Injection and Extraction (+Kickers, Septa)

Frank Tecker, CERN (ATS-DO)
based on lectures by Matthew Fraser and M.J. Barnes, W. Bartmann, J. Borburgh, V. Forte, B. Goddard, V. Kain and M. Meddahi

- Introduction: Kickers, septa and normalised phase-space
- Injection methods
- Single-turn hadron injection
- Injection errors, filamentation and blow-up
- Multi-turn hadron injection
- Charge-exchange H-injection
- Lepton injection
- Extraction methods
- Single-turn (fast) extraction
- Non-resonant and resonant multi-turn (fast) extraction
- Resonant multi-turn (slow) extraction
- Linking machines

Injection and extraction

- An accelerator has limited dynamic range
- Chain of stages needed to reach high energy
- Periodic re-filling of storage rings, like LHC
- External facilities and experiments:
- e.g. ISOLDE, HIRADMAT, AWAKE...

Beam transfer (into, out of, and between machines) is necessary.

CERN Accelerator Complex
H^{-}(hydrogen anions) $>\mathrm{p}$ (protons) $>$ ions $>$ RIBs (Radioactive Ion Beams) $>\mathrm{n}$ (neutrons) $>\overline{\mathrm{p}}$ (antiprotons) $>\mathrm{e}^{-}$(electrons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear
Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive
EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight //
HiRadMat - High-Radiation to Materials

Basics: injection, septum and kicker

- Kickers produce fast pulses, rising their field within the particle-free gap in the circulating beam (temporal separation)
- Septa compensate for the relatively low kicker strength, and approach closely the circulating beam (spatial separation)

Google

- Kicker

...so we also call them
"Fast Pulsed Magnets"
- Septum

Kickers - Magnetic parameters

Pulsed magnet with very fast rise time (<100 ns - few $\mu \mathrm{s}$)

Vertical aperture, V_{ap}
HV conductor

A C-core geometry, commonly used at CERN

Magnetic field

Derivation: remember Ampère's Law:

$$
{\underset{c}{ }{ }_{c} \vec{B} . \vec{l}=\mu_{0} I_{\text {Iec }}}^{\text {ce}}
$$

Magnet inductance [per unit length]

$$
L_{\text {mag/m }} \quad 0 \frac{N^{2} \times H_{a p}}{V_{a p}} \stackrel{-}{\div}
$$

Derivation: remember Faraday's Law: ${ }_{B}=V d t$ and $V=L d I / d t$

- Dimensions H_{ap} and V_{ap} specified by beam parameters at kicker location
- Ferrite (permeability $\mu_{\mathrm{r}} \approx 1000$) reinforces magnetic circuit and field uniformity in the gap
- For fast rise-times the inductance must be minimised: typically the number of turns, $N=1$
- Kickers are often split into several magnet units, powered independently

Magnetic and electrostatic septum

Magnetic

Septum coil: 2-20 mm

Electrostatic

Thin wire or coil: $\mathbf{\sim 0 . 1 ~ m m ~}$
High voltage
electrode.

Thin wire or foil

$$
E=V / g
$$

Typically V $=200 \mathrm{kV}$
$\mathrm{E}=100 \mathrm{kV} / \mathrm{cm}$

Hollow earth electrode

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{o}}=\mu_{0} \mathrm{I} / \mathrm{g} \\
& \text { Typically I } 5-25 \mathrm{kA}
\end{aligned}
$$

Single-turn injection - same plane

- Septum deflects the beam onto the closed orbit at the centre of the kicker
- Kicker compensates for the remaining angle
- Septum and kicker either side of D quad to minimise kicker strength

