

Impact of Crystal Lattice Defect Quenching on CEvNS at reactors

Excess Workshop 2022, Vienna

Thierry Lasserre & Chloé Goupy

CEA & TUM-SFB1258

SCIENTIFIC REPORTS

OPEN

nature

Published online: 13 June 2017

Using defects to store energy in materials – a computational study

I-Te Lu & Marco Bernardi

Energy storage occurs in a variety of physical and chemical processes. In particular, defects in materials can be regarded as energy storage units since they are long-lived and require energy to be formed. Here, we investigate energy storage in non-equilibrium populations of materials defects, such as those generated by bombardment or irradiation. We first estimate upper limits and trends for energy storage using defects. First-principles calculations are then employed to compute the stored energy in the most promising elemental materials, including tungsten, silicon, graphite, diamond and graphene, for point defects such as vacancies, interstitials and Frenkel pairs. We find that defect concentrations achievable experimentally (~0.1–1 at.%) can store large energies per volume and weight, up to ~5 MJ/L and 1.5 MJ/kg for covalent materials. Engineering challenges and proof-of-concept devices for storing and releasing energy with defects are discussed. Our work demonstrates the potential of storing energy using defects in materials.

Crystal Lattice Defect Quenching

(CLDQ)

CEVNS interaction in a crystal lattice

- Step 1) the neutrino scatters off the nucleus, transferring a defined momentum q
 - Timescale << picosecond spatial range: point-like

Step 2) the nucleus oscillates in the lattice's potential well.

- Case a) The nucleus scans it potential and dissipate energy but <u>relaxes</u> back to its initial state
 - Dissipation of phonons
 - Dependence on the material and momentum q
 - Mild dependence on direction of the signal upon incoming direction
- Case b) The nucleus escape from its potential and create a vacancy
 - Creation of a <u>lattice vacancy</u> (defect)
 - Some energy may be used (<u>quenched</u>) for this process
 - Direction dependent (in the crystal frame)
 - Depends on the material and momentum q>q_{min}
 - Subsequent dissipation of phonons

-- Step 3) the primary recoil atom (PKA) may start moving other atoms of the lattice

• Timescale : 100 ps – range : few nm

Crystal defect induced energy loss

• Crystal defects can be formed whenever incident radiation strikes an atom, transferring sufficient energy to remove the atom from its lattice site, resulting in a vacancy

• After a few recombinations (100's ps or so), « part of the incident energy » is used for the creation of defects, defect clusters, dislocations... This is also referred to as the Wigner energy (δE_W)

Example of crystal defects

Vacancy

interstitial

Frenkel pair

- Other defects: Schottky pairs, dislocation (aligned set of defects), cluster of defects, ... not considered here ...
- The defect tagging itself may be used to detect rare radiation events (DM) and potentially their direction!

Frenkel pair: formation / recombination

• Frenkel Pair (FP)

- Creation
 Need E > E_F + E_A
 E_F: Formation Energy
- Temperature-dependent recombination

Need $E > E_A$ E_A : Activation Energy

Reaction coordinate

Radiation induced CLDQ

- Penetrating radiations of all forms induce lasting defects in most of materials
- In solid-state detectors:
 - High-energy electromagnetic radiation interacts primarily with the electron system
 - Indirect induction of crystal defects (for high energy radiation of 100's of keV, $E >> E_F$)
 - Neutrons (Nuclei) interact primarily with lattice nuclei
 - Can create long-lived defects for $E_{rec} > 10$'s eV
- Coherent Neutrino Scattering off nuclei inside a crystal
 - Induce a 10-500 eV nuclear recoil: $E_{recoil} \rightarrow$ corresponds to the energy scale of defect formation
 - Part of the energy may create a long-lived defects: $\delta E_W(E_{recoil}(\theta), particle ID, material)$
 - Possible bias in energy reconstruction:

Threshold displacement energy (E_d) along different directions in quartz crystal

Sizable variation with respect the incoming radiation direction

Published in: Bu Wang; Yingtian Yu; Isabella Pignatelli; Gaurav Sant; Mathieu Bauchy; J. Chem. Phys. 143, 024505 (2015) - DOI: 10.1063/1.4926527 Copyright © 2015 AIP Publishing LLC

Thierry Lasserre – 16/07/2022

Dummy CLDQ energy loss function

CLDQ + resolution: transfer matrices

Impact on CEVNS spectrum (Al₂O₃ – analytical evaluation)

