

with Superconducting Thermometers

LATEST OBSERVATIONS ON THE LOW ENERGY EXCESS IN CRESST-III Excess Workshop Vienna 2022

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

for the CRESST collaboration

July 16, 2022

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

LATEST OBSERVATIONS ON THE LEE

Outline

1 The CRESST Experiment

- 2 The Low Energy Excess (LEE)
- **3 Observations**
- 4 Time Dependence
- **5** Summary

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima LATEST OBSERV

LATEST OBSERVATIONS ON THE LEE

Cryogenic Rare Event Search with Superconducting Thermometers

MAX PLANCK INSTITUTE FOR PHYSICS

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

LATEST OBSERVATIONS ON THE LEE

The CRESST Experiment Cryogenic Rare Event Search with Superconducting **T**hermometers ▶ ~ 3600 m.w.e. deep

- \blacktriangleright µs: ~ 3 · 10⁻⁸ /(s cm²)
- ightarrow γs: ~ 0.73 /(s cm²)
- **•** neutrons: $4 \cdot 10^{-6}$ n/(s cm²)

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ${\sim}15~{\rm mK}$

The CRESST Experiment Cryogenic Rare Event Search with Superconducting **T**hermometers ▶ ~ 3600 m.w.e. deep

- \blacktriangleright µs: ~ 3 · 10⁻⁸ /(s cm²)
- ightarrow γs: ~ 0.73 /(s cm²)
- **•** neutrons: $4 \cdot 10^{-6}$ n/(s cm²)

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ${\sim}15~{\rm mK}$

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

- ▶ ~ 3600 m.w.e. deep
- \blacktriangleright µs: ~ 3 · 10⁻⁸ /(s cm²)
- ightarrow γs: ~ 0.73 /(s cm²)
- **•** neutrons: $4 \cdot 10^{-6}$ n/(s cm²)

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ${\sim}15~{\rm mK}$

CRESST Setup

Shielding:

- polyethylene (10t)
- muon veto system
- ▶ lead (24t)
- copper (10t)

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

LATEST OBSERVATIONS ON THE LEE

4

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

LATEST OBSERVATIONS ON THE LEE

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

LATEST OBSERVATIONS ON THE LEE

- (20x20x10)mm³
 target crystals
- scintillating
 CaWO₄
- W-TES sensor
- $E_{\rm thr} \le 100 \text{eV}$ (nuclear recoils)

- (20x20x10)mm³
 target crystals
- scintillating CaWO₄
- W-TES sensor
- $E_{thr} \le 100 eV$ (nuclear recoils)

Light detector:

- Silicon-on-Sapphire (20x20x0.4)mm³ wafer
- Particle discrimination

- (20x20x10)mm³ target crystals
- scintillating
 CaWO₄
- W-TES sensor
- $E_{\rm thr} \le 100 {\rm eV}$ (nuclear recoils)

Light detector:

- Silicon-on-Sapphire (20x20x0.4)mm³ wafer
- Particle discrimination

Housing & Holding:

- Scintillating reflective foil (Vikuiti[™])
- (Instrumented) CaWO₄ holding sticks

Cryogenic Calorimeter

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

LATEST OBSERVATIONS ON THE LEE

Continuous DAQ + Optimum Filter

- Dead-time free DAQ: detector output is continuously recorded
- Maximize Signal-to-Noise ratio in frequency space

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Continuous DAQ + Optimum Filter

- Dead-time free DAQ: detector output is continuously recorded
- Maximize Signal-to-Noise ratio in frequency space
- Define threshold by choosing accepted number of noise triggers

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Continuous DAQ + Optimum Filter

- Dead-time free DAQ: detector output is continuously recorded
- Maximize Signal-to-Noise ratio in frequency space
- Define threshold by choosing accepted number of noise triggers
- Select Events above threshold

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Threshold determination

- Analytical description of amplitude distribution of filtered empty baselines
- Define threshold choosing accepted number of noise triggers per kgd

$$NTR(x_{thr}) = \frac{1}{t_{win} \cdot m_{det}} \cdot \int_{x_{thr}}^{\infty} P_d(x_{max})$$

Event Selection and Energy Calibration

Apply data selection criteria, designed to keep only valid pulses

Event Selection and Energy Calibration

- Apply data selection criteria, designed to keep only valid pulses
- Calibration of cleaned data with radioactive source

Event Selection and Energy Calibration

- Apply data selection criteria, designed to keep only valid pulses
- Calibration of cleaned data with radioactive source
- Perform simulation to calculate survival probabilities after trigger and selection criteria

