

Q 우 〒

STA Activity in Beamline for schools

El-sewedy technical academe team

- Introduction about the project (proposal).
- Plan and Preparations In Egypt
- Arrive At CERN
- Test Beam Activities
- Data Analysis
- Results.
- Prospects

STA Project

O 우 루 Aim: Using eco-friendly gas (CF₃I + eco-Freon) mixture instead of (SF6) in order to reduce the global warm.

How?

- By measuring the efficiency of **M**ulti gap **R**esistive **P**late **C**hamber (MRPC) using the ecofriendly gas (CF₃ I (50%) + eco-Freon (50%) and compare the results with the efficiency when using standard gas mixture (Freon + SF6).
- Due to the negative effect of (CF_3I) on DNA we decide to use $(CO_2 + eco-Freon)$ mixture.
- Due to the un-availability of CO₂ we use the (He + eco-Freon) mixture.

Work in Egypt

Q 우 두

- In the preparation stage: We learned some aspects on glass-MRPC and learning software needed for Data Analysis.
- Follow zoom STA-CERN classes where support scientists from CERN presented the the experimental setup of the MRPC and electronics.

Arrive at CERN STA TECHNICAL ACADEMY

Registration at CERN

- Following safety courses to be able to work in radiation zone.
- Visit different CERN facilities (ATLAS experiment computing rooms - etc.)

Day At Geneva

Q