Displacement energies & Formation energies

counts/keV/day

Crystal	Atom	E _d	E _f
Germanium	Ge	from 9.5 eV to 28.5 eV	from 2 eV to 4 eV
	Al	from 45.5 eV to > 150 eV	4.95 eV
Al ₂ O ₃	0	from 25 eV to 40.5 eV	6.52 eV
	Ca	24.02 eV	4.04 eV
$CaWO_4$	W	195.83 eV	7.02 eV
	0	20.30 eV	1.23 eV
		Y	

Jiang et al., A Theoretical Simulation of the Radiation Responses of Si, Ge, and Si/Ge Superlattice to Low-Energy Irradiation, 2018 Jiang et al., Ab initio molecular dynamics simulation of low energy radiation responses of α -Al2O3, 2017 Matsunaga et al., First-Principles Calculations of Intrinsic Defects in Al2O3, 2003. Shao et al, Computer study of intrinsic defects in CaWO4, 2008. CEVNS Dummy Spectrum at Nuclear Reactor

Displacement energies matches the CEVNS@Reactor Regions Of Interest!

One step further: TRIM/SRIM simulation

ERGY 0% Now: 933 of 99999 long

SRIM - Calculate the stopping and range of ions into matter

- A moving atom is considered as an "ion" and all target atoms as "atoms"
- Uses a quantum mechanical treatment

TRIM - (the Transport of Ions in Matter) - Monte Carlo

- 2D Target
- Anamorphous
- Specific recoils generated at a specific target location/orientation

Radiation Damage MC simulation

- Emulation of cascades in crystal fair estimate
- Input parameters
 - E_{disp} : Threshold displacement energy
 - E_{latt} : Defect formation energy
 - Material density

"SRIM - The Stopping and Range of Ions in Solids", by J. F. Ziegler and J. P. Biersack in 1985 (a new edition in 2009)

 Image: Bit in any Bit in

Kinchin-Pease recoil cascade's simulation

[5] H. Kinchin and R. S. Pease. The displacement of atoms in solids by radiation, jan 1955.

