

Claude Duhr

based on work in collaboration with Julien Baglio, Falko Dulat, Bernhard Mistlberger and Robert Szafron.

> CERN TH Colloquium 09 March 2022

QCD at the LHC

- The Run III of the LHC is about to start!
 - Huge increase in statistics.
 - Experimentally, we may reach a precision of 1% (e.g., luminosity, JES, ..)

We need to make sure that our theory predictions also reach this standard of 1%!

➡ It's time to critically assess and revisit our theory tools.

QCD at the LHC

• Standard approach to LHC computations: QCD factorisation

$$d\sigma_{pp\to X} = \sum_{i,j} \int_0^1 dx_1 dx_2 f_i(x_1) f_j(x_2) d\hat{\sigma}_{ij\to X} + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)$$

Sum over Parton density Partonic Higher-twist parton species functions (PDFs) cross sections effects

• The partonic cross sections are expanded in perturbation theory:

$$d\hat{\sigma}_{ij\to X} = d\hat{\sigma}_0 + \alpha_s(\mu_R) d\hat{\sigma}_1 + \alpha_s(\mu_R)^2 d\hat{\sigma}_2 + \dots$$
$$\alpha_s(m_Z) \simeq 0.118$$

• Naive counting: NLO $\rightarrow 10\%$ NNLO $\rightarrow 1\%$

NLO & NNLO

• The NLO cross section:

Virtual corrections ('loops')

Real emission

• The NNLO cross section:

Double virtual

Real-virtual

Double real

The dawn of N^3LO

- Naive counting: NLO $\rightarrow 10\%$ NNLO $\rightarrow 1\%$
 - ➡ Sometimes the naive counting fails!

[Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger]

• The N3LO cross section:

Triple real

Double real virtual

- N3LO computations are <u>extremely</u> challenging!
- Focus of this talk: Inclusive cross sections for $2 \rightarrow 1$ processes.

$$g g \to H$$
 $b \bar{b} \to H$ $q \bar{q} \to \gamma^* / Z \to \ell^+ \ell^ q \bar{q}' \to W^\pm \to \ell^\pm \nu_\ell$

• Cons:

Idealised theoretical observables (no cuts, no differential info)
Simple color-singlet final states.

Pros:

- ➡ Can be computed analytically.
- ➡ Can serve as a template to understand N3LO phenomenology.
- Historically, inclusive cross sections were also the first milestones for NNLO computations.

- Inclusive N3LO cross sections:
 - ➡ Review of computational strategy.
 - \blacktriangleright Neutral-current Drell-Yan production and γ^5 .
- Phenomenological results:
 - ➡ Scale dependence.
 - ➡ PDF dependence.
- Outlook and conclusion.

Inclusive N3LO cross sections

• Inclusive cross sections can be cast in the form ($\tau = Q^2/S$):

$$\sigma = \tau \sum_{ij} \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ij}(\tau/z) \frac{\hat{\sigma}_{ij}(z)}{z} \qquad \mathcal{L}_{ij}(\tau/z) = \int_{\tau/z}^{1} \frac{dx}{x} f_i(x) f_j(\tau/(xz))$$
Partonic luminosity

→ Partonic cross sections only depend on $z = Q^2/\hat{s}$.

• Reverse Unitarity: interpret phase space integrals as loop integrals with a cut.

$$\frac{1}{p^2 - m^2} \longrightarrow \delta_+(p^2 - m^2)$$

We can use multi-loop technology to evaluate inclusive phase space integrals.

• In 2015, we solved the differential equations as a series

$$\hat{\sigma}(z) = \sigma_{-1} + \sigma_0 + (1-z)\sigma_1 + \mathcal{O}(1-z)^2$$

For Higgs: Main contribution from region where $z \simeq 1$.

Physically: production at threshold + emission of soft partons.

 $\mathcal{L}_{gd}(\tau/z) \Rightarrow \text{Fails for quark-}$ $\stackrel{\text{I.0}^{z}}{\text{I.0}^{z}} \Rightarrow \text{Fails for quark-}$

The threshold expansion

Slow convergence agreement on overlap Initialitie holdinghitie a bottom initialitie holdinghitie holdinghitie a bottom initialitie holdinghit

$$\sigma = \tau \sum_{ij} \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ij}(\tau/z) \frac{\hat{\sigma}_{ij}(z)}{z} \qquad \tau = \frac{m_H^2}{S} \simeq 10^{-4}$$

• Exact numerical results!