Outline

1 The CRESST Experiment

2 The Low Energy Excess (LEE)

- **3 Observations**
- 4 Time Dependence
- **5** Summary

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

LATEST OBSERVATIONS ON THE LEE

First observations of Excess

Run34 (05/2016 - 02/2018): CaWO₄ crystal 23.6 g 30.1 eV threshold scintillating foil instrumented CaWO₄holding sticks Run35 (11/2018 - 10/2019): Al₂O₃ (Sapphire) crystals 15.9 g 76.9 eV & 66.5 eV thresholds scintillating foil non instrumented CaWO₄holding sticks

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

First observations of Excess

In both cases decrease over time:

Modifications of modules for Run36 (11/2020 - still running)

Test different configurations to find source of unknown background:

- Materials (CaWO₄, LiAlO₂, Al₂O₃, Si)
- Replace CaWO₄ holding sticks with Cu sticks
- Some modules with bronze clamps instead of sticks
- Remove scintillating foil
- One fully non-scintillating module (Si as main absorber and wafer detector)
- ▶ Introduction of ⁵⁵Fe source for low energy calibration (since Run35)

List of Modules

Module	Material	Holding	Foil	Mass (g)	Threshold (eV)
Si2	Si	Cu	No	0.35	10
Sapp1	Al_2O_3	Cu	No	16	157
Sapp2	AI_2O_3	Cu	No	16	52
Li1	$LiAlO_2$	Cu	Yes	11	84
TUM93A	$CaWO_4$	$2 {\sf Cu} \ + 1 {\sf CaWO}_4$	Yes	24	54
Comm2	$CaWO_4$	Bronze Clamps	No	24	29

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

LATEST OBSERVATIONS ON THE LEE

Outline

- **1** The CRESST Experiment
- 2 The Low Energy Excess (LEE)
- **3** Observations
- 4 Time Dependence
- **5** Summary

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Energy spectra

- Excess seen in all detectors!
- Rate does not scale with mass
- Common single particle origin like DM or external radiation disfavoured

Averaged LEE Pulse vs Particle Templates

\Rightarrow Excludes noise or electronic artifacts

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Outline

- **1** The CRESST Experiment
- 2 The Low Energy Excess (LEE)
- **3 Observations**
- 4 Time Dependence
- 5 Summary

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima I

Decrease over time

- Common energy range of 60 120 eV
- $\blacktriangleright\,$ Bins of $\sim\,150$ h

- Exponential decay of LEE seen in all detectors!
- Decay times agree with each other
- Mean: (149 ± 40) days

Neutron calibration

No influence of neutron calibration on the LEE rate

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Warm-up tests

Warm-up to three different temperatures: 60 K, 600 mK, 200 mK

- Strong rise of rate after warm-up to 60 K
- Again exponential decay in all detectors!
- No influence of warm-up to lower temperatures (200 mK, 600 mK)

Decay times

- Comparable decay times
- \blacktriangleright Mean: (18 \pm 7) days

But: LEE decays much faster after Warm up

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Time dependence

⁵⁵Fe source as reference

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Outline

- **4** Time Dependence
- 5 **Summary**

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Observations

- LEE present in all detectors
- No significant impact on the presence of the LEE by detector modifications
- LEE events have same pulse shape as particle recoil events
- Exponential decay of rate
- Increased rate after warm-up to 60 K
- ► Faster decay after warm-up to 60 K
- No effect of warm-up to 600 mK and 200 mK

Conclusions

Exluded hypotheses on major contributions:

- Dark matter interactions
- External and intrinsic radioactivity
- Noise triggers and electronic artifacts
- Scintillation light

Possible options under further investigation:

- Intrinsic crystal effects
- Sensor related effects (e.g. from TES film deposition)
- Holding induced stress

R & D ongoing

BACKUP

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Time dependence without Sapp2

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Excess in CRESST-III First Run

LEE vs Particle template Residuals

Optimum Filter

Filter kernel $H(\omega)$: maximize Signal-to-Noise ratio in frequency space:

$$H(\omega) = K \frac{\widehat{s^*}(\omega)}{N(\omega)} e^{-i\omega\tau_M}$$

Convolute real pulse with filter kernel:

$$y_F(t) = \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} H(\omega) \widehat{s}(\omega) e^{i\omega t} d\omega$$

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Neutron Calibration

Light Yield: LY = $E_{\rm L}/E_{\rm Ph}$

Band Fits QF

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima

Empty baseline

Simulated pulse

D. Fuchs, M. Kaznacheeva, A. Kinast, A. Nilima