TRIM inputs and outputs

Input: CEvNS @Reactor Recoil Spectrum

Specific weighted set of E_d/E_f to

emulated the crystal orientation

Output : .txt file with the detail of the collisions and the detail of cascades

Ion Numi	Ene (ke	rgy V)	Depth (A)		Later Y Ax	al Di is	Z Axi:	(A) s	Se (eV/A	At) Hi	om t l	Reco	oil gy(eV)) DISP	et.
10000	1 58.52	E-021	50000.E	-021	0000.1	E+001	0000.1	E+00	0001.	301	0 1	5852	0.E-0	2 <==	S
00000 Rec 0000 0000 0000 0000 0000 0000	1 58,52 oil Ato 01 08 02 08 03 08 04 08 05 08 06 08 07 08 08 08 09 08	E-02 m Ene 585 742 401 115 286 585 218 407 584	50000,E rgy(eV) 20,E-02 29,E-03 91,E-03 42,E-02 25,E-03 70,E-03 99,E-03 77,E-03 40,E-03	-02 5000 5365 5370 5296 5224 5239 5247 5154 5115	(A) ,E-01 ,E-01 ,E-01 ,E-01 ,E-01 ,E-01 ,E-01 ,E-01	E+00 Y 000 -183 -227 -951 -720 -611 -595 -279 -300 ummar	0000,1 (A) 0,E+00 0,E-02 1,E-02 6,E-03 7,E-03 4,E-03 0,E-03 8,E-03 2,E-04 y of Al	E+00 000 108 -280 606 305 273 162 bove	0001, (A) (C) (A) (C) (C) (C) (C) (C) (C) (C) (C	30 Vac 0 1 3 1 4 1 3	Rej Rej 00	5852 p1 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,E-0: on Nur -Casca 0,E-0:	2 <== mb 0000 ade0000	s 01 01
								F		_					
Ge					4			F							
Ge 2V)	Defect	type						F							
Ge 20 8.5 ^b , ~ 18 ^f	Defect V _{Ge} + C	type						F		/					
Ge ≥V) 18.5 ^b , ~ 18 ^f	Defect V _{Ge} + C V _{Ge} + C	type je _{int}	Defect type	2	Defec	t forma	tion energy	gies (e ^v	0						
Ge ⅔V) 18.5 ^b , ~ 18 ^f	$\begin{array}{c} Defect\\ V_{Ge}+C\\ V_{Ge}+C\\ V_{Ge}+C\end{array}\end{array}$	type ieint ieint	Defect type	2	Defec Si/Ge	t forma SL	ition energ Bulk (gies (e ⁱ Ge	v)	Bulk Si					
. Ge ≥V) 18.5 ^b , ~ 18 ^f 12.5 ^b , ~ 15 ^c 10.5 ^b	$\begin{array}{c} Defect\\ V_{Ge}+C\\ V$	type je _{int} je _{int}	Defect type	2	Defec Si/Ge 2.85	t forma SL	ition energy Bulk (gies (e ^t Ge	v) 	<u>Bulk Si</u> 8.60, 3.6	^a , 3.5				
: Ge €V) 18.5 ^b , ~ 18 ^f 12.5 ^b , ~ 15 ^c 10.5 ^b	$\begin{array}{c} Defect\\ V_{Ge}+C\\ V_{Ge}+C\\ V_{Ge}+C\\ V_{Ge}+C\\ V_{Ge}+C\end{array} \end{array}$	type je _{int} je _{int}	Defect type V _{Si} V _{Ge}	2	Defect Si/Ge 2.85 2.73	t forma SL	tion energy Bulk (- 2.23,	gies (e' Ge	<u>v)</u>	Bulk Si 8.60, 3.61	1ª, 3.5				
: Ge ≥V) 18.5 ^b , ~ 18 ^f 12.5 ^b , ~ 15 ^c 10.5 ^b	$\begin{array}{c} Defect\\ V_{Ge}+C\\ V_{Ge}+C\\ V_{Ge}+C\\ V_{Ge}+C\\ \end{array}$	type je _{int} je _{int}	Defect type V _{SI} V _{Ge} Si _{Int}	2	Defec Si/Ge 2.85 2.73 3.77	t forma SL	tion enerr Bulk (- 2.23, -	Ge 2.09 ⁴	v) 	Bulk Si 8.60, 3.61 - 3.77, 3.75	1ª, 3.5				
: Ge ≥V) 18.5 ^b , ~ 18 ^f 12.5 ^b , ~ 15 ^c 10.5 ^b	Defect $V_{Ge} + C$ $V_{Ge} + C$ $V_{Ge} + C$	type ieint ieint ieint	Defect type Vsi VGe Sl _{int} Ge _{int}	2	Defecc 5i/Ge 2.85 2.73 3.77 3.52	t forma	tion energy Bulk (- 2.23, - 2.97,	gies (e' Ge 2.09 ⁴	V) I : : :	Bulk Si 8.60, 3.61 3.77, 3.75	a ^a , 3.5				
: Ge eV) 18.5 ^b , ~ 18 ^f 12.5 ^b , ~ 15 ^c 10.5 ^b	Defect $V_{Ge} + C$ $V_{Ge} + C$ $V_{Ge} + C$	type ieint ieint ieint	Defect type V _{Si} V _{Ge} Sl _{int} Ge _{int} Si FP	2	Defec 5i/Ge 2.85 2.73 3.77 3.52 5.19	t forma	tion energy Bulk (- 2.23, - 2.97, -	gies (et Ge 2.09 ⁴	v) 1 1 1 1 1	Bulk Si 3.60, 3.6 ⁻ 3.77, 3.75 -	1ª, 3.5 5 ^c ,3.29	56 ^b			

Thierry Lasserre – 16/07/2022

Visible/Recoil transfer matrix (here $\alpha - Al_2O_3$)

- Transfer Matrix (TRIM):
 Visible energies ≡ f(Recoil Energy)
- Visible energy < Recoil Energy
 - CLD Quenching
 - Specific values depend on E_d's, E_f's
 - E_d's, E_f's still not well known
- A range of visible energies can be tied to a single recoil energy!
 - Energy cannot be assigned on an event-by-event basis!
- Energy spectrum reconstruction can be statistically processed

