Stress Induced Background in Cryogenic Crystal Calorimeters

Roger K. Romani for the SPICE/HeRALD Collaboration (Presented by Dan McKinsey)

The SPICE/HeRALD Collaboration

(unified under TESSERACT Project, currently in an R&D phase)

A new and growing collaboration searching for low mass Dark Matter!

- 50 + collaborators, 8 institutions
- 3 DM target materials, unified by state of the art TES readout
- Emphasis on discrimination techniques, reduction/elimination of heat-only backgrounds
- Want to learn more about TESSERACT? Read our <u>Snowmass</u>
 LOI, see D. McKinsey <u>talk at IDM</u>

2

Prob 1 – DM Direct Detection: Low Energy Excess

The summary of the problem as we see it:

- Unknown source of low energy (below ~100 eV) events in many experiments
 - **Rate varies with time since cooldown** (can't be radiogenic)
 - Non-ionizing (i.e. "Heat Only") for EDELWEISS/RICOCHET
 - Track induced backgrounds (as in SENSEI) can account for some, not all
- Reduce the low energy excess and vou can look for low mass (MeV GeV) DM

3

Prob 2 – Quantum Computing: Quasiparticle Poisoning

- Superconducting quantum circuits (qubits) see anomalously short decoherence times due to high density of quasiparticles (QP, broken Cooper pairs)
 - Problem has been holding back superconducting qubits for at least a decade
 - With excess quasiparticles, you need to error correct: complexity penalty
 - Lots of sources of excess QPs: radioactivity, muons, IR...
 - In 2102.00484, excess quasiparticle density decreased as a function of time
 - Solve excess QP problem, allow quantum computers to make big step forward

arXiv: 2102.00484 Mannila et. al.

Origin? Stress Induced Backgrounds

- We propose that one effect causes both problems!
- Differential contraction-induced strain
- Strained crystal slowly relaxes over time, releasing energy as athermal phonons
- Where are these stressed sites? Lots of places!
 - Glued down crystals/Neutron-Doped Transistors/samples coupled by vacuum grease (2102.00484)
 - Clamped crystals
 - Metal films on crystal surface
- Not unprecedented, CRESST saw stress-induced microfractures in mid 2000s
 - Clamped sapphire balls cracked crystal substrate
 - Up to 100s of keV/event, ~0.1 Hz event rate

An Apples-to-Apples Demonstration

- Two essentially identical TES/QET based athermal phonon detectors
 - 1 cm² by 1 mm thick silicon absorber
 - Same run, same optical cavity, very similar readout electronics...
- One glued down to copper substrate (high stress)
- One suspended from wire bonds (low stress)
- No calibrations, but can directly measure energy absorbed in TES

Low stress

Time Distribution of Events

- Measured "waiting time" between events above a given energy threshold
- Waiting times longer than trace length are Poisson distributed
 - CRESST saw slightly different waiting times distribution... they were 1000 times higher energy

Time Dependence of Excess

Time Dependence of Excess

- See both lower energy and moderate energy background bins rates decrease over time
 - τ ~ 6-10 days 0
 - Both exponential and 1/t reasonable fits to data Ο
 - Factor ~2 rate decrease during ~5 day experiment Ο
- Saturated (high energy) events (muons etc.) don't vary with time (as expected!)
- <15% of low energy events cut cuts can't cause 2x rate changes

Rates in Energy Bins over Time

Low Stress

Source of Rates

- Saturated rate makes sense: muons, radioactive backgrounds...
- Differing background region (lower energies):
 - Varies with time: not radioactivity, track backgrounds
 - Glue causes stress, relaxation causes events
 - Much less stress in hanging calorimeter, less stress to relax = fewer events
- Similar background region (higher energies):
 - Still varies with time, similar τ to glued stress events
 - Circumstantial evidence: caused by similar mechanism in both calorimeters
 - Look for source of time varying events present in both calorimeters...

Source of Rates

- Saturated rate makes sense: muons, radioactive backgrounds...
- Differing background region (lower energies):
 - Varies with time: not radioactivity, track backgrounds
 - Glue causes stress, relaxation causes events
 - Much less stress in hanging calorimeter, less stress to relax = fewer events
- Similar background region (higher energies):
 - Still varies with time, similar τ to glued stress events
 - Circumstantial evidence: caused by similar mechanism in both calorimeters
 - Look for source of time varying events present in both calorimeters...