Normalised phase space

- Transform real transverse coordinates (x, x^{\prime}, s) to normalised co-ordinates ($\bar{X}, \bar{X}^{\prime}$,) where the independent variable becomes the phase advance μ :

$$
\left[\begin{array}{c}
\overline{\boldsymbol{X}} \\
\bar{X}^{\prime}
\end{array}\right]=\boldsymbol{N} \cdot\left[\begin{array}{c}
x \\
x^{\prime}
\end{array}\right]=\sqrt{\frac{1}{\beta(s)}} \cdot\left[\begin{array}{cc}
1 & 0 \\
\alpha(s) & \beta(s)
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
x^{\prime}
\end{array}\right]
$$

$$
x(s)=\sqrt{ } \sqrt{(s)} \cos \left[(s)+{ }_{0}\right]
$$

$$
(s)={ }_{0}^{s} \frac{d}{(~)}
$$

$$
\begin{aligned}
& \bar{X}(\mu)=\sqrt{\frac{1}{\beta(s)}} \cdot x=\sqrt{\varepsilon} \cos \left[\mu+\mu_{0}\right] \\
& \bar{X}^{\prime}(\mu)=\sqrt{\frac{1}{\beta(s)}} \cdot \alpha(s) x+\sqrt{\beta(s)} x^{\prime}=-\sqrt{\varepsilon} \sin \left[\mu+\mu_{0}\right]=\frac{d \bar{X}}{d \mu}
\end{aligned}
$$

Normalised phase space

Single-turn injection

Single-turn injection

Single-turn injection

Single-turn injection

Injection oscillations

For imperfect injection the beam oscillates around the central orbit, e.g. kick error, Δ :

Injection oscillations

For imperfect injection the beam oscillates around the central orbit, e.g. kick error, Δ :

After 1 turn...

Injection oscillations

For imperfect injection the beam oscillates around the central orbit, e.g. kick error, Δ :

After 2 turns...

Injection oscillations

For imperfect injection the beam oscillates around the central orbit, e.g. kick error, Δ :

After 3 turns etc...

Injection oscillations

- Betatron oscillations with respect to the Closed Orbit:

- Angular errors from septa and kicker have different orbit pattern
- Correct the difference between injected beam and closed orbit or $1^{\text {st }}$ and $2^{\text {nd }}$ turn

Filamentation

Filamentation

- Non-linear effects (e.g. higher-order field components) introduce amplitude-dependent effects into particle motion
- Over many turns, a phase-space oscillation is transformed into an emittance increase
- So any residual transverse oscillation will lead to an emittance blow-up through filamentation
- "Transverse damper" systems are used to damp injection oscillations bunch position measured by a pick-up, which is linked to a kicker
- Chromaticity coupled with a non-zero momentum spread at injection can also cause filmentation, often termed chromatic decoherence
- See appendix for derivation of the emittance increase

Filamentation - Decoherence

- Residual transverse oscillations lead to an effective emittance blowup through filamentation.
- Due to tune spread and energy spread, the oscillation will not be seen for long on a BPM signal:

Multi-turn injection

- For hadrons the beam density at injection can be limited either by space charge effects or by the injector capacity
- If we cannot increase charge density, we can sometimes fill the horizontal phase space to increase overall injected intensity.
- Cannot inject into same phase space area, as we would kick out the beam located there
- If the acceptance of the receiving machine is larger than the delivered beam emittance we can accumulate intensity

Multi-turn injection for hadrons

Injected beam
(usually from a linac)

Programmable closed orbit bump

- No kicker but fast programmable bumpers
- Bump amplitude decreases and a new batch injected turn-by-turn
- Phase-space "painting"

Multi-turn injection for hadrons

Example: CERN PSB injection from Linac 2, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 1
Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 2
Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 3 Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 4 Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 5

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 6 Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 7
Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 8 Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 9 Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 10 Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 11 Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 12 Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 13 Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Example: CERN PSB injection, high intensity beams, fractional tune $\mathrm{Q}_{\mathrm{h}} \approx 0.25$
Turn 14
Beam rotates $\pi / 2$ per turn in phase space

