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Copyright statement and speaker’s release for video publishing

The author consents to the photographic, audio and video recording of this

lecture at the CERN Accelerator School. The term “lecture” includes any

material incorporated therein including but not limited to text, images and

references.

The author hereby grants CERN a royalty-free license to use his image and

name as well as the recordings mentioned above, in order to post them on

the CAS website.

The author hereby confirms that to his best knowledge the content of the

lecture does not infringe the copyright, intellectual property or privacy rights

of any third party. The author has cited and credited any third-party

contribution in accordance with applicable professional standards and

legislation in matters of attribution. Nevertheless the material represent

entirely standard teaching material known for more than ten years. Naturally

some figures will look alike those produced by other teachers.
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Disclaimer

◼ These lectures are largely based on the lectures of A. Wolski

(University of Liverpool) from the CAS 2016 on “Introduction to 

Accelerator Physics” at Budapest, and on the lectures of 

Y. Papaphilippou on “A first taste of Non-Linear Beam Dynamics” 

from the CAS 2019 on “Introduction to Accelerator Physics” at 

Vysoké Tatry.
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Purpose of the lecture

◼ Introducing aspects of non-linear dynamics

❑ Mathematical tools for modelling nonlinear dynamics

◼ Power series (Taylor) maps and symplectic maps

❑ Effects of nonlinear perturbations

◼ Resonances, tune shifts, dynamic aperture

❑ Analysis methods

◼ Normal forms, frequency map analysis

◼ Employ two types of accelerator systems for illustrating methods and 

tools

❑ Bunch compressor (single-pass system)

❑ Storage ring (multi-turn system)
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Aim of the 2nd Lecture

◼ Describe some of the phenomena associated with nonlinearities in 

periodic beamlines (such as storage rings)

◼ Explain significance of symplectic maps, and describe some of the 

challenges in calculating and applying symplectic maps

◼ Outline some of the analysis methods that can be used to 

characterise nonlinear beam dynamics in periodic beamlines.
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Example of a 

periodic system:

a simple storage ring
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A simple storage ring

◼ As example, consider the transverse dynamics in a simple storage 

ring, assuming:

❑ The storage ring is constructed from some number of identical cells 

consisting of dipoles, quadrupoles and sextupoles.

❑ The phase advance per cell can be tuned from close to zero, up to 

about 0.5×2π.

❑ There is one sextupole per cell, which is located at a point where the 

horizontal beta function is 1 m, and the alpha function is zero.

❑ Usually, storage rings will contain (at least) two sextupoles per cell, to 

correct horizontal and vertical chromaticity. To keep things simple, we 

will use only one sextupole per cell.
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Linear dynamics in a storage ring

◼ The chromaticity, and hence the sextupole strength, will normally be 

a function of the phase advance

◼ To investigate the nonlinear effects of sextupoles, we shall keep the 

sextupole strength fixed, and change only the phase advance

◼ We can assume that the map from one sextupole to the next is 

linear, and corresponds to a rotation in phase space through an angle 

equal to the phase advance:

◼ Again to keep things simple, we shall consider only horizontal 

motion, and assume that the vertical co-ordinate

◼ In the “thin lens” approximation, the deflection of a particle passing 

through the sextupole of length     is
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Nonlinear transfer map: sextupole

◼ The map for a particle moving through a short sextupole can be 

represented by a “kick” in the horizontal momentum:

◼ Let us choose a fixed value , and look at the 

effects of the maps for different phase advances.

◼ For each case, we construct a phase space portrait by plotting the 

values of the dynamical variables after repeated application of the 

map (rotation + sextupole) for a range of initial conditions.

◼ First, let us look at the phase space portraits for a range of phase 

advances from 0.2 × 2π to 0.5 × 2π
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Example of a simple storage ring
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Example of a simple storage ring
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Example of a simple storage ring
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Example of a simple storage ring
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Example of a simple storage ring
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Some observations

◼ There are some interesting features in these phase space 

portraits to which it is worth drawing attention: 

