Low-energy EXCESS signals at low energy in cryogenic detectors

- Sensor & Detectors
 - Measurements
 - Explanations?
 - MMC results

J. Gascon Lyon 1, CNRS/IN2P3/IP2I

Cryogenic detector principle

Simple picture: sensor + absorber + cold bath

- Signal amplitude = Energy /heat capacity
- Decay time => thermal coupling between absorber and cold bath: C/G
- Rise time => thermal coupling between absorber and thermometer: C/G'
- Overly simple: energy transfer in sensor via athermal phonons

Cryogenic detectors: Phonon/ionization/scintillation

Phonon sensors

Transition Edge sensors

- Fast (<<ms risetime) response to athermal phonons
- Sensitivity to ballistic phonons:
 - Lifetime in absorber / surface
 - Surface of sensor wrt total surface
- CRESST: single W-TES
- SuperCDMS: array of W-TES with Al phonon collectors

Ge-NTD

- Thermistance (few mm²)
- Glued on Ge or electrode
- Slow (1-10 ms risetime) response of thermistance to thermal phonons
- However, study of pulse shape shows some ballistic phonons inject energy directly in NTD, bypassing thermalization inside the absorber

Neganov-Luke-Trofimov amplification

Cryogenic detectors (EXCESS 2021)

Detector	Absorber	Sensor	Depth (mwe)	NTL amplification
CRESST	24g CaWO4	W TES	3600	-
NUCLEUS	0.5 Al2O3	W TES	~10	-
SuperCDMS CPD	11g Si	QE-TES	~10	yes
SuperCMDS HVeV	0.9g Si	QE-TES	~10	yes
MINER	100g Al2O3	QE-TES	~10	-
EDELWEISS RED20	34g Ge	Ge-NTD	~10	No
EDELWEISS RED30	34g Ge	Ge-NTD	4800	yes

since then:

+ EDELWEISS 200g with NbSi TES (arxiv:2203.03993)

+ SuperCDMS-HVeV comparison of backgrounds at 0-60-100V (arxiv:2204:08038)

+ SuperCDMS-CPD runs @ SNOLAB (Underwood thesis, 02/22: M. Pyle@EXCESS2022)

Background in cryogenic detectors

Same risetime / decay time as ER event

- Faster/slower pulse: indications of nature/location of event
- **Non-ionizing**
 - No signal on electrode (high E)
 - No NTL amplification (low E)

EDELWEISS-III (860 a Ge @ 8V)

Timing

- No coincidence with external events
- Correlation between successive events indication of "stress" release

Slow variation of rate with time since cool-down

- Inconsistent with known radioactive backgrounds •
- Suggest also accumulated stress as potential source

Energy range

- Steep rise at low energy
- May depend on source / sensor

Abbamonte et al [arxiv:2202.03436]: power-law comparisons between SuperCDMS-CPD and EDELWEISS-surf (+talk at EXCESS2022 in Feb.)

keV

day

EXCESS 2021 spectra [arxiv:2202.05097]

EXCESS2021:

 Low energy rise observed in all cryogenic detectors – but not at same rates (CRESST underground unequalled so far!)

Since then:

- Abbamonte et al [arxiv:2202.03436], power-law comparisons between SuperCDMS-CPD and EDELWEISS-surf (+talk at EXCESS2022 in Feb.)
- Albakry et al [arxiv:2204.08038] SuperCDMS-HVeV bkg comparison at 0/60/100V
- Background measurement in EDELWEISS 200g with NbSi TES [arxiv:2203.03993]
- + contributions in this workshop

Ionizing vs Cryogenic background

Identification of electron in CCD helps reduce the background at very low energy

Identification of the lowenergy rise in cryogenic detectors essential to fully exploit their potential, especially if the searches need to be extended for signal below ~3 eV

CRESST-III still best background above 100 eV

	CPD / CDMS	EDELWEISS	CRESST
1) Same above and below ground	mostly	mostly	
2) Broad Energy Scale	Yes	Yes	
 Rate varies significantly between detectors 	Yes	Yes	Yes
4)Time variation with time since cooldown	Yes (since run 11?)	Yes	Yes (partial)
5) Low Energy Excess is Non-Ionizing	Probably?	Yes	?