Multi-turn injection for hadrons

Phase space has been "painted"
Turn 15

In reality, filamentation (often space-charge driven) occurs to produce a quasiuniform beam

Charge exchange H - injection

- Multi-turn injection is essential to accumulate high intensity
- Disadvantages inherent in using an injection septum:
- Width of several mm reduces aperture
- Beam losses from circulating beam hitting septum:
- typically $30-40 \%$ for the CERN PSB injection at 50 MeV
- Limits number of injected turns to 10 - 20
- Charge-exchange injection provides elegant alternative
- Possible to "cheat" Liouville's theorem, which says that emittance is conserved....
- Convert H^{-}to p^{+}using a thin stripping foil, allowing injection into the same phase space area

Charge exchange H - injection

Start of injection process

Charge exchange H - injection

End of injection process with painting

Accumulation process on foil

- Linac4 connection to the PS booster at 160 MeV :
- H^{-}stripped to p^{+}with an estimated efficiency $\approx 98 \%$ with C foil $200 \mu \mathrm{~g} . \mathrm{cm}^{-2}$

Charge exchange H - injection

- Paint uniform transverse phase space density by modifying closed orbit bump and steering injected beam
- Foil thickness calculated to double-strip most ions ($\approx 99 \%$)
- $50 \mathrm{MeV}-50 \mu \mathrm{~g} . \mathrm{cm}^{-2}$
- $800 \mathrm{MeV}-200 \mu \mathrm{~g} \cdot \mathrm{~cm}^{-2}(\approx 1 \mu \mathrm{~m}$ of $\mathrm{C}!$)
- Carbon foils generally used - very fragile
- Injection chicane reduced or switched off after injection, to avoid excessive foil heating and beam blow-up
- Longitudinal phase space can also be painted turn-by-turn:
- Variation of the injected beam energy turn-by-turn (linac voltage scaled)
- Chopper system in linac to match length of injected batch to bucket

H-injection - painting

Lepton injection

- Single-turn injection can be used as for hadrons; however, lepton motion is strongly damped (different with respect to proton or ion injection).
- Synchrotron radiation
- see Electron Beam Dynamics lectures by L. Rivkin
- Can use transverse or longitudinal damping:
- Transverse - Betatron accumulation
- Longitudinal - Synchrotron accumulation (2 x faster than transverse)
- Can be used for top-up injection (keeping constant current)
- need full-energy injector

Betatron lepton injection

Injected beam

Closed orbit bumpers or kickers

- Beam is injected with an angle with respect to the closed orbit - Injected beam performs damped betatron oscillations about the closed orbit

Betatron lepton injection

Injected bunch performs damped betatron oscillations

In LEP at 20 GeV , the damping time was about 6'000 turns (0.6 seconds)

Synchrotron lepton injection

Injected beam

$$
\mathrm{p}=\mathrm{p}_{0}+\Delta \mathrm{p}
$$

Inject an off-momentum beam at a location with dispersion

Septum magnet
$\rho=p_{0}$

- Beam injected parallel to circulating beam, onto dispersion orbit of a particle having the same momentum offset $\Delta p / p$
- Injected beam makes damped synchrotron oscillations at Q_{s} but does not perform betatron oscillations

Synchrotron lepton injection

Double batch injection possible....

Longitudinal damping time in LEP was ~3'000 turns ($2 x$ faster than transverse)

Synchrotron lepton injection in LEP

Optimized Horizontal First Turn Trajectory for Betatron Injection of Positrons into LEP.

