

Review on Excess Signals Observed in CCD Detectors

Daniel Baxter EXCESS @ IDM 16 July 2022

IDM Session Advertisement

July 18: Parallel 1A – Direct Detection I (Room E17)

14:00	The DAMIC-M Experiment: Status and First Results	Danielle Norcini
	EI7	14:00 - 14:20
	The low-energy spectrum in DAMIC at SNOLAB	Alvaro Chavarria
	EI7	14:20 - 14:40
	SENSEI: Sub-GeV Dark Matter Search with Skipper CCDs	Mariano Cababie
	EI7	14:40 - 15:00
15:00	The Oscura experiment – searching for low-mass dark matter with a very-large array of skipper-CCDs	Nathan Saffold
	EI7	15:00 - 15:20
	First 100 eV nuclear recoil ionization yield measurement in silicon	Dr Valentina Novati
	EI7	15:20 - 15:40
	Measurement of low-energy Compton and neutron scattering in Si CCDs for dark matter searches	R Smida
	EI7	15:40 - 16:00

‡ Fermilab

Graphic by Stemmer Imaging

Interaction with silicon produces free charge carriers...

- ...which are drifted across fully-depleted region...
 - no loss of charge
- ...and collected in 15 micron square pixels...
 - exceptional position resolution
- ...to be stored until a user-defined readout time after many hours.

DAMIC at SNOLAB

6500

6466

6468

position x

Correlated double-sampling (CDS)

- 1. Integrate over the summing well when empty (reference)
- 2. Repeat this integration after transferring pixel charge in (signal)
- 3. Subtract the reference from the signal

Correlated double-sampling (CDS)

Skipper Amplifiers: allow repeated, non-destructive CDS

• CCDs have exceptionally **linear** energy response up to high (keV-scale) energies, allowing relatively straightforward energy calibration

A. Aguilar-Arevalo et al. PRD 94, 082006 (2016) [arXiv:1607.07410]

• Muons give an excellent calibration for the depth-dependence of sigma

59.54 keV γ -rays from ²⁴¹Am

A. M. Botti et al. (2022) [arXiv:2202.03924]

‡ Fermilab

Dark Matter Electron Scattering

A. Aguilar-Arevalo et al. PRL 123, 181802 (2019) [arXiv:1907.12628]

L. Barak et al. PRL 125, 171802 (2020) [arXiv:2004.11378]

Dark Matter Electron Scattering

Projected Sensitivity

A. Aguilar-Arevalo et al. (2022) [arXiv:2202.10518]

Dark Rates

‡Fermilab

Detector	Temperature (Kelvin)	Resolution (e ⁻)	Background Level (dru)	Dark Rate (e ⁻ /pix /day) [Hz/kg]
DAMIC at SNOLAB	140	1.6	12	2.3 x 10 ⁻⁴ [7]
DAMIC at SNOLAB (skipper upgrade)	~110 *	0.16	12	24 x 10 ⁻⁴ [73] *
SENSEI at MINOS	135	0.14	9700	5 x 10 ⁻⁴ [16]
SENSEI at MINOS (with shielding)	135	0.14	3370	1.6 x 10 ⁻⁴ [5]
SENSEI at SNOLAB				
DAMIC-M LBC at Modane	130 *	~0.2 *	~10 *	30 x 10 ⁻⁴ [91] *
SuperCDMS HVeV	0.05	0.03	>1000	[1,700]
* = further improvement expected in coming months!				

Dark Rates – What can we say so far

- The substantially lower dark rates in CCDs relative to SuperCDMS HVeV (and EDELWEISS HV) likely indicates different origins. (*see arXiv:2011.13939*)
- *Preliminary* data indicates that lowering temperature does not improve this dark rate, indicating a non-thermal origin.
- The SENSEI shield-off to shield-on comparison suggests at least some component of dark rate still scales with radiation level.
 - Serial register events: radiation events during readout can avoid cuts (*see arXiv:2107.00168*)
 - Charge transfer inefficiency: individual charges left behind during transfer (masked)
- DAMIC at SNOLAB and SENSEI at MINOS observe statistically comparable rates despite 10³ difference in background rate.
- The comparison of skippers run in DAMIC at SNOLAB, SENSEI at SNOLAB, and DAMIC-M LBC at Modane will tell us a lot about the origins of the remaining ~1 e⁻/mm²/day surface OR ~5 Hz/kg bulk rates