Visible/Recoil transfer matrices

Al₂O₃

CEVNS@reactor: visible & recoil spectral shapes

Thierry Lasserre – 16/07/2022

CEVNS@reactor: CLDQ spectral distorsion

Thierry Lasserre – 16/07/2022

cea

SFB 1258 Neutrinos Dark Matter Dark Matter

Impact on CE ν NS cross-section measurement

- Goal: estimate the impact of the CLDQ on the CEvNS cross section measurement
- Method:
 - Use SRIM simulations to evaluate CLDQ impact on CE ν NS spectrum (conversion from recoil energy to visible energy)
 - Compare (fit) mock data with CLDQ to the CE ν NS model not including CLDQ
 - Consider infinite statistics 100 millions CEuNS int. –
- Normalization bias = estimator of the CLDQ systematics

 $\times 10^{6}$

10¹

Thierry Lasserre – 16/07/2022

Impact on CE ν NS cross-section measurement

Fit Ge CE ν NS mock data with model without CLDQ

ROI between 20 eV and 100 eV

Thierry Lasserre – 16/07/2022

Proxy-setup : NUCLEUS@Chooz – Phase I & II

Thierry Lasserre – 16/07/2022

CLDQ Systematics for CE ν NS cross-section

	$\sigma_{\rm stat} \gg$	σ_{CLDQ}	$\sigma_{\rm stat} \lesssim$	$\sigma_{\rm stat} \lesssim \sigma_{\rm CLDQ}$		
	NUCLEUS-10g (2 years)		NUCLEUS-1	CLDQ		
Target	CEvNS events	Stat. Error	CEvNS events	Stat. Error	Sys. Error	
Ge	75	13%	7500	1.3%	2.1%	
Al_2O_3	59	17%	5900	1.7%	3.2%	
CaWO ₄	156	9.1%	15600	0.9%	0.6-1.8%	

Simulation of CEvNS cross section measurement

Thierry Lasserre 16/07/2022

Limitations of this study

Displacement energies & formation energies are still not yet known

G	e	Al ₂	03	CaV	VO ₄
E _d	E _f	E _d	E _f	E _d	E _f

Limited type of defects have been considered (others?)

🙁 TRIM/SRIM : 2D amorphous material A user-friendly toolkit for a fair estimate

Thierry Lasserre 16/07/2022

Conclusions

A quantitative study of the impact of the Crystal Lattice Defect Quenching for the forthcoming reactor neutrino CEvNS measurements

- Rely on:
 - Litterature values of E_{dis} / E_{f}
 - Frenkel defect only
 - TRIM/SRIM cascade simulations

- « Phonon detector »: Visible Energy ≠ Recoil Energy
 - Impact on energy calibration
 - Non-linear effect for $E_{vis} \lesssim max(E_d)$

A 1-3% systematics effect on the CEvNS cross section (if neglected)
Could this jeopardize beyond standard model physics searches?

Perspectives by 2024

Ongoing collaboration with solid state physicists at CEA – Saclay

• Dedicated VASP simulations

- Identify defects and calculate their formation energies
- Calculate displacement energies