• Stress between TES films and crystal?

Looking for TES stress events

- Look in multiple channels
 - Presumably a stress event only happens in one TES channel at a time, more energy will end up there
 - Veto TES events, hopefully get more background free region
- Look at pulse shape
 - If TES fall times are much shorter than phonon collection times (not true for these calorimeters), energy that goes directly into TES should have different pulse shape vs. collected phonons
- Tag as a TES stress event/substrate event, see what the remaining excess is made of in low stress calorimeters

Comparison to Other Low Mass DM Experiments

- Note: our low stress detector rate is still ~200x
 CPD, ~10⁵x CRESST
- Why are we so much worse?
 - Not fridge or shielding specific, ran CPD in this fridge, saw background that agreed with published measurement within factor of ~2

Comparison to Other Low Mass DM Experiments

- Note: our low stress detector rate is still ~200x CPD, ~10⁵x CRESST
- Why are we so much worse?
 - Not fridge or shielding specific, ran CPD in this fridge, saw background that agreed with published measurement within factor of ~2
- Hypothesis: fabrication-induced strain at TES interface varies greatly between detectors
- Stress event rate decreases while cold, may anneal out while warm too
- Mitigation Plan: Fanatically minimize stress
 everywhere in our detectors

Implications for Low Mass DM Direct Detection

- Mount-associated stress release is a new background we have to worry about
 - Pretty much unimportant for high threshold detectors
 - Extremely important for low threshold (low mass) direct detection
- Don't use glue on your detectors!
- More generically, look for stress everywhere, try to eliminate it
 - Clamping schemes
 - \circ Films on crystals
- Time variation is a powerful tool for understanding these backgrounds

Implications for Quantum Computing

Our model for quasiparticle poisoning:

- Stress-release radiates athermal phonons in quantum computer Si substrates, these phonons when absorbed in quantum circuits create quasiparticles
 - Higher rate than muons + other high energy backgrounds (for setups that have high stress)
- We may have identified a source of quasiparticle poisoning
 - \circ ~ This has plagued superconducting quantum computers for more than a decade
 - Long coherence times are of course important
 - Even more critical: stress-release "burst events" could decohere all qubits on a chip at once, make error correction difficult/impossible

Implications for Quantum Computing

Backgrounds and SC qubits:

- Most qubits don't have quasiparticle traps
 - In that limit, frequent low energy backgrounds are way more important than infrequent high energy backgrounds
 - Stress at the level we see will totally dominate radiogenic backgrounds with UG qubits

Simulated Reduced Quasiparticle Density over Time Based on Observed Phonon Events

Backup: Spectra Over Time Without Cuts

Backup: 1/t vs. Exponential Fits to Rates

Backup: Residuals for Rate Fits

Backup: Cut Passage Fraction over Time

Backup: Pulse Shape Over Time

Backup: Observed Rates Time Constants

- Differing backgrounds region (low energy):
 - High stress: 6.2 +/- 0.15 days
 - \circ Low stress: 5.9 +/- 0.30 days
- Similar backgrounds region (higher energies):
 - \circ High stress: 10.3 +/- 2.5 days
 - \circ Low stress: 10.3 +/- 2.4 days
- Saturated region:
 - High and low stress statistically consistent with constant w.r.t. time model

Threshold Rate Dependence

- Very large background seen in high stress detector, not seen in low stress detector
 - \circ This is our key finding
 - As detectors are otherwise identical, we attribute this to stress events caused by glue joint
- High threshold background present in both detectors
 - 10+ eV in low stress, 25+ eV in high stress
 - But events not coincident!
 - Can fit rate vs. threshold data to find extrapolated rate at zero threshold

Time Dependence in Rate

- See both common (high threshold) and unique (lower threshold) background rates decrease over time with *τ* ~ 6 days
 - Both exponential and 1/t reasonable fits to data
 - Factor ~2 rate decrease during experiment
- Saturated (high energy) events (muons etc.) don't vary with time (as expected!)
- <15% of low energy events cut cuts can't cause 2x rate changes

