# 



El-swedy technical academe

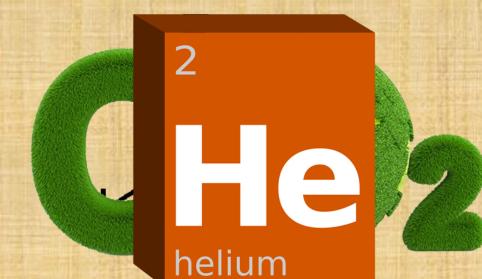
## Outlines



- Introduction about the project (proposal).
- Plan and Preparations In Egypt
- Arrive At CERN
- Test Beam Activities
- Data Analysis
- Results.
- Prospects



# STA Project


Using eco-friendly gas (CF<sub>3</sub>I + eco-Freon) mixture instead of (SF6) in order to reduce the global warm.

#### How?

- We measure the efficiency of MRPC using the eco-friendly gas (CF₃ I (50%) + eco-Freon (50%) and compare it with the efficiency when using standard gas (SF6).
- Due to the negative effect of (CF<sub>3</sub>I) on DNA we decide to use (CO<sub>2</sub> + eco-Freon) mixture.
- Due to the un-availability of CO<sub>2</sub> we use the (He + eco-Freon) mixture.



→ The results presented in these slides for the (Helium + eco-Freon) mixture







# Work in Egypt

- Preparation for the work with glass-MRPC and learning software needed for Data Analysis.
- Follow zoom STA-CERN classes where support scientists from CERN presented the the experimental setup of the MRPC and electronics.





# Arrive at CERN

- Registration at CERN
- Following safety courses

Visit different CERN facilities (ATLAS experiment – computing

rooms - etc.)

O<sup>c</sup> 우







Visit Site seen places at Geneva city













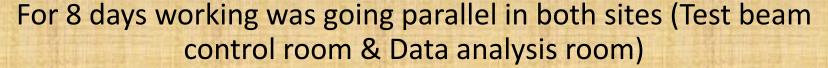
## Test Beam Activities

- 1. Exploring the test beam area
- 2. Gas room (Adjusting the gas mixture)
- 3. Setup place
- 4. Control room (Where the data are taken and recorded)



Gas room image



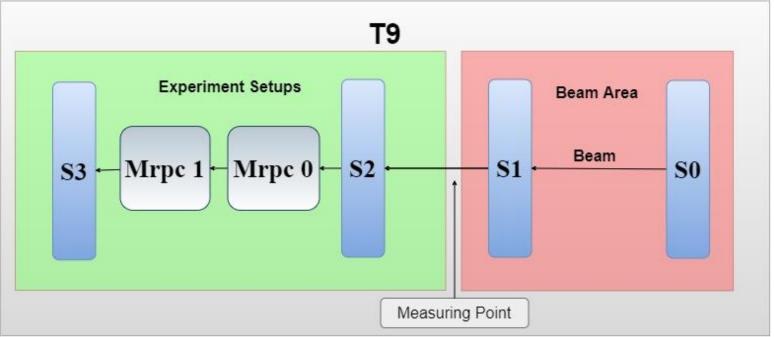

## Working days

Shifts for Data-Taking (Test beam control room)

Data Analysis (Room 13-2R13)










## Test-Beam setup

Schematic diagram of test beam

の中東



우

Real photo of test beam



#### Calibration of Scintillators

#### Calibration constant = TOF (theoretical – Experimental)

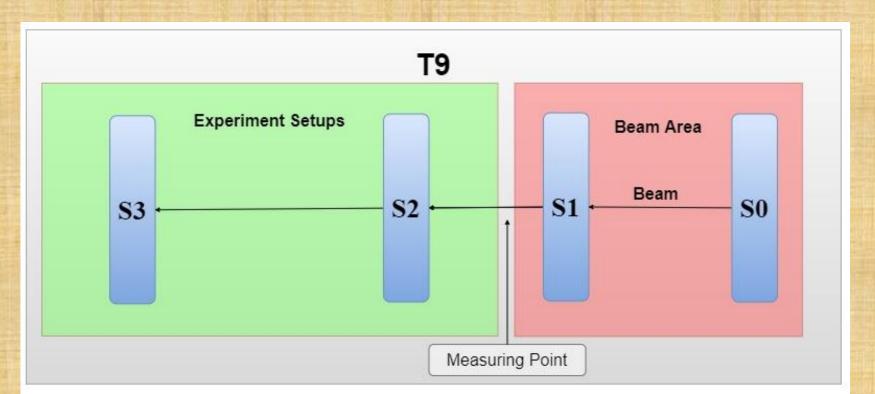
Where

Energy (E) = 
$$(P^2C^2 + m^2C^4)^{1/2} = (P^2 + m^2)^{1/2}$$

Speed 
$$(v) = P/E$$

Time of Flight (TOF) = detector distance/ $(v * c) * 10^9$ 




## Calibration of Scintillators

Calibration was done using Positron beam at 2 different distances between S1, S2 and S3.

