

Introduction to Accelerator Physics

18 September – 1 October 2022

Victoria Hotel, Kaunas, Lithuania

Scope

Accelerator Physics

Relativity / Electro-Magnetic Theory /
Transverse Beam Dynamics /
Longitudinal Beam Dynamics / Linear
Imperfections and Resonances /
Synchrotron Radiation / Electron
Beam Dynamics / Multi-Particle
Effects / Non-Linear Dynamics Beam
Instabilities / Landau Damping /
Beam-Beam Effects

Accelerator Systems

Particle Sources / RFQ / LEBT
RF Systems / Beam Measurement /
Feedback Systems / Beam Injection
and Extraction / Beam Transfer Power
Convertors / Warm Magnets /
Superconducting Magnets / Vacuum
Systems Machine Protection Systems
Radiation and Radioprotection

Accelerators

Linear Accelerators
Synchrotron Light Machines
FELs
FFAGs
Cyclotrons
Synchrotrons
Colliders

Applications

High Energy Physics
Nuclear Physics
Industrial Applications
Medical Applications
Cancer Therapy

Accelerator jargon - Twiss parameters

 beta function: measure of individual particle oscillation and beam size for many particles

CERN Accelerator School: Introductory Course

By integration of the second equation we obtain

$$\mu(s) = \int_0^s \frac{\mathrm{d}\,\tilde{s}}{w^2(\tilde{s})}$$

and by using this relation

$$w'' - \frac{1}{w^3} + K \cdot w = 0$$
.

With the definition of the beta function $\beta(s) := w^2(s)$ we derive for the amplitude and phase of the oscillation:

$$x(s) = A \cdot \sqrt{\beta(s)} \cdot \cos(\mu(s) + \varphi_0)$$
$$\mu(s) = \int_0^s \frac{d\tilde{s}}{\beta(\tilde{s})}$$

Building the first derivative and defining $\alpha(s) := -\frac{\beta'(s)}{2}$, we obtain

$$x'(s) = -\frac{A}{\sqrt{\beta(s)}} \left\{ \alpha(s) \cdot \cos(\mu(s) + \varphi_0) + \sin(\mu(s) + \varphi_0) \right\}$$

CERN Accelerator School: Introductory Course

Applying this to our model toy synchrotron, we can derive the dispersion function which is plotted in blue:

Please note that the total beam width is given by

→ Hands-on Lattice Calculation recommended E34-38

Twiss parameters

 phase advance: how much a particle advances in phase space as the particle moves along the trajectory

Of particular importance: Phase advance around a complete turn of a circular accelerator, called the betatron tune Q (H,V) of this accelerator

$$Q_{H,V} = \frac{1}{2\pi} \int_0^C \frac{1}{\beta_{H,V}} ds$$

- emittance: measure of the quality of your beam
- dispersion: off-energy orbit change
- chromaticity: off-energy tune change

The "minimum takeaway"

Transverse and longitudinal beam dynamics

- trajectory, closed orbit, synchronous particle
- horizontal and vertical phase/trace-space, preserved action
- Twiss-parameters: Beta-function, Phase advance, tunes (H+V+synchrotron)
- Dispersion-function, momentum compaction, slip factor
- transverse and longitudinal focusing
- chromaticity: origin and correction
- transport matrix, tracking, dynamic aperture, bucket-area

Emittance

- emittance = average action of all particles
- Liouville Theorem
- RMS emittance, geometrical emittance, normalised emittance
- adiabatic damping, radiation damping

Imperfections

- dipole displacement: OK, dipole tilt: vertical deflection
- quadrupole offset: extra deflection; quadrupole tilt: coupling
- sextupole offset: extra quadrupole, sextupole tilt: coupling

Beam instrumentation

- Basic BPM functionality
- How to measure losses, profiles
- time and frequency domain signals, tune measurement
- Collective effects: Head-Tail, Wakefields, Direct Space Charge, Instabilities
- Types of accelerators: Linacs, Cyclotrons, Synchrotrons, Colliders, Lightsources

Introduction to Accelerator Physics

Some statistics:

- 76 participants (26 CERN, 40 ext., 10 local)
 - 19 female
 - 57 male
- 25 different nationalities

Thank you very much for your active discussions!

Networking

- Next to the course teaching the most important aspect of the school "digital training cannot replace CAS courses"
 - people socialising (and even working)
 up to late in the evenings
 - lots of interactions students <-> teachers
 - cinema evening
 - excursion

- LinkedIn
 - From the CAS web page
 - CAS profile: https://www.linkedin.com/in/cern-accelerator-school-a61367233

Online Evaluation Form

- Important to maintain / improve the high quality of teaching
- https://cas.web.cern.ch/evaluation/kaunas-2022
- Log in with CERN account or many other ways (Google, LinkedIn, ...)

Online Evaluation Form

Level	Content	Presentation	Relevance
Much too low	Completely uninteresting	O Very poor	Should not be in this CAS course
Low	Uninteresting	Poor	 Specialist information - good, but not for me
Just right	Of some interest	○ Fair	 Contributes to the general accelerator education
O Too high	Interesting	Good	 Important general information
Much too high	Very interesting	O Very good	Oirectly relevant for my present studies
Other comments on this lecture			
✓ SAVE DRAFT	SUBMIT		

- You can save it and come back to it later at any time
- Just DON'T submit it until you have completed your evaluation at the end
- You can complete it when you get home
- We will keep it open for another week!

"Testimonials" on the CAS website

What our students say about us

For a beginner like me, it was a very informative and helpful school, I could interact with people from different parts of the world and realize the opportunities ahead

66 I enjoyed the multinational environment of great people and a great deal of knowledge that I got out of the lectures. ??

- Marcin Knafel, NSRC SOLARIS Student of JAS on RF Technologies, Japan 2017

- All it needs:
 - Student of JAS on RF Technologies, Japan 2017

- a photo
- name + affiliation + CAS course
- "a sentence"

Final Thanks

This course would not have happened without:

- The local organisers: Bronė, Gabija, KTU colleagues
- The **hotel**: Lina + colleagues
- The lecturers: who do it all out of good will
- The hands-on support:
 - Andrea, Axel, Davide, Volker, + Guido
 - Alexandre, Evin, Joel, Simon, + Heiko, Christine
- The filming: Noemi + Ron
- The **souls**: Delphine, Michela
- The participants: YOU!!!

Introduction to Accelerator Physics

Have a safe trip back!

Busses to Vilnius airport leave from the hotel at 6:00 and 10:00 (for flights before/after 12:45)

http://cern.ch/cas