Energy loss due to defect creation in solid state detectors

Matti Heikinheimo

University of Helsinki, Finland Based on arXiv:2112.14495, arXiv:2206.06772 With S. Sassi, K. Tuominen, K. Nordlund, N. Mirabolfathi et al

July 16, 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Contents

Introduction

Molecular Dynamics simulations

Effect on the recoil spectrum

Introduction

- In a phonon based calorimeter, the observed recoil energy from nuclear recoils can be "quenched" due to formation of lattice defects.
- The energy stored in the defects will not reach the detector, leading to loss in the observed recoil energy.
- Close to the threshold displacement energy, the energy loss effect can be highly nonlinear (as a function of recoil energy), affecting not just the overall energy calibration but also the shape of the measured recoil spectrum.
- For hard materials with simple crystal structure (e.g. diamond) the sudden onset of the energy loss effect at threshold leads to a peak in the recoil spectrum.
- Low energy electron recoils are not expected to form defects, therefore the peak in the spectrum can be used to identify nuclear recoils.

Contents

Introduction

Molecular Dynamics simulations

Effect on the recoil spectrum

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

MD simulations

- ► The MD simulations were performed with LAMMPS and PARCAS.
- Simulation box containing $\mathcal{O}(10^3)$ atoms with periodic boundary conditions.
- Lattice at 40 mK temperature: The simulation region is divided into an interior where the recoil happens, and a border region (6 Å) under temperature control to account for dissipation of energy into surrounding material.
- ► An atom in the central unit cell is given a recoil energy E_r in a random direction â. The system is let to evolve until the energy of the lattice settles to a constant value. The difference between the final and initial lattice energy is the E_{loss}(E_r, â).
- ► For each direction the process is repeated for increasing recoil energies (in 1 eV steps) to obtain the E_{loss} as a function of energy and direction.
- We have simulated sapphire (Al₂O₃), silicon carbide (SiC), tungsten carbide (WC), diamond (C), silicon (Si), germanium (Ge) and tungsten (W).

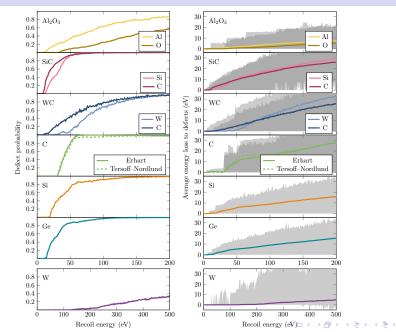
► 4 = ► = <> <</p>

Results available in https://github.com/sebsassi/elosssim

MD simulations setup

	AI_2O_3	SiC	WC	
Unit cell config.	$8 \times 5 \times 3$	5 imes 9 imes 3	10 imes 6 imes 10	
Atoms per unit cell	60	16	4	
Time step (ps)	0.0005	0.0005	0.00025	
Simulation time (ps)	4.0	4.0	3.2	
Potential	Vashishta et al.	Gao–Weber	Juslin et al.	
	С	Si	Ge	
Unit cell config.	$8 \times 8 \times 8$	$8 \times 8 \times 8$	$8 \times 8 \times 8$	
Atoms per unit cell	8	8	8	
Time step (ps)	Adaptive	Adaptive	Adaptive	
Simulation time (ps)	20.0	20.0	20.0	
Potential			Modified	
	Tersoff–Nordlund	Stillinger–Weber		
	W			
Unit cell config.	10 imes 10 imes 10			
Atoms per unit cell	2			
Time step (ps)	0.00009			
Simulation time (ps)	4.2			
Potential	Derlet–Björkas			

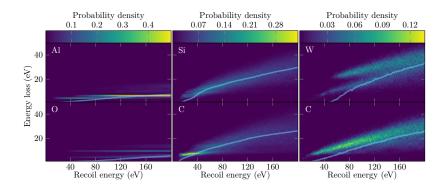
MD simulations: results



୍ରର୍ତ୍

æ

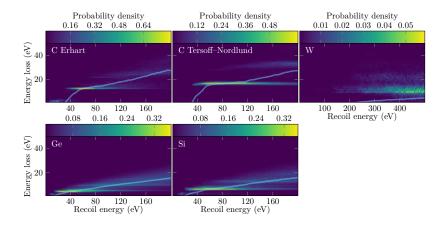
MD simulations: results



(日本)(同本)(日本)(日本)(日本)

- Solid line: average (over recoil direction) $E_{loss}(E_r)$.
- Color scale: Probability density for $E_{loss}(E_r)$.

MD simulations: results



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Solid line: average (over recoil direction) $E_{loss}(E_r)$.
- Color scale: Probability density for $E_{loss}(E_r)$.