[Mistlberger]

- Removes truncation uncertainty.
- ➡ Opens the way to extend to quark-initiated processes.

We have recently completed the N3LO cross sections for

$$b\,\overline{b} \to H \qquad q\,\overline{q} \to \gamma^*/Z \to \ell^+\ell^- \qquad q\,\overline{q}' \to W^\pm \to \ell^\pm \nu_\ell$$

[CD, Dulat, Mistlberger]

- Spin-off: First independent confirmation of all 3-loop splitting functions. [Moch, Vermaseren, Vogt]
- All computations are done in massless QCD with $N_f = 5$ flavours.

 $\rightarrow \gamma^5$ is ambiguous in dimensional regularisation.

The axial current is anomalous in QCD.

 \rightarrow The anomaly cancels for an even number of flavours.

• We use the Larin-scheme to work with γ^5 .

$$\Rightarrow \text{ Write } \gamma^{\mu}\gamma_{5} = \frac{1}{2}\{\gamma^{\mu}, \gamma_{5}\} = -\frac{i}{3!}\epsilon^{\mu\nu\rho\sigma}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma} .$$

 \blacktriangleright Evaluate Dirac traces in *D* dimensions.

 $\Rightarrow \text{ Replace} \\ \epsilon^{\mu_1\mu_2\mu_3\mu_4}\epsilon^{\nu_1\nu_2\nu_3\nu_4} = \det \begin{pmatrix} g^{\mu_1\nu_1} & g^{\mu_1\nu_2} & g^{\mu_1\nu_3} & g^{\mu_1\nu_4} \\ g^{\mu_2\nu_1} & g^{\mu_2\nu_2} & g^{\mu_2\nu_3} & g^{\mu_2\nu_4} \\ g^{\mu_3\nu_1} & g^{\mu_3\nu_2} & g^{\mu_3\nu_3} & g^{\mu_3\nu_4} \\ g^{\mu_4\nu_1} & g^{\mu_4\nu_2} & g^{\mu_4\nu_3} & g^{\mu_4\nu_4} \end{pmatrix}$

• The result is UV-divergent, and the divergence is removed by renormalising the axial current.

$$J_{A,f}^{\mu} = \frac{1}{3!} \epsilon^{\mu\nu\rho\sigma} \bar{q}_{f} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} q_{f} [J_{A,f}^{\mu}]_{R} = Z_{ns} J_{A,f}^{\mu} + Z_{s} \sum_{f'=1}^{N_{f}} J_{A,f'}^{\mu} = Z_{ns} J_{A,f}^{\mu} + Z_{s} J_{A,S}^{\mu},$$

Axial anomaly

- The relevant 3-loop counterterms have recently been computed. [Ahmed, Gehrmann, Mathews, Rana, Ravindran; Ahmed, Chen, Czakon; Chen, Czakon, Niggetiedt]
- Important point: It is not a pure MS-counterterm!
 - Finite renormalisation to restore Adler-Bell-Jackiw anomaly equation: $\alpha_S(\mu^2) = \alpha_S(\mu^2)$

$$\partial_{\mu} \left[J_{A,S}^{\mu} \right]_{R} = \frac{\alpha_{S}(\mu)}{8\pi} N_{f} \left[F\widetilde{F} \right]_{R}$$

- After the renormalisation of the axial current, we obtain a finite result.
- However: This is not the result we want!
 - ⇒ Example: The result depends on $\log \mu_R^2$ coming from the cancellation of the UV-pole from the axial anomaly... but in the SM there is no anomaly!

Wilson coefficient - captures nondecoupling top-quark effects

→ 3-loop Wilson coefficient was recently computed. [Ju, Schönherr; Chen, Czakon, Niggetiedt]
 → RGE for Wilson coefficient compensates 'wrong' log µ²_R dependence.