❑ For small amplitudes (small x and px), particles trace out closed loops 

around the origin: this is what we expect for a linear map

❑ As the amplitude is increased, “islands” appear in phase space: the 

phase advance (for the linear map) is often close to m/p where m is an 

integer and p is the number of islands

❑ Sometimes, a larger number of islands appears at larger amplitude

❑ Usually, there is a closed curve that divides a region of stable motion 

from a region of unstable motion. Outside that curve, the amplitude of 

particles increases without limit as the map is repeatedly applied

❑ The area of the stable region depends strongly on the phase 

advance: for a phase advance close to 2π/3, it appears that the stable 

region almost vanishes altogether

❑ As the phase advance is increased towards π, the stable area 

becomes large, and distortions from the linear ellipse become small
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Effect of phase advance on 

nonlinear dynamics
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Effect of phase advance

◼ An important observation is that the effect of the sextupole in the 

periodic cell depends strongly on the phase advance across the 

cell

◼ We can start to understand the significance of the phase advance by 

considering two special cases:

❑ Phase advance equal to an integer times 2π

❑ Phase advance equal to a half integer times 2π
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Integer tune

◼ Let us consider first a phase advance equal to an integer times 2π. In that 

case, the linear part of the map is just the identity

◼ The combined effect of the linear map and the sextupole kick is:

◼ Clearly, the horizontal momentum will increase without limit

◼ There are no stable regions of phase space, apart from
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Half-Integer tune

◼ Now consider what happens if the phase advance of a cell is a half 

integer times 2π, so the linear part of the map is just a rotation 

through π

◼ If a particle starts at the entrance of a sextupole with and 

, then at the exit of that sextupole:

◼ Then, after passing to the entrance of the next sextupole, the co-

ordinates will be:
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Half-Integer tune

◼ Finally, on passing through the second sextupole:

◼ In other words, the momentum kicks from the two sextupoles

cancel each other exactly

◼ The resulting map is a purely linear phase space rotation by π. 

◼ In this situation, we expect the motion to be stable (and periodic), no 

matter what the amplitude
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Impact of phase advance

◼ The effect of the phase advance on the sextupole “kicks” is similar to 

the effect on perturbations arising from dipole and quadrupole

errors in a storage ring

◼ In the case of dipole errors, the kicks add up if the phase advance 

is an integer, and cancel if the phase advance is a half integer

Eff ect of t he phase advance on t he nonlinear dynam ics

T he eff ect of t he phase advance on t he sext upole “ kicks” is

sim ilar t o t he eff ect on pert urbat ions arising from dipole and

quadrupole errors in a st orage ring.

In t he case of dipole errors, t he kicks add up if t he phase

advance is an int eger, and cancel if t he phase advance is a half

int eger.

CAS, B udapest , 2016 20 Nonlinear D ynamics: Part 2
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Impact of phase advance

◼ In the case of quadrupole errors, the kicks add up if the phase 

advance is a half integer times 2π

◼ Higher-order multipoles drive higher-order resonances but the 

effects are less easily illustrated on a phase space diagram

Eff ect of t he phase advance on t he nonlinear dynam ics

In t he case of quadrupole errors, t he kicks add up if t he phase

advance is a half int eger.

Higher-order mult ipoles drive higher-order resonances... but t he

eff ect s are less easily illust rat ed on a phase space diagram.

CAS, B udapest , 2016 21 Nonlinear D ynamics: Part 2
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Resonances



24

A
 f

ir
s
t 
ta

s
te

 o
f 
N

o
n

-l
in

e
a

r 
B

e
a
m

 D
y
n

a
m

ic
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 S

e
p
te

m
b

e
r/

O
c
to

b
e

r 
 2

0
2

2

Resonances

◼ If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where mx, my and l are integers; resonance is of order |mx| + |my| 

normal resonances 

(= even my)

skew resonances

(= odd my)

Resonances up to order 2
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Resonances

◼ If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where mx, my and l are integers; resonance is of order |mx| + |my| 

normal resonances 

(= even my)

skew resonances

(= odd my)

Resonances up to order 3
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Resonances

◼ If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where mx, my and l are integers; resonance is of order |mx| + |my| 

normal resonances 

(= even my)

skew resonances

(= odd my)

Resonances up to order 4
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Resonances

◼ If we include vertical as well as horizontal motion, then we find that 

resonances occur when the tunes satisfy 

where mx, my and l are integers; resonance is of order |mx| + |my| 

normal resonances 

(= even my)

skew resonances

(= odd my)

Resonances up to order 5
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Resonances

◼ Resonances are associated with chaotic motion for particles in 

storage rings

◼ However, the number of resonance lines in tune space is infinite: 

any point in tune space will be close to a resonance of some order

◼ This observation raises two questions:

❑ How do we know what the real effect of any given resonance line will be?