- Since then (+ new material to be presented later today)
- Abbamonte et al [arxiv:2202.03436], power-law comparisons between SuperCDMS-CPD and EDELWEISS-surf (+talk at EXCESS2022 in Feb.)
- Albakry et al [arxiv:2204.08038] SuperCDMS-HVeV bkg comparison at 0/60/100V
- Background measurement in EDELWEISS 200g with NbSi TES [arxiv:2203.03993]

	CPD / CDMS	EDELWEISS	CRESST
1) Same above and below ground	mostly	mostly	
2) Broad Energy Scale	Yes	Yes	
 Rate varies significantly between detectors 	Yes	Yes	Yes
4)Time variation with time since cooldown	Yes (since run 11?)	Yes	Yes (partial)
5) Low Energy Excess is Non-Ionizing	Probably?	Yes	?

- Since then (+ new material to be presented later today)
- Abbamonte et al [arxiv:2202.03436], power-law comparisons between SuperCDMS-CPD and EDELWEISS-surf (+talk at EXCESS2022 in Feb.) + see Novati talk on HVeV
- Albakry et al [arxiv:2204.08038] SuperCDMS-HVeV bkg comparison at 0/60/100V
- Background measurement in EDELWEISS 200g with NbSi TES [arxiv:2203.03993]

	CPD / CDMS	EDELWEISS CRESST
1) Same above and below ground	mostly	mostly
2) Broad Energy Scale	Yes	Yes
3) Rate varies significantly between detectors	Yes	Yes see Yes Lattaud
4)Time variation with time since cooldown	Yes (since run 11?)	Yes NbSi TES Yes results (partial)
5) Low Energy Excess is Non-Ionizing	Probably?	Yes ?

- Since then (+ new material to be presented later today)
- Abbamonte et al [arxiv:2202.03436], power-law comparisons between SuperCDMS-CPD and EDELWEISS-surf (+talk at EXCESS2022 in Feb.)
- Albakry et al [arxiv:2204.08038] SuperCDMS-HVeV bkg comparison at 0/60/100V
- Background measurement in EDELWEISS 200g with NbSi TES [arxiv:2203.03993]

	CPD / CDMS	EDELWEISS	CRESST	
1) Same above and below ground	mostly	mostly	~ - ~	
2) Broad Energy Scale	Yes	Yes	1	1
 Rate varies significantly between detectors 	Yes	Yes	Yes New data see Fuchs	: \
4)Time variation with time since cooldown	Yes (since run 11?)	Yes	Yes CRESST (partial)	
5) Low Energy Excess is Non-Ionizing	Probably?	Yes	?	

- Since then (+ new material to be presented later today)
- Abbamonte et al [arxiv:2202.03436], power-law comparisons between SuperCDMS-CPD and EDELWEISS-surf (+talk at EXCESS2022 in Feb.)
- Albakry et al [arxiv:2204.08038] SuperCDMS-HVeV bkg comparison at 0/60/100V
- Background measurement in EDELWEISS 200g with NbSi TES [arxiv:2203.03993]

Time dependence

200

Run 15

250

From E. Queguiner

Thesis

EDELWEISS Low Energy Excess (FID 824)

uncertainty factor

in energy scale

150

Days since R11 cooldown start

200

Investigation in EDELWEISS, Heat-only rate of FID824 (run308 **CRESST & SuperCDMS** for efficiency 5-80 keV Different energy ranges Counts/hou Dependence on thermal Counts in 5 Not corrected f cycling suggest gradual release of energy in crystal. Source of this energy? 10 More than one source? 100 Days of run308 **CRESST Sapphire** CPD@CUTE 10 Run 11 Run 12 measured rate 35000 C. Strandhagen [counts/kg/day] 50000 50000 **EXCESS** 108 ١. R.E. Underwood (dru) thesis, 02/22 10° ate 20000 $= C + A^* \exp(-t/\tau)$ 10 Warning: x2

100

120

15000

C = 13000.