Optimized Horizontal First Turn Trajectory fre Synchrotron Injection of Positrons with $\Delta \mathrm{P} / \mathrm{P}$ at -0.6%
Synchrotron injection in LEP gave improved background for LEP experiments due to small orbit offsets in zero dispersion straight sections

Injection - summary

- Several different techniques using kickers, septa and bumpers:
- Single-turn injection for hadrons
- Boxcar stacking: transfer between machines in accelerator chain
- Angle / position errors \Rightarrow injection oscillations
- Uncorrected errors \Rightarrow filamentation \Rightarrow emittance increase
- Multi-turn injection for hadrons
- Phase space painting to increase intensity
- H- injection allows injection into same phase space area
- Lepton injection: take advantage of damping
- Less concerned about injection precision and matching

Extraction

- Different extraction techniques exist, depending on requirements
- Fast extraction: ≤ 1 turn
- Non-resonant (fast) multi-turn extraction: few turns
- Resonant low-loss (fast) multi-turn extraction: few turns
- Resonant multi-turn extraction: many thousands of turns
- Usually higher energy than injection \Rightarrow stronger elements ([B.d/)
- At high energies many kicker and septum modules may be required
- To reduce kicker and septum strength, beam can be moved near to septum by closed orbit bump
- Beam size scales with $1 / \sqrt{\gamma}=>$ smaller than injection

Fast single turn extraction

Entire beam kicked into septum gap and extracted over a single turn

- Bumpers move circulating beam close to septum to reduce kicker strength
- Kicker deflects the entire beam into the septum in a single turn
- Most efficient (lowest deflection angles required) for $\pi / 2$ phase advance between kicker and septum

Fast single turn extraction

- For transfer of beams between accelerators in an injector chain
- For secondary particle production
- e.g. neutrinos, radioactive beams
- Losses from transverse scraping or from particles in extraction gap:
- Fast extraction from SPS to CNGS:

Multi-turn extraction

- Some filling schemes require a beam to be injected in several turns to a larger machine...
- And very commonly Fixed Target physics experiments and medical accelerators often need a quasi-continuous flux of particles...
- Multi-turn extraction...
- Fast: Non-resonant and resonant multi-turn ejection (few turns) for filling
- e.g. PS to SPS at CERN for high intensity proton beams (>2.5 1013 protons)
- Slow: Resonant extraction (ms to hours) for experiments

Non-resonant multi-turn extraction

Beam bumped to septum; part of beam 'shaved' off each turn

Fast closed orbit bumpers

- Fast bumper deflects the whole beam onto the septum
- Beam extracted in a few turns, with the machine tune rotating the beam
- Intrinsically a high-loss process: thin septum essential
- Often combine thin electrostatic septa with magnetic septa

Non-resonant multi-turn extraction

- Example system: CERN PS to SPS Fixed-Target 'continuous transfer'.
- Accelerate beam in PS to $14 \mathrm{GeV} / \mathrm{c}$
- Empty PS machine ($2.1 \mu \mathrm{~s}$ long) in 5 turns into SPS
- Do it again
- Fill SPS machine ($11 \times \mathrm{C}_{\text {PS }}, 23 \mu \mathrm{~s}$ long)
- Quasi-continuous beam in SPS ($2 \times 1 \mu \mathrm{~s}$ gaps)
- Total intensity per PS extraction $\approx 2.5 \times 10^{13} \mathrm{p}+$
- Total intensity in SPS $\approx 5 \times 10^{13} \mathrm{p}+$

Non-resonant multi-turn extraction

CERN PS to SPS: 5-turn continuous transfer - $1^{\text {st }}$ turn

Non-resonant multi-turn extraction

CERN PS to SPS: 5-turn continuous transfer - $2^{\text {nd }}$ turn

Non-resonant multi-turn extraction

CERN PS to SPS: 5 -turn continuous transfer - $3^{\text {rd }}$ turn

Non-resonant multi-turn extraction

CERN PS to SPS: 5-turn continuous transfer $-4^{\text {th }}$ turn

Non-resonant multi-turn extraction

CERN PS to SPS: 5 -turn continuous transfer $-5^{\text {th }}$ turn

Non-resonant multi-turn extraction

- CERN PS to SPS: 5-turn continuous transfer
- Losses impose thin septum...
... an electrostatic septum is needed in addition to the magnetic septum
- Still about 15% of beam lost in PS-SPS CT
- Difficult to get equal intensities per turn
- Different trajectories for each turn
- Different emittances for each turn