❑ How can we design a storage ring to minimise the adverse effects of 

resonances?
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Resonance cancellation by periodicity

◼ By imposing a periodicity P in the lattice (i.e. building a machine 

from P identical cells), the resonance condition becomes 

❑ … the resonance condition needs to be satisfied by each cell, as 

conceptually there is no difference between passing one cell P turns or 

passing a lattice consisting of P identical cells only once

◼ Resonances for which l is integer → systematic

◼ If l is NOT integer the resonance cancels → non-systematic

→

solid lines: normal resonances  dashed lines: skew resonances

periodicity P=1 periodicity P=2 periodicity P=3
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Real life example for periodicity: ALS 

D. Robin, C. Steier, J. Safranek, W. Decking, “Enhanced performance of the ALS 

through periodicity restoration of the lattice”, proc. EPAC 2000. 

Uncorrected optics Corrected optics

Synchrotron light beam spot

Simulated phase space

Measurement of beam 

loss as function of tune

Beta beating

Before optics correction: ~30%

After optics correction: <1%

Advanced Light Source, design lattice periodicity: 12

72 = 6*12
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Non-linear map 

representation
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Taylor maps

◼ For any dynamical variable      the Taylor map up to 3rd order can be 

written as

◼ Taylor series provide a convenient way of systematically 

representing transfer maps for beamline components, or sections 

of beamline

◼ The main drawback of Taylor series is that in general, transfer maps 

can only be represented exactly by series with an infinite number of 

terms

◼ In practice, we have to truncate a Taylor map at some order, and 

we then lose certain desirable properties of the map

◼ In particular, a truncated map will be usually non-symplectic
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Symplectic maps

◼ Consider two sets of canonical variables     ,      , which represent the 

evolution of the system between two points in phase space

◼ A map                         describes the transformation from one set to 

the other

◼ This map is symplectic, i.e. it conserves phase space volumes, if                       

Jacobian matrix 

of the map
antisymmetric matrix 

with block diagonals 

symplecticity condition

… this is Liouville’s theorem, and is a 

property of charged particles moving in 

electromagnetic fields, in the absence 

of radiation
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Symplectic maps

◼ The effect of losing symplecticity becomes apparent if we compare 

phase space portraits constructed using symplectic (below, left) and 

non-symplectic (below, right) transfer maps.

◼ Modelling a storage ring using non-symplectic maps can lead to an 

inaccurate estimate of the dynamic aperture and the beam lifetime
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Symplectic integration

◼ Consider a sextupole with equations of motion:

◼ Exact solutions using some elementary functions do not exist

◼ By splitting integration into three steps, it is possible to write an 

explicit and symplectic approximate solution

◼ This an example of a symplectic integrator known as a “drift–kick–

drift” approximation

Symplect ic int egrat ors

T he solut ion ( 27) –( 28) is an example of a symplect ic

int egrat or . For obvious reasons, t his part icular int egrat or is

known as a “ drif t –kick–drif t ” approximat ion.

B y split t ing t he int egrat ion int o smaller st eps, it is possible t o

obt ain bet t er approximat ions.

Using special t echniques ( e.g. f rom classical mechanics) it can

be shown t hat by split t ing a mult ipole in part icular ways, it is

possible t o m inim ise t he error for a given number of int egrat ion

st eps.

CAS, B udapest , 2016 30 Nonlinear D ynamics: Part 2
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Analytical methods for 

nonlinear dynamics
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Analytical methods

◼ There are two approaches widely used in accelerator physics: 

perturbation theory and normal form analysis

◼ In both these techniques, the goal is to construct a quantity that is 

invariant under application of the single-turn transfer map. 