A = 22805. -2811.2 +5076.5 t = 82.670 -22.139 +41.527

40

60

time [days]

80

20

50-100 eV

100-1000 eV

1000-7000 eV

50

100

300

Stress-induced energy

Seminal work: Fracture processes studied in CRESST [NIMA 559 (2006) 754]

- 262 Al₂O₃ crystal, TES readout
- 5 to 500 keV energy scale !
- Energy release (<μs),

as fast as ER or NR

Similarity with earthquakes!

- Time correlation between events
- Power law spectrum

Confocal microscopy confirms ~2mm wide region affected by pressure applied by supporting sapphire balls

Problem solved by loosening clamp pressure (also: equipping support pieces with TES in some detectors)

Visible defects -> >> keV events.

What about eV energy range? (single site "defect" ~ few eV)

Other sources of stress: gluing, thermal stress at interface Relaxation in glass: see Pereverzev talk

MD simulations of nuclear recoils

- Displaced atoms following nuclear recoil stopping in solid
- Molecular Dynamic Simulations of « hot » atoms (Nordlund, 1998) : amount of long-term stored damage depends on crystal temperature

Measurement of stored energy in defects

Phonon time discrim. in SuperCDMS iZIP detectors

- Risetimes: Phonon < 50 μ s, Ion < 1 μ s
- « Timing parameter » combines rise time and phonon-ionization delay
- Difference in pulse shape in different sectors used for event localization
- Nuclear/electronic recoil discrimination!

- Sensivity to « z »? (no, works even if sensors on only one side)
- Due instead to a difference between the phonons produced in the primary interaction and in the Luke-Neganov process.
- Can "promptness" of NTL phonon be used to reject non-ionizing events?

- Hunt for origin of low-energy excess in cryogenics continues
 - Non-ionizing nature confirmed in many cases
 - Try to get discrimination back at low energy?
- Microfractures due to stress release: main suspect for (most of?) the previously-reported excesses in the 100 eV – 10 keV range
 - Dependence on time-since-cooldown
 - Rate not related to radioactive levels
 - Energy too large for single
 - Work going on to determine the origin(s) of that stress

More recent news in the coming talks today!

Geonbo Kim's contribution (more on INDICO)

PULSE SHAPES IN EXCESS EVENTS WITH MMC SENSORS

MAGNETO-χ: Fast Phonon Sensing for Sub-GeV DM Detection

MAGNETO R&D: Sensor Response and Phonon Transport

Low E Excess in MAGNETO R&D Data

- Test data for 2 days, background (2.3 MeV α calibration)
- Trapezoid shaping was used, despite loss of resolution, because optimal filter estimates incorrect amplitudes for different pulse shapes

PSD cut: Ratio of slow/fast shaping amplitudes

- Gradual rate increase in slow events (~100 us), but not in fast events.
- Need further investigation with lower threshold.
- More R&D Data will be discussed in the EXCESS workshop.

Contact: Geon-Bo Kim kim90@llnl.gov

LLNL-PRES-835381

BACKUP

- Initial high-energy phonons
 - Keep memory of momentum of initial particle
 - High-energy phonon with very short pathlength
 - Rapidly degrade down to lower energy phonons
- Ballistic phonons
 - Lower energy = longer lifetime (some μ s)
 - Path >> detector size: multiple scattering on. surfaces, random position and direction
 - Degrade down through scattering on impurities and defects in crystals (mostly at surface: traps, amorphous layer, electrodes)
- Thermal phonon
 - Lifetime = C/G (tuned >> ms by adjusting the thermal link)
 - Insensitive to position of interaction
 - Sensor can be very small

Slow (ms to >100ms) Most reliable energy measurement

Position dependence (if sensor very close by)

Fast response (<<ms) Detection ∝ surface sensor/absorber