Resonant multi-turn (fast) extraction

- Adiabatic capture of beam in stable "islands"
- Use non-linear fields (sextupoles and octupoles) to create islands of stability in phase space
- A slow (adiabatic) tune variation to cross a resonance and to drive particles into the islands (capture) with the help of transverse excitation (using damper)
- Variation of field strengths to separate the islands in phase space
- Several big advantages:
- Losses reduced significantly (no particles at the septum in transverse plane)
- Phase space matching improved with respect to existing non-resonant multi-turn extraction - 'beamlets' have similar emittance and optical parameters

Resonant multi-turn (fast) extraction

a. Unperturbed beam
b. Increasing non-linear fields
a. Beam captured in stable islands
b. Islands separated and beam bumped across septum - extracted in 5 turns
(see Non-Linear Beam Dynamics lectures by Hannes Bartosik)

Resonant multi-turn (fast) extraction

Resonant multi-turn (slow) extraction

Non-linear fields excite resonances that drive the beam slowly across the septum

- Slow bumpers move the beam near the septum
- Tune adjusted close to $\mathrm{n}^{\text {th }}$ order betatron resonance
- Multipole magnets excited to define stable area in phase space, size depends on $\Delta \mathrm{Q}=\mathrm{Q}-\mathrm{Q}_{\mathrm{r}}$

Resonant multi-turn (slow) extraction

- $3^{\text {rd }}$ order resonances - see lectures by Hannes Bartosik
- Sextupole fields distort the circular normalised phase space particle trajectories.
- Stable area defined, delimited by unstable Fixed Points.

$$
R_{f p}^{1 / 2} \propto \Delta Q \cdot \frac{1}{k_{2}}
$$

- Sextupole magnets arranged to produce suitable phase space orientation of the stable triangle at thin electrostatic septum
- Stable area can be reduced by...
- Increasing the sextupole strength, or...
- Fixing the sextupole strength and scanning the machine tune Q_{h} (and therefore the resonance) through the tune spread of the beam
- Large tune spread created with RF gymnastics (large momentum spread) and large chromaticity

Third-order resonant extraction

- Particles distributed on emittance contours
- $\Delta \mathrm{Q}$ large - no phase space distortion

Third-order resonant extraction

- Sextupole magnets produce a triangular stable area in phase space
- $\Delta \mathrm{Q}$ decreasing - phase space distortion for largest amplitudes

Third-order resonant extraction

- Sextupole magnets produce a triangular stable area in phase space
- $\Delta \mathrm{Q}$ decreasing - phase space distortion for largest amplitudes

Third-order resonant extraction

- Sextupole magnets produce a triangular stable area in phase space
- $\Delta \mathrm{Q}$ decreasing - phase space distortion for largest amplitudes

Third-order resonant extraction

- Sextupole magnets produce a triangular stable area in phase space
- $\Delta \mathrm{Q}$ decreasing - phase space distortion for largest amplitudes

Third-order resonant extraction

- Largest amplitude particle trajectories are significantly distorted
- Locations of fixed points noticeable at extremities of phase space triangle

Third-order resonant extraction

- ΔQ small enough that largest amplitude particle trajectories are unstable
- Unstable particles follow separatrix branches as they increase in amplitude

Third-order resonant extraction

- Stable area shrinks as ΔQ becomes smaller

Third-order resonant extraction

- Separatrix position in phase space shifts as the stable area shrinks

Third-order resonant extraction

- As the stable area shrinks, the circulating beam intensity drops since particles are being continuously extracted

Third-order resonant extraction

- As the stable area shrinks, the circulating beam intensity drops since particles are being continuously extracted

Third-order resonant extraction

- As the stable area shrinks, the circulating beam intensity drops since particles are being continuously extracted