W @G. Soum

Thierry Lasserre 16/07/2022

Thank you for your attention

	VIII. Ai	ppen	dices			germanium	E _{disp} (eV)	E _{latt} (eV)	_
	• • • • • • • • •	P Kom	arees	/		simulated :		2	
	B. Sir	nulate	d Target	s - Ge			10	3	
			7					4	
NANO	EXPRESS			Ор	en Access			2	
A Th	eoretical Si	mulation	of the Ra	diation	CrossMark		12	3	
Resp	onses of Si	, Ge, and	l Si/Ge Sup	perlattice				4	
to Lo	ow-Enerav	Irradiatio	n .					2	
	··· _···· _/ ·								
ling Jiang	g ¹ , Haiyan Xiao ^{1*} ®, Shum	ing Peng ² , Guixia Ya	ang ² , Zijiang Liu ³ , Liang	g Qiao ¹ and Xiaotao Zu	J ¹		1/	2	
Aing Jiang	g¹, Haiyan Xiao¹*⊚, Shum	ing Peng ² , Guixia Ya	ang ² , Zijiang Liu ³ , Liang	g Qiao ¹ and Xiaotao Zu	1 L		14	3	
Aing Jiang	g ¹ , Haiyan Xiao ^{1*} ©, Shum Bulk Ge	ing Peng ² , Guixia Ya	ang ² , Zijiang Liu ³ , Liang	g Qiao ¹ and Xiaotao Zu	¹		14	3	
ning Jiang	g ¹ , Haiyan Xiao ^{1*} ©, Shum Bulk Ge E _d (eV)	ing Peng ² , Guixia Ya Defect type	ang ² , Zijiang Liu ³ , Liang	g Qiao ¹ and Xiaotao Zu	1 L		14	3 4 2	
Aing Jiang rection	g ¹ , Haiyan Xiao ¹ * [•] , Shum Bulk Ge E _d (eV) 18, 18.5 ^b , ~ 18 ^f	ing Peng ² , Guixia Ya Defect type V _{Ge} + Ge _{int}	ang ² , Zijiang Liu ³ , Liang	g Qiao ¹ and Xiaotao Zu	1,		14 16	3 4 2 3	
Ving Jiang rection 01] 0]	g ¹ , Haiyan Xiao ¹ *, Shum Bulk Ge E _d (eV) 18, 18.5 ^b , ~ 18 ^f 28.5	ing Peng ² , Guixia Ya Defect type V _{Ge} + Ge _{int} V _{Ge} + Ge _{int}	ang², Zijiang Liu³, Liang	Qiao ¹ and Xiaotao Zu Defect forma	u ¹ ation energies (eV)		14 16	3 4 2 3 4	
ection 1] 0]	g ¹ , Haiyan Xiao ¹ *, Shum Bulk Ge E _d (eV) 18, 18.5 ^b , ~ 18 ^f 28.5 9.5, 12.5 ^b , ~ 15 ^c	ing Peng ² , Guixia Ya Defect type V _{Ge} + Ge _{int} V _{Ge} + Ge _{int} V _{Ge} + Ge _{int}	ang², Zijiang Liu³, Liang Defect type	Qiao ¹ and Xiaotao Zu Defect forma Si/Ge SL	ation energies (eV) Bulk Ge	Bulk Si	14 16	3 4 2 3 4 2	
Aing Jiang ection 01] 0] 1] 1]	g ¹ , Haiyan Xiao ¹ *, Shum Bulk Ge E _d (eV) 18, 18.5 ^b , ~ 18 ^f 28.5 9.5, 12.5 ^b , ~ 15 ^c 9.5, 10.5 ^b	ing Peng ² , Guixia Ya Defect type V _{Ge} + Ge _{int} V _{Ge} + Ge _{int} V _{Ge} + Ge _{int} V _{Ge} + Ge _{int}	ang², Zijiang Liu³, Liang Defect type V _{Si}	Qiao ¹ and Xiaotao Zu Defect forma Si/Ge SL 2.85	ation energies (eV) Bulk Ge –	Bulk Si 3.60, 3.61ª, 3.56 ^b	14 16 18	3 4 2 3 4 2 2 3	
Pection (1) (1) (1) (1) (1) (1) (1)	g ¹ , Haiyan Xiao ¹ *, Shum Bulk Ge E _d (eV) 18, 18.5 ^b , ~ 18 ^f 28.5 9.5, 12.5 ^b , ~ 15 ^c 9.5, 10.5 ^b	ing Peng ² , Guixia Ya Defect type $V_{Ge} + Ge_{int}$ $V_{Ge} + Ge_{int}$ $V_{Ge} + Ge_{int}$ $V_{Ge} + Ge_{int}$	ang², Zijiang Liu³, Liang Defect type V _{Si} V _{Ge}	Defect forma Si/Ge SL 2.85 2.73	ation energies (eV) Bulk Ge – 2.23, 2.09ª	Bulk Si 3.60, 3.61ª, 3.56 ^b –	14 16 18	3 4 2 3 4 2 3 3	
Ving Jiang rection ()1] ()] ()] (1] (1]	g ¹ , Haiyan Xiao ¹ *, Shum Bulk Ge E _d (eV) 18, 18.5 ^b , ~ 18 ^f 28.5 9.5, 12.5 ^b , ~ 15 ^c 9.5, 10.5 ^b	ing Peng ² , Guixia Ya Defect type $V_{Ge} + Ge_{int}$ $V_{Ge} + Ge_{int}$ $V_{Ge} + Ge_{int}$ $V_{Ge} + Ge_{int}$	ang², Zijiang Liu³, Liang Defect type V _{Si} V _{Ge} Si _{int}	Defect forma Si/Ge SL 2.85 2.73 3.77	ation energies (eV) Bulk Ge – 2.23, 2.09ª –	Bulk Si 3.60, 3.61 ^a , 3.56 ^b – 3.77, 3.75 ^c ,3.29 ^d	14 16 18	3 4 2 3 4 2 3 4 2 3 4	
Ving Jiang rection ()1] (0] (1] (1]	g ¹ , Haiyan Xiao ¹ *, Shum Bulk Ge E _d (eV) 18, 18.5 ^b , ~ 18 ^f 28.5 9.5, 12.5 ^b , ~ 15 ^c 9.5, 10.5 ^b	ing Peng ² , Guixia Ya Defect type $V_{Ge} + Ge_{int}$ $V_{Ge} + Ge_{int}$ $V_{Ge} + Ge_{int}$ $V_{Ge} + Ge_{int}$	ang², Zijiang Liu³, Liang Defect type V _{Si} V _{Ge} Si _{int} Ge _{int}	Defect forma Si/Ge SL 2.85 2.73 3.77 3.52	ation energies (eV) Bulk Ge – 2.23, 2.09 ^a – 2.97, 2.92 ^e	Bulk Si 3.60, 3.61 ^a , 3.56 ^b – 3.77, 3.75 ^c ,3.29 ^d –	14 16 18	3 4 2 3 4 2 3 4 2 3 4 2	
Ming Jiang rection 01] 10] 11] 11]	g ¹ , Haiyan Xiao ¹ *, Shum Bulk Ge E _d (eV) 18, 18.5 ^b , ~ 18 ^f 28.5 9.5, 12.5 ^b , ~ 15 ^c 9.5, 10.5 ^b	ing Peng ² , Guixia Ya Defect type V _{Ge} + Ge _{int} V _{Ge} + Ge _{int} V _{Ge} + Ge _{int} V _{Ge} + Ge _{int}	ang ² , Zijiang Liu ³ , Liang Defect type V _{Si} V _{Ge} Si _{int} Ge _{int} Si FP	Defect forma Si/Ge SL 2.85 2.73 3.77 3.52 5.19	ation energies (eV) Bulk Ge – 2.23, 2.09 ^a – 2.97, 2.92 ^e –	Bulk Si 3.60, 3.61 ^a , 3.56 ^b – 3.77, 3.75 ^c ,3.29 ^d – 4.62, 4.26 ^b	14 16 18 20	3 4 2 3 4 2 3 4 2 3 4 2 3 3	