Unfortunately, in both cases the mathematics is complicated and 

fairly cumbersome

◼ In the case of a single sextupole in a storage ring, we find from 

normal form analysis the following expression for the betatron 

action as a function of the betatron phase (angle variable):

where      is a constant (an invariant of the motion),       is the angle 

variable, and       is the phase advance per cell

◼ The second term becomes very large when       is close to third 

integer
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Normal form for sextupole
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Normal form for sextupole
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Normal form for sextupole
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Tune-shift with amplitude

◼ Close inspection of the plots on the previous slides reveals another 

effect, in addition to the obvious distortion of the phase space 

ellipses: the phase advance per turn (i.e. the tune) varies with 

increasing betatron amplitude

◼ Normal form analysis (and perturbation theory) can be used to obtain 

estimates for the tune shift with amplitude

◼ In the case of a sextupole, the tune shift is higher-order in the 

sextupole strength

◼ An octupole, however, does have a tune shift with amplitude in first-

order of the octupole strength, given by:
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Tune-shift with amplitude

◼ The tune shift with amplitude becomes obvious if we track a small 

number of turns (30) in a lattice with a single octupole. 
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Resonant islands of 4th order resonance

◼ Simulation of simple storage ring with a single octupole close to 4th

order resonance

◼ Detuning with amplitude (linear in action) 

◼ Particles in the stable islands have a tune locked to the resonance
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Resonant islands of 3rd order resonance

◼ Simulation of simple storage ring with a sextupole and an octupole

close to 3rd order resonance

◼ The amplitude detuning induced by the octupole can create stable 

islands even for the 3rd order resonance (recall the phase-space 

plot for the case of a single sextupole)
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Onset of chaos and loss of stability

◼ Perturbation theory and normal form analysis depend on the existence 

of constants of motion in the presence of nonlinear perturbations

❑ Constants of motion can exist in the presence of nonlinear perturbations 

as a consequence of the Kolmogorov–Arnold–Moser (KAM) theorem

◼ Resonances do not invariably result in loss of stability 

❑ Resonances will usually tend to drive the amplitudes of particles with a 

particular tune to large amplitudes

❑ For sufficiently large tune-shift with amplitude, it is possible for there to be 

a stable region at amplitudes larger than that at which resonance occurs

◼ The overlap of two resonances is associated with a transition from 

regular to chaotic motion: the Chirikov criterion describes the 

parameter range over which the particle motion becomes chaotic
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Numerical methods: 

Dynamic aperture (DA) and 

Frequency map analysis 

(FMA)
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Dynamic aperture

◼ The most direct way to evaluate the non-linear dynamics 

performance of a ring is the computation of Dynamic Aperture 

(short: DA), which is the boundary of the stable region in co-

ordinate space

◼ Need a symplectic tracking code to follow particle trajectories (a lot 

of initial conditions) for a number of turns until the particles start 

getting lost → this boundary defines the Dynamic aperture

DA of the LHC 

… very good agreement between 

tracking simulations and 

measurements in the machine

E.Mclean, PhD thesis, 2014
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Frequency Map (example for ALS)

◼ Numerically integrate the phase space trajectories through the 

lattice for sufficient number of turns (i.e. perform particle tracking)

◼ Compute through advanced Fourier methods nx and ny after 

sufficient number of turns, and plot the tune variation by color code 

in the configuration space x-y (left) and the tune space nx-ny (right)

❑ regular motion corresponds to small tune diffusion)

❑ Chaotic motion associated with large tune diffusion, occurs at the 

dynamic aperture of the machine

❑ Resonances appear as curves in initial condition space

J. Laskar, “Frequency map analysis and 

particle accelerators”, PAC 2003
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Conclusions and Summary
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Summary

◼ Nonlinear dynamics appear in a wide variety of accelerator 

systems, including single-pass systems (such as bunch 

compressors) and multi-turn systems (such as storage rings)

◼ It is possible to model nonlinear dynamics in a given component or 

section of beamline by representing the transfer map as a power 

series

◼ Conservation of phase space volumes is an important feature of 

the beam dynamics in many systems. To conserve phase space 

volumes, transfer maps must be symplectic

◼ In general, (truncated) power series maps are not symplectic

◼ To construct a symplectic transfer map, the equations of motion in 

a given accelerator component must be solved using a symplectic

integrator (e.g. the “drift–kick–drift” approximation for a multipole

magnet)
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Summary

◼ Common features of nonlinear dynamics in accelerators include 

phase space distortion, tune shifts with amplitude, resonances, 

and chaotic particle trajectories at large amplitudes (dynamic 

aperture limits)

◼ Analytical methods such as perturbation theory and normal form 

analysis can be used to estimate the impact of nonlinear 

perturbations in terms of quantities such as resonance strengths 

and tune shifts with amplitude

◼ Frequency map analysis provides a useful numerical tool for 

characterising tune shifts and resonance strengths from tracking data

◼ This can give some insight into limitations on the dynamic 

aperture