Third-order resonant extraction

- As the stable area shrinks, the circulating beam intensity drops since particles are being continuously extracted

Third-order resonant extraction

- As $\Delta \mathrm{Q}$ approaches zero, the particles with very small amplitude are extracted

Slow extracted spill quality

- The slow-extraction is a resonant process and it amplifies the smallest imperfections in the machine:
- e.g. spill intensity variations can be explained by ripples in the current of the quads (mains: $n \times 50 \mathrm{~Hz}$) at the level of a few ppm!
- Injection of $n \times 50 \mathrm{~Hz}$ signals in counter-phase on dedicated quads can be used to compensate

An example of a spill at SPS to the North Area with large n x 50 Hz components and another noise source at 10 Hz

Extraction - summary

- Several different techniques:
- Single-turn fast extraction:
- for transfer between machines in accelerator chain, beam abort, etc.
- Non-resonant (fast) multi-turn extraction
- slice beam into equal parts for transfer between machine over a few turns.
- Resonant low-loss (fast) multi-turn extraction
- create stable islands in phase space: slice off over a few turns.
- Resonant (slow) multi-turn extraction
- create stable area in phase space \Rightarrow slowly drive particles into resonance \Rightarrow long spill over many thousand turns.

Linking Machines

1. Extract a beam out of one machine \rightarrow initial beam parameters
2. Transport this beam towards the following machine (or experiment)
3. Inject this beam into a following machine with a predefined optics
\rightarrow Transfer line optics has to produce required beam parameters for matching

Linking Machines

- Beams have to be transported from extraction of one machine to injection of the next machine:
- Trajectory must be matched in all 6 geometric degrees of freedom ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \boldsymbol{\theta}, \Phi, \Psi$)
- Linking the optics is a complicated process:
- Parameters at start of line have to be propagated to matched parameters at the end of the line (injection to another machine, fixed target etc.)
- Need to "match" 8 variables ($\alpha_{x}, \beta_{x}, D_{x}, D_{x}^{\prime}$ and $\alpha_{y}, \beta_{y}, D_{y}, D_{y}^{\prime}$)
- Done with number of independently power ("matching") quadrupoles
- Maximum β and D values are imposed by magnetic apertures
- Other constraints exist:
- Phase conditions for collimators
- Insertions for special equipment like stripping foils
- Matching with computer codes and relying on mixture of theory, experience, intuition, trial and error.

Optics Matching example

Optical Mismatch at Injection

- Filamentation fills larger ellipse with same shape as matched ellipse

- Dispersion mismatch at injection will also cause emittance blow-up

Further reading and references

- Lots of resources presented at the specialised CAS School:
- Beam Injection, Extraction and Transfer, 10-19 March 2017, Erice, Italy
- https://cas.web.cern.ch/schools/eric e-2017

The CERN Accelerator School is organising a course on:
Beam Injection, Extraction and Transfer

Appendix

Injection errors

Angle errors
$\Delta \theta_{\mathrm{s}, \mathrm{k}}$

Measured
Displacements
$\delta_{1,2}$

Injection errors

Angle errors
$\Delta \theta_{\mathrm{s}, \mathrm{k}}$

Measured Displacements
phase μ

$$
\delta_{1}=\Delta \theta_{\mathrm{s}} \sqrt{ }\left(\beta_{\mathrm{s}} \beta_{1}\right) \sin \left(\mu_{1}-\mu_{\mathrm{s}}\right)+\Delta \theta_{\mathrm{k}} \sqrt{ }\left(\beta_{\mathrm{k}} \beta_{1}\right) \sin \left(\mu_{1}-\mu_{\mathrm{k}}\right)
$$

$$
\approx \Delta \theta_{\mathrm{k}} \sqrt{ }\left(\beta_{\mathrm{k}} \beta_{1}\right)
$$

$$
\delta_{2}=\Delta \theta_{\mathrm{s}} \sqrt{ }\left(\beta_{\mathrm{s}} \beta_{2}\right) \sin \left(\mu_{2}-\mu_{\mathrm{s}}\right)+\Delta \theta_{\mathrm{k}} \sqrt{ }\left(\beta_{\mathrm{k}} \beta_{2}\right) \sin \left(\mu_{2}-\mu_{\mathrm{k}}\right)
$$

$$
\approx-\Delta \theta_{\mathrm{s}} \sqrt{ }\left(\beta_{\mathrm{s}} \beta_{2}\right)
$$