VIII. Appendices

B. Simulated Targets – Al_2O_3

Threshold energy displacement: E_{disp} in Al₂O₃? Direction classes – dir1, dir2, dir3, dir4, dir5, dir6, dir7, dir8, dir9

Figure 8. Illustration of schematic view of (a) α -Al₂O₃ structure; (b,c) incident directions in α -Al₂O₃.

Yuan, Y.G., Jiang, M., Zhao, F.A. *et al.* Ab *initio* molecular dynamics simulation of low energy radiation responses of α -Al₂O₃ (2017).

	E	_d (eV)
Direction	O recoils	Al recoils
[0001]	32.5	47.5
[1210]	40.5	148
[2110]	27	105, 51.4ª
[1120]	25	74.5
[1123]	35	107.5
[1010]	30, 54.3ª	58, 27.7 ^a
[1126]	27	114
[0112]	51.5	>150
[22423]	76	>150
[2113]	29	113
[0111]	34.5	87.5
[2241]	30	85
[0221]	27	66.5
[1122]	30.5	105.5
[4156]	31.5	>150
[4483]	39	71

VIII. Appendices

B. Simulated Targets – CaWO₄

Computer study of intrinsic defects in CaWO₄

Zexu Shao, Qiren Zhang*, Tingyu Liu, Jianyu Chen

College of Science, The University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, PR China

Received 12 September 2007; received in revised form 8 January 2008 Available online 20 January 2008

Table 4

Calculated energies of atomic defects in CaWO₄

Defect	Energy (eV)	Defect	Energy (eV)
Cai V''	-15.95	O'' V"	-17.85
$V_{W}^{6'}$	195.83	*0	d
Schottky-type	Energy (eV)	Frenkel-type	Energy (eV)
CaO	3.70	0	1.23 E _f
WO ₃	7.02	Ca	4.04
CaWO ₄	5.72		

But we want to take into account the variation of the value with the direction in the crystal

$E_d +-50\%$ \Rightarrow Applied on Tungsten Only

E _d (eV)	E _f (eV)
24.02	4.04
20.30	1.23
95	
145	
185	7.02
225	7.02
265	
305	
	E _d (eV) 24.02 20.30 95 145 185 225 265 305

