerating
shortening and gaps
tuning




Electrons in the PS

* Asan injector of LEP electrons were accelerated
in the PS to E = 3.5 GeV

 Is the RF system for acceleration of protons usable?

e’ E*
AFE . = v ~ 190 keV /turn
BEO(moC ) P

o =~ 8.85-107"% As/Vm

— Bucket area too small and bunches too long at 3.5 GeV

— Optimized RF system for electron acceleration

Parameter | _____

Harmonic, h 240

2m

Frequency, fry 114 MHz 7
VOltage’ VRF 1 MV < l,‘{;. \ ";-‘_-:\:;'4;'-'..'::;:...E..;,::.-’-'-"-"- | r \

(5 x more than 10 MHz cavities) T

<
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Example: RF System for CERN PS Booster

* PSinjector synchrotron
— 2R pgp = 2R ps/4
— Sandwich of 4 rings
— Total length as PS circumference

Circumference, 2nR 27T - 25 M =157 M
Acceleration time, £, . ~0.5 S
Maximum ramp rate, dB/dt 23 T/s
Injection energy, E,.. 50/160 MeV
Flat-top energy, E,;, 0.8/1.0/1.4/2.0 GeV
O 8

Revolution frequency at injection, f., ; 0.6/1 MHz

at ejection, f., . 1.81 MHz

Relative frequency swing 3



Example: CERN PS Booster (PSB)

* Circumference 2R pgp = 2MRpg/4 =157 M
 Initial design as PS injector

f RF,PSB — f RF,PS

.
O hpsy = hpg/4 =5

— Modifications as pre- [T I

injector to LHC: Harmonic, h 1 or/and 2
Frequency, fir 0.6/1..1.8 MHz
Voltage, V¢ 8..20 kV

O
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Example: CERN PSB (single harmonic, h=1)

Bucket area: dstory <Yu
0 /4 /2
8vV2 |EB%qV 10 ’
Abucket — h 0.8
Wo 206
T04
Depends on: 0
* Bending field, Band ramp ratedB/dt ,
* RFvoltage, V d 3n/4 /2
¢s for y > yy
Bending field and RF voltage
08 = et 8
_06 - N2
= e T
) 04 ’,’/ 4 "é
0.2 N PPt S
0.0 A, 0 B . .
0.0 0.2 0.4 0.6 0.8 1.0 eam 1ntensity
0.8 . ~ 8 =08 27T o {160 _
_ 06 %) 06 - N {120 &
x 04 U ;3#0.4 e “180
0.2 h < 0.2 N PPt 40 =
0.0 0 0.0 _ 0
0.0 02 0.4 06 08 1.0 0.0 0.2 04 0.6 0.8 1.0

Cycle time [s]

Cycle time [s]
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RF systems in the PS Booster

Controlled longitu-
i dinal blow-up

Acceleration and splitting

— 4 rings with 3 cavities
— PS Booster RF systems based on tuned ferrite cavities



RF systems in the PS Booster after upgrade

)
.
7
7
.
/

Collaboration » e
with KEK/JPARC M

— New wide-band cavities covering h =1, 2, and higher
— Based on innovative Finemet material
— Much increased flexibility
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Super Proton Synchrotron
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Example: RF System for CERN SPS

AFiun = 2nqgpRB )
— Needs significantly more ),

RF voltage: several MV it
Circumference, 27R 27 - 1.1 km = 6.91 km
Acceleration time, £, . ~4 S
Maximum ramp rate, dB/dt ~0.74 T/s
Injection Energy, E, . initially 10 GeV
Flat-top energy, E, ., 450 GeV
Relativistic beta, f=v/c at injection 0.9955885

at flat-top 0.9999978

Relative frequency swing 0.44%



Example: SPS - choice of RF harmonic

Harmonic number should be multiple of

Revolution frequency ratio of PS and SPS 1
Acceleration harmonic in the PS 20
Super-periodicity of SPS 6

— Looking for multiples of 660
g 2 3960 | 4620 | 5280
;? ? 118 g 172 200 | 229 30

Lower RF frequency Higher RF frequency

 Total bucket area: \/V * Mechanically smaller cavities

hAp B Higher shunt impedance easier to

— Insufficient at inj. for / > 5500 achieve — power efficiency

* Magnetic tuning only possibleat + Higher breakdown voltages
fre <100 MHz)
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Example: SPS choice of RF cavities

* Requirements: Parameter |

Harmonic, h 4620
Frequency, fir 200 MHz
Bandwidth, Afgy 0.44%
Voltage, Vi Few MV

How to build such an RF system?

— Cavity resonator would need tuning or low Q < 1/0.44% = 230

N N

Mecx‘cally Travelling wave
tun vity structure

Avoixling High voltage in
mechani vacuum moderate bandwidth

30
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Example: SPS travelling wave cavities

— Multi-cell structure operated as a waveguide

HEAVY pUTY
Dummy LOA?

— Sufficient bandwidth without mechanically moving parts
— Travelling wave structure always matched to amplifier
— Beam takes power it needs from the waveguide

Pload = Pin - Pbeam - Ploss



Large Electron Positron
and Hadron Colliders
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RF voltage [MV]

Ex.: RF against synchrotron radiation in LEP ”

* LEP energy was entirely dominated by synchrotron radiation
e E?
3eg(moc?)t p

e AtE=100GeV: AFE =

~ 3 GeV /turn
o =~ 8.85-107"% As/Vm

— About 3 % of beam energy
lost each turn

RF voltage and beam energy

4000 Beam
Available RF energy
3500 - voltage I [GeV]
3000 - 111
2500 A Nominal RF 1 105
voltage j—f
2000 A Beam | g5
energy
1500 -
: 85
1000 - Cryogenics
upgrade
500 - S
0 e

Jul-95 Feb-96 Aug-96 Mar-97 Sep-97 Apr-98 Nov-98 May-99 Dec-99 Jun-00

Date



Example: LHC "

 LHC maximum energy and ramp rate limited by super-
conducting bending magnets: 20 minutes ramp time

— Average energy gain per turn only AE, =500 keV/turn

urn

— Revolution frequency stays almost constant

— RF voltage required to keep
bunches short

— Superconducting cavities chosen 8x per beam
to reduce beam induced voltage

(small R/Q)

Parameter (per beam)

Harmonic, h 35640
Frequency, fir 400.8 MHz
Voltage, Vi 16 MV




Summary

Design of RF system for circular accelerator
1. Start from accelerator parameters
2. Define RF parameters based on beam requirements
3. Chose RF system
— Mostly several design options are possible
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- , ...isyourfr%nd!

You will design an RF system (upgrade)

1. Protons accelerator: Upgrade of CERN SPS to 1.3 TeV

2. Electronstoragering: Energyand current upgrade of
SOLEIL
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Thank you very much
for your attention!
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