Blow-up from steering error

- The new particle coordinates in normalised phase space are:

$$
\begin{gathered}
\bar{X}_{\text {error }}=\bar{X}_{0}+L \cos \\
\bar{X}_{\text {error }}^{\prime}=\bar{X}_{0}^{\prime}+L \sin
\end{gathered}
$$

- For a general particle distribution, where A_{i} denotes amplitude in normalised phase of particle i:

$$
\boldsymbol{A}_{i}^{2}=\bar{X}_{0, i}^{2}+\bar{X}_{0, i}^{\prime 2}
$$

- The emittance of the distribution is:

$$
\varepsilon_{\text {matched }}=\left\langle\boldsymbol{A}_{i}^{2}\right\rangle / 2
$$

Blow-up from steering error

- So we plug in the new coordinates:

$$
\begin{aligned}
\boldsymbol{A}_{\text {error }}^{2} & =\bar{X}_{\text {error }}^{2}+\bar{X}_{\text {error }}^{\prime 2} \\
& =\left(\bar{X}_{0}+L \cos \right)^{2}+\left(\bar{X}_{0}^{\prime}+L \sin \right)^{2} \\
& =\bar{X}_{0}^{2}+\bar{X}_{0}^{\prime 2}+2 L\left(\bar{X}_{0} \cos +\bar{X}_{0}^{\prime} \sin \right)+L^{2}
\end{aligned}
$$

- Taking the average over distribution:

$$
\begin{aligned}
\left\langle\boldsymbol{A}_{\text {error }}^{2}\right\rangle & =\left\langle\boldsymbol{A}_{0}^{2}\right\rangle+2 L(\langle \rangle \\
& =2_{\text {matched }}+L^{2}
\end{aligned}
$$

- Giving the diluted emittance as:

$$
\begin{aligned}
\text { diluted } & ={ }_{\text {matched }}+\frac{L^{2}}{2} \\
& ={ }_{\text {matched }}\left[1+\frac{a^{2}}{2}\right]
\end{aligned}
$$

Blow-up from steering error

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position
- For an injection error $\Delta \mathrm{a}$, in units of $\sigma=\sqrt{ }(\beta \varepsilon)$, the mis-injected beam is offset in normalised phase space by an amplitude $L=\Delta a \sqrt{ } \varepsilon$

Blow-up from steering error

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position.
- For an injection error $\Delta \mathrm{a}$, in units of $\sigma=\sqrt{ }(\beta \varepsilon)$, the mis-injected beam is offset in normalised phase space by an amplitude $L=\Delta a \sqrt{ } \varepsilon$

Blow-up from steering error

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position.
- For an injection error $\Delta \mathrm{a}$, in units of $\sigma=\sqrt{ }(\beta \varepsilon)$, the mis-injected beam is offset in normalised phase space by an amplitude $L=\Delta a \sqrt{ } \varepsilon$

Blow-up from steering error

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position.
- For an injection error Δ a, in units of $\sigma=\sqrt{ }(\beta \varepsilon)$, the mis-injected beam is offset in normalised phase space by an amplitude $L=\Delta a \sqrt{ } \varepsilon$
- Any given point on the matched ellipse is randomised over all phases after filamentation due to the steering error:

Blow-up from steering error

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position.
- For an injection error $\Delta \mathrm{a}$, in units of $\sigma=\sqrt{ }(\beta \varepsilon)$, the mis-injected beam is offset in normalised phase space by an amplitude $L=\Delta a \sqrt{ } \varepsilon$
- Any given point on the matched ellipse is randomised over all phases after filamentation due to the steering error
- For a general particle distribution, where A_{i} denotes amplitude in normalised phase of particle i :

$$
\varepsilon_{\text {matched }}=\left\langle A_{i}^{2}\right\rangle / 2
$$

Blow-up from steering error

- Consider a collection of particles with max. amplitudes A
- The beam can be injected with an error in angle and position.
- For an injection error $\Delta \mathrm{a}$, in units of $\sigma=\sqrt{ }(\beta \varepsilon)$, the mis-injected beam is offset in normalised phase space by an amplitude $L=\Delta a \sqrt{ } \varepsilon$
- Any given point on the matched ellipse is randomised over all phases after filamentation due to the steering error
- For a general particle distribution, where A_{i} denotes amplitude in normalised phase of particle i :

$$
\varepsilon_{\text {matched }}=\left\langle\boldsymbol{A}_{i}^{2}\right\rangle / 2
$$

- After filamentation:

$$
{ }_{\text {diluted }}={ }_{\text {matched }}+\frac{L^{2}}{2}
$$

See appendix for derivation

Blow-up from steering error

- A numerical example....
- Consider an offset $\Delta a=0.5 \sigma$ for injected beam:

$$
\begin{aligned}
\text { diluted } & ={ }_{\text {matched }}+\frac{L^{2}}{2} \\
& ={ }_{\text {matched }}\left[1+\frac{a^{2}}{2}\right] \\
& =\text { matched }[1.125]
\end{aligned}
$$

- For nominal LHC beam:
...allowed growth through LHC cycle ~10 \%

Third-order resonant extraction

- On resonance, sextupole kicks add-up driving particles over septum

Third-order resonant extraction

- On resonance, sextupole kicks add-up driving particles over septum

Third-order resonant extraction

- On resonance, sextupole kicks add-up driving particles over septum

Third-order resonant extraction

- On resonance, sextupole kicks add-up driving particles over septum

Particle at turn 3

Third-order resonant extraction

- On resonance, sextupole kicks add-up driving particles over septum
- Distance travelled in these final three turns is termed the "spiral step," $\Delta X_{\text {ES }}$
- Extraction bump trimmed in the machine to adjust the spiral step

$$
X_{E S} \propto\left|k_{2}\right| \frac{X_{E S}^{2}}{\cos }
$$

Third-order resonant extraction

- On resonance, sextupole kicks add-up driving particles over septum
- Distance travelled in these final three turns is termed the "spiral step," $\Delta X_{E S}$
- Extraction bump trimmed in the machine to adjust the spiral step

- RF gymnastics before extraction:

(a)

(c)

(b)

(d)

$$
X_{E S} \propto\left|k_{2}\right| \frac{X_{E S}^{2}}{\cos }
$$

$$
\xrightarrow{\text { momentum spread, tune } \frac{p}{p} \propto \quad Q}
$$

Slow extraction channel: SPS

Second-order resonant extraction

- An extraction can also be made over a few hundred turns
- $2^{\text {nd }}$ and $4^{\text {th }}$ order resonances
- Octupole fields distort the regular phase space particle trajectories
- Stable area defined, delimited by two unstable Fixed Points
- Beam tune brought across a $2^{\text {nd }}$ order resonance ($\mathrm{Q} \rightarrow 0.5$)
- Particle amplitudes quickly grow and beam is extracted in a few hundred turns

Resonant extraction separatrices

- Amplitude growth for $2^{\text {nd }}$ order resonance much faster than $3^{\text {rd }}$ - shorter spills ($\approx m$ milliseconds vs. seconds)
- Used where intense pulses are required on target - e.g. neutrino production