Phenomenological results

Energy variation

11. LHC bbH Higgs production: PDF4LHC15 8.7 $P P \rightarrow H + X (b\overline{b}H)$ [qd] b 4.4 – NLO – LO Nice convergence of - NNLO - N3LO perturbative expansion. 2.2 LHC pp→h+X aluon fusion ■ LO ■ NLO ■ NNLO ■ NNNLO MSTW08 68cl 1.25 $=\mu_R=\mu_F \in [m_H/4, m_H]$ entral scale: $\mu = m_{\mu}/2$ 1 40 0.75 ggH 0.5 30 0.25 ∂/pb 10 20 30 50 70 60 80 100 **40** 90 E_{COM} [TeV] 20 Choice of central scales: 10 ggH: $\mu_F = \mu_R = m_H/2$ 0.3 0.2 bbH: $\mu_F = m_H/4$, $\mu_R = m_H$ 0.1 0.0 -0.1 -0.2 [[]2 6 10 12 14 √S /TeV

Scale dependence (W)

Scale dependence

- For Higgs (ggH & bbH): Scale bands overlap very well (for smallish μ_F).
- For DY (NC & CC): Scale bands do not overlap over a large range of virtualities.
 - ➡ Difference in central values: few %.
 - → For both μ_F and μ_R .
 - → All results obtained with pdf4lhc_nnlo_mc (more later).
- Observation: Large cancellation between channels for DY at NNLO and N3LO (both NC and CC).
 - ➡ No cancellation for Higgs.

ZH production

WH production

WH production

PDF+ α_s -uncertainty

- Dependence of the cross on PDF+ α_s : ~2–9% at LHC energies.
 - Central set: pdf4lhc_nnlo_mc.
 - Uncertainty band obtained following PDF4LHC recommendation.

Missing N3LO PDFs

- We do not have N3LO PDFs
- This introduces a mismatch in our calculation.
- Estimate of the uncertainty:

$$\delta_{\rm PDF}^{\rm N^3LO} = \frac{1}{2} \left| \frac{\sigma_{\rm NNLO-PDFs}^{\rm NNLO} - \sigma_{\rm NLO-PDFs}^{\rm NNLO}}{\sigma_{\rm NNLO-PDFs}^{\rm NNLO}} \right|$$

- The factor 1/2 takes into account that this estimate is most likely overly conservative.
 - ➡ cf. convergence pattern of DIS.

1.04

$$Photon DIS$$

 1.02
 $N^{2}LO/NLO$
 $N^{3}LO/N^{2}LO$
 1.02
 $\alpha_{s} = 0.2, N_{f} = 4$
 $10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1$
X

Missing N3LO PDFs

	Q [GeV]	K-factor	δ (scale) [%]	$\delta(\text{PDF} + \alpha_S)$	$\delta(\text{PDF-TH})$
$gg \rightarrow \text{Higgs}$	m_H	1.04	$+0.21\% \\ -2.37\%$	$\pm 3.2\%$	$\pm 1.2\%$
$b\bar{b} \rightarrow \text{Higgs}$	m_H	0.978	$+3.0\% \\ -4.8\%$	$\pm 8.4\%$	$\pm 2.5\%$
	30	0.952	$+1.53\% \\ -2.54\%$	$+3.7\% \\ -3.8\%$	$\pm 2.8\%$
$p p \rightarrow e^+ e^-$	100	0.979	$+0.66\% \\ -0.79\%$	+1.8% -1.9%	$\pm 2.5\%$
, .+	30	0.953	$+2.5\% \\ -1.7\%$	$\pm 3.95\%$	$\pm 3.2\%$
$p p \rightarrow e \cdot \nu_e$	150	0.985	$+0.5\% \\ -0.5\%$	$\pm 1.9\%$	$\pm 2.1\%$
$nn \rightarrow \rho^{-} \overline{\mu}$	30	0.950	$+2.6\% \\ -1.6\%$	$\pm 3.7\%$	$\pm 3.2\%$
	150	0.984	$+0.6\% \\ -0.5\%$	$\pm 2\%$	$\pm 2.13\%$

- ➡ K-factors (N3LO/NNLO) ~ 2-5 %.
- ➡ Scale dependence ~ few %.
- ➡ PDF uncertainty: 2 9% (+ few percent missing N3LO PDFs)

Already for the simplest hadron collider observables N3LO corrections are important to reach 1% precision!