Dark Rates

P. Adari et al. (2022) [arXiv:2202.05097]

‡Fermilab

Dark Matter Nucleon Scattering

‡Fermilab

A. Aguilar-Arevalo et al. PRD 105, 062003 (2022) [arXiv:2110.13133]

DAMIC at SNOLAB

A. Aguilar-Arevalo et al. PRL 125, 241803 (2020) [arXiv:2007.15622]

DAMIC at SNOLAB

A. Aguilar-Arevalo et al. PRD 105, 062003 (2022) [arXiv:2110.13133]

22 7/16/2022 Daniel Baxter I EXCESS @ IDM

Daniel Baxter | EXCESS @ IDM

A. Aguilar-Arevalo et al. PRD 105, 062003 (2022) [arXiv:2110.13133]

Possibilities:

DAMIC at SNOLAB

- We are missing a bulk component in our background model
- We are missing a front component in our background model
- We are incorrectly modeling detector threshold effects 3.
- We are missing a front detector effect 4.
- We are observing interesting new silicon physics 5.
- We are observing some type of dark matter interaction **6**.

Background Model

New

Physics

🚰 Fermilab

Three simultaneous verification efforts with Skippers

DAMIC at SNOLAB

SENSEI at SNOLAB

DAMIC-M LBC

...expect results soon!

Monte Carlo expectation for 18g of Skippers

Statistical significance of excess at 3.7σ ...

		Parameter	Null hypothesis	All events	CCD 1 only	CCDs $2-7$ only	$>200~{\rm eV}_{\rm ee}$	$n_{\rm pix} > 1$
- (signal)		s [events]	0	17.1 ± 7.6	6.4 ± 3.0	8.9 ± 7.2	0	13.9 ± 6.8
(decay consta	nt)	$\epsilon [\mathrm{eV}_{\mathrm{ee}}]$	-	67 ± 37	89 ± 50	51 ± 39	-	78 ± 33
(CCD 1 backgr	ound)	b_1 [events]	56.2	57.6 ± 3.3	56.0 ± 3.1	-	54.8 ± 3.0	43.6 ± 2.5
(CCD2-7 back	ground) b_2	$_{2-7}$ [events]	625	609 ± 21	-	613 ± 21	591 ± 21	535 ± 19
(CCD1 backsid	le)	c_1 [events]	5.4	0.9 ± 1.1	0 ± 0.9	-	0.40 ± 0.87	1 ± 1.1
(CCD2-7 backs	side) c_2	$_{2-7}$ [events]	41.6	6.6 ± 8.9	-	5.0 ± 7.0	3.0 ± 6.5	8 ± 8.7
	exposu	re [kg-day]	-	10.9	1.6	9.3	10.9	10.3
	no-sig	nal p -value	-	$2.2 imes 10^{-4}$	$5.8 imes 10^{-4}$	0.039	1	5.1×10^{-3}
_	g.c	o.f. <i>p</i> -value	-	0.10	0.94	0.21	0.32	0.69

- Bulk excess is present with significance in CCD 1 and CCDs 2-7 taken together and separately, only below 200 eV_{ee}, and even when event clusters containing a single pixel are excluded.
- Serial register events cannot account for excess due to long exposure time relative to read-out combined with low background rate (3 dru). A. Aguilar-Arevalo et al. PRD 105, 062003 (2022) [arXiv:2110.13133]

Conclusions

- CCDs continue to demonstrate the lowest dark rates of any solid-state dark matter detector, ...
- ...but this rate is still orders of magnitude above thermal predictions
- The DAMIC at SNOLAB 50-200 eV EXCESS remains a mystery at 3.7σ
- Three parallel experiments are about to shed light on these mysteries in the coming months, with many more results in the next few years.

July 18: Parallel 1A – Direct Detection I (Room E17)

14:00	The DAMIC-M Experiment: Status and First Results	Danielle Norcini
	EI7	14:00 - 14:20
	The low-energy spectrum in DAMIC at SNOLAB	Alvaro Chavarria
	EI7	14:20 - 14:40
	SENSEI: Sub-GeV Dark Matter Search with Skipper CCDs	Mariano Cababie
	EI7	14:40 - 15:00
15:00	The Oscura experiment – searching for low-mass dark matter with a very-large array of skipper-CCDs	Nathan Saffold
	EI7	15:00 - 15:20
	First 100 eV nuclear recoil ionization yield measurement in silicon	Dr Valentina Novati
	EI7	15:20 - 15:40
	Measurement of low-energy Compton and neutron scattering in Si CCDs for dark matter searches	R Smida
	EI7	15:40 - 16:00