Contents

Introduction

Molecular Dynamics simulations

Effect on the recoil spectrum

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

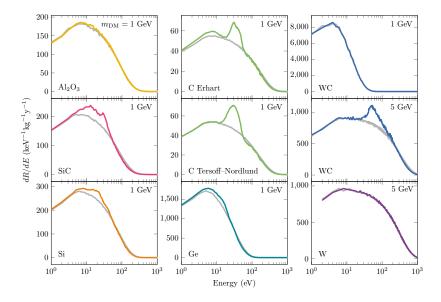
Recoil Spectrum

- To see the effect of the E_{loss} on the measured spectrum, we sample the assumed physical recoil spectrum as a function of recoil energy E_r and direction ĝ.
- \blacktriangleright For each sampled recoil event we construct the "observed" recoil energy $E_{\rm obs}$ as

$$E_{
m obs} = E_r - E_{
m loss}(E_r, \hat{q}) + E_{\sigma}.$$

- ► $E_{\text{loss}}(E_r, \hat{q})$ obtained from MD simulations, E_σ from Gaussian distribution with energy resolution σ .
- We then sum over the sampled recoil directions *q̂* to obtain the recoil spectrum.
- As an example we present the spectrum for 1 GeV DM under standard assumptions (SI interaction, standard halo model).
- (next slide) Colored line: spectrum after subtracting E_{loss}, gray line: spectrum without E_{loss}.

Recoil Spectrum for 1 GeV DM



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Excess recoil spectrum

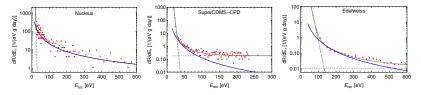
For the low energy excess rate we use a parametric fit of the form $(x = E_r/eV)$:

$$f(x) = Ae^{-\alpha x} + Bx^{\beta} + C$$

- We assume that the exponential part is due to electronic noise, and the constant part due to electron/gamma recoils, each not affected by the E_{loss} effect.
- We have checked that this choice does not have large impact on the analysis.
- For the fit we use three data sets: from NUCLEUS, SuperCDMS-CPD and EDELWEISS.
- Best fit parameters for these data sets (A, B, C in units events/[eV g day]):

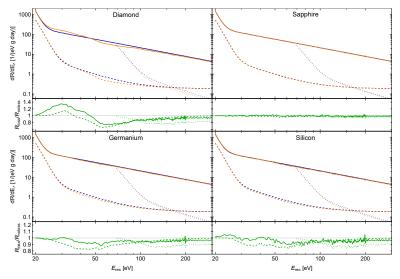
	A	α	В	β	С
Nucleus	$9.7 imes10^9$	0.77	$1.58 imes10^4$	-1.44	0
SuperCDMS	$1.41 imes10^8$	0.61	$3.7 imes10^4$	-2.7	0.18
SuperCDMS Edelweiss	$1.46 imes10^5$	0.124	$1.04 imes10^5$	-2.6	0.011

Excess recoil spectrum



- We use the fit function as the underlying event rate.
- We sample this spectrum and apply the energy loss as above, assuming isotropic distribution of recoils.
- We repeat this procedure for four detector materials: sapphire, germanium, silicon and diamond, and for each set of best-fit parameters.
- The energy loss is only applied to the power-law (blue) component of the spectrum, as the rest are assumed not to consist of nuclear recoils.

Excess recoil spectrum



Orange: after E_{loss} , blue: without E_{loss} . Solid line: Nucleus fit, dashed: SuperCDMS fit, dotted: Edelweiss fit.

900

э

Identifying the nuclear recoil peak

SuperCDMS

Edelweiss

- ► To estimate the required exposure/number of events for a statistically significant identification of the E_{loss} feature in diamond, we generate simulated data sets containing the feature.
- We compute the log-likelihood ratio for fitting the simulated data with the fit function f after applying the E_{loss}, or without E_{loss}.

$$q_0 = 2 \log \left(\frac{\max \mathcal{L}(\mu_{\text{loss}})}{\max \mathcal{L}(A, \alpha, B, \beta, C)} \right),$$
$$\mathcal{L}(\{\lambda\}) = \prod_{i=1}^{N} \frac{e^{-n_{\exp,i}(\{\lambda\})}}{n_{\text{obs},i}!} (n_{\exp,i}(\{\lambda\}))^{n_{\text{obs},i}}.$$
$$\frac{\text{fit parameters}}{\text{Nucleus}} | \frac{\text{Exposure [g day]}}{0.08} | \frac{\text{Events}}{700}$$

With the Nucleus-parameters, the peak is visible at ~ 30 eV on top of the power-law function, therefore the 3σ identification of the feature requires much less events than with SuperCDMS or Edelweiss parameters, where the peak is partially masked by the rising exponential.

6.3

750

8000

190 000

Conclusions

- Defect creation removes a part of the nuclear recoil energy from phonon based detection for recoils above O(10) eV.
- The amount of E_{loss} and the sharpness of the threshold depends on the target material.
- Diamond (and Tungsten Carbide) has a sharp threshold, resulting in a peak in the measured spectrum for nuclear recoils.
- The peak is not present for electron recoils, allowing for identification based on the spectrum.
- ▶ Using parametric (power law) template for the low energy excess, we estimate that the identification could be reached with as low as $\mathcal{O}(0.1)$ gram day of exposure (or with ≤ 1000 events) with a Diamond detector, assuming 1 eV resolution and detection threshold at or below 20 eV.
- Detector technology is reaching O(1) eV resolution currently with O(10) g detector mass.

・ロト・日本・日本・日本・日本

Low energy neutron beam calibration with time of flight measurement could be used to observe/verify this effect.