Outlook

The dawn of N^3LO

- For some simple processes also differential distributions or fiducial cross sections are available at N3LO (mostly DY and ggH).
 - [Dulat, Mistlberger, Pelloni; Cieri, Chen, Gehrmann, Glover, Huss; Chen, Gehrmann, Glover, Huss, Mistlberger, Pelloni; Billis, Dehnadi, Ebert, Michel, Tackmann; Camarda, Cieri, Ferrara; Chen, Gehrmann, Glover, Huss, Yang; Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli]
- More theoretical developments are needed to reach 1% precision for other processes!

$$d\sigma_{pp\to X} = \sum_{i,j} \int_0^1 dx_1 dx_2 f_i(x_1) f_j(x_2) d\hat{\sigma}_{ij\to X} + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)$$
PDFs
PDFs
Partonic
cross sections
Higher-twist
effects

N³LO PDFs

- PDFs are non-perturbative, and need to be extracted by comparing experimental data to theory predictions.
 - ➡ In order to fit N3LO PDFs, we need N3LO predictions!
- The dependence on the factorisation scale is perturbative.
 - ➡ DGLAP evolution equation:

$$\frac{\mathrm{d}}{\mathrm{d}\log\mu_F^2} f_i(x,\mu_F^2) = \frac{\alpha_S(\mu_F^2)}{2\pi} \mathbf{P}_{ij}(x,\alpha_S(\mu_F^2)) \otimes f_j(x,\mu_F^2)$$

DGLAP anomalous dimensions are known to 3-loop order.
 N3LO requires 4-loop ADs! [Moch, Vermaseren, Vogt]

First few Mellin-moments known. [Moch, Ruijl, Ueda, Vermaseren, Vogt]

Require complicated 2 & 3-loop computations

➡ Need to combine all contributions and cancel IR singularities.

- First amplitudes needed for N3LO computations are becoming available:
 - ➡ 3-loop corrections to 2-to-2 processes.
 - ➡ 2-loop corrections to 2-to-3 processes.

[Bargiela, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi; ...] [Abreu, Febres-Cordero, Ita, Page, Sotnikov, Tschernow, ...; Badger, Chicherin, Gehrmann, Henn, ...; Chaudhry, Czakon, Mitov, Poncelet, ...; ...]

- At NLO and NNLO, real and virtual corrections are combined using
 - subtraction methods.
 - ➡ slicing methods.
- Both approaches rely on the factorisation of QCD amplitudes in infrared (soft and collinear) limits.
- IR limits of QCD amplitudes at N3LO starting to be understood.

[CD, Gehrmann; Li, Zhu; Dixon, Herman, Yan, Zhu; Zhu; Catani, Cieri; Catani, Colferai, Torrini; Del Duca, CD, Haindl, Lazopoulos, Michel; ...]

- Caveat: There are indications that for 2-to-4 processes at one-loop, the naive collinear factorisation breaks down! [Catani, de Florian, Rodrigo]
 - → 2-to-4 processes at one-loop are RRV for 2-to-2 processes.

Higher twist

$$d\sigma_{pp\to X} = \sum_{i,j} \int_0^1 dx_1 dx_2 f_i(x_1) f_j(x_2) d\hat{\sigma}_{ij\to X} + C_1 \left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^1 + C_2 \left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^2 + \dots$$

Higher-twist effects

• For inclusive DY production, $C_1 = 0$.

- ➡ Also expected for inclusive ggH.
- In general, one expects $C_1 \neq 0$.

• For $\Lambda_{\rm QCD} \sim 1 \ {
m GeV}$ and $Q \sim 100 - 1.000 \ {
m GeV}$, we have

$$\frac{\Lambda_{\rm QCD}}{Q} \sim 10^{-3} - 10^{-2}$$

Conclusion

- N3LO corrections to key LHC processes are relevant if we want to reach a precision of 1%!
- The computation of inclusive 2-to-1 processes is mature. $g g \to H \qquad b \bar{b} \to H \qquad q \bar{q} \to \gamma^* / Z \to \ell^+ \ell^- \qquad q \bar{q}' \to W^\pm \to \ell^\pm \nu_\ell$
- There is still a lot to do for more complicated processes
 - \rightarrow PDFs at N3LO.
 - ➡ Complicated 2 & 3-loop amplitudes.
 - ➡ IR-singularities at N3LO Factorisation violation?
 - ➡ Higher twist effects?