Distance between S1- S2 is 268 cm & S1-S3 is 269.4 cm (standard)

Distance between S1-S2 is 218 cm & S1-S3 is 294.7 cm (Case1)

Distance between S1- S2 is 220.1 cm & S1-S3 is 295.6 cm (Case2)

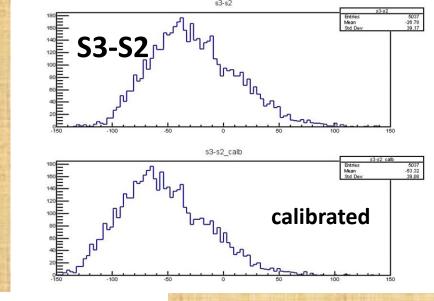




## Calibration of Scintillators

Calibration was done using Positron beam at 2 different distances between S1, S2 and S3.

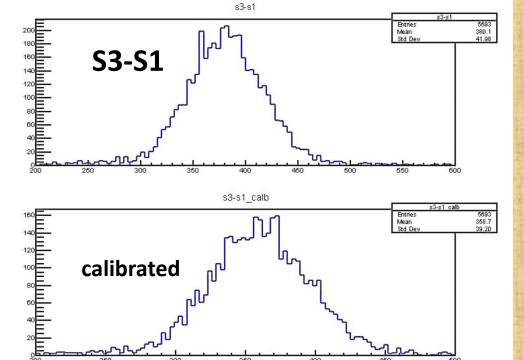
- Distance between S1- S2 is 268 cm & S1-S3 is 269.4 cm (standard)
- Distance between S1- S2 is 218 cm & S1-S3 is 294.7 cm (Case1)
- Distance between S1- S2 is 220.1 cm & S1-S3 is 295.6 cm (Case2)




- Calculate TOF Theoretically
- Calculate TOF Experimentally
- Calibrate TOF Experimentally



Calibration of Scintillators (Results)








We noted that:

When the distance between the scintillators increase we can distinguish between different charged particles because of different Time OF Flight (TOF)



## Calibration of Scintillators (Results)





## Calibration of Scintillators (Results)





#### (Efficiency Measurements)

- Efficiency was calculated at working operation voltage = 5000 volt for MRPC with Standard gas mixture (SF6) and with Helium+ eco-Freon mixture.
- 8 MRPC strips (Channels) left (Ch8 to Ch15)
- 8 MRPC strips (Channels) right (Ch16 to Ch23)
- 8 MRPC strips (Channels) left (Ch24 to Ch31)
- Efficiency (Eff.) = output/input
- Where input is taken defined by the Coincidence signal between S1, S2 and S3.
- Output is taken from each MRPC strip group.



#### **Conclusions**

の中

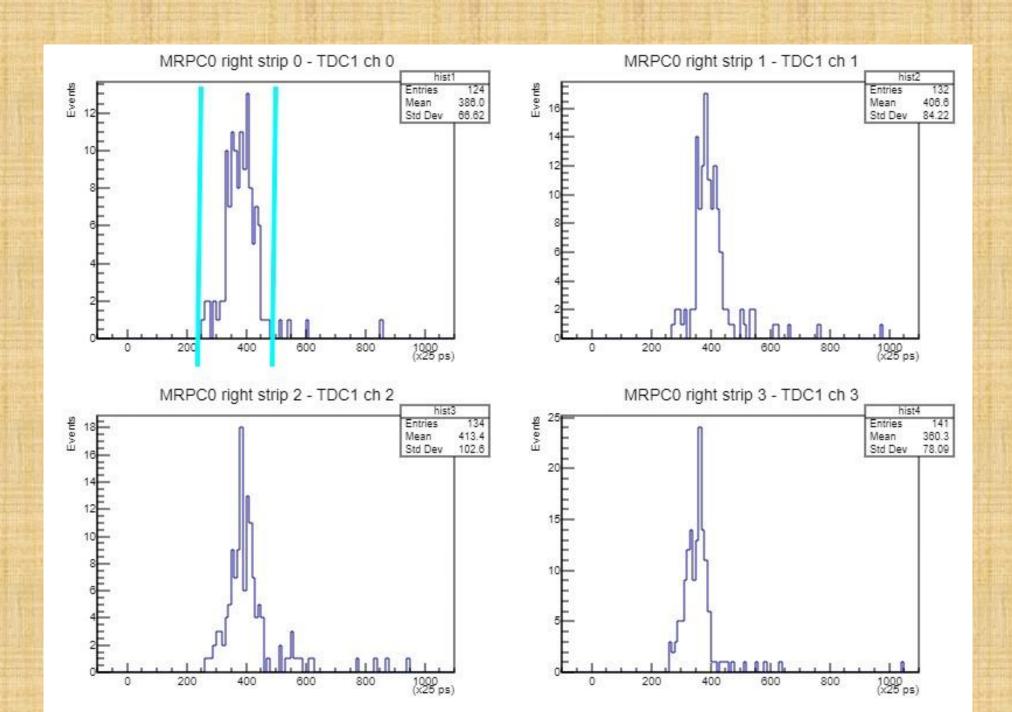
We calculate the efficiency for MRPC0 and MRPC1 at different (Positrons) beam energies We find that:

- The efficiency using SF6 gas is better than using Helium gas
- The efficiency of MRPC0 is better than that of MRPC1.





### Conclusions


#### Q 우 푸

#### We find that:

• The efficiency using SF6 gas is better than using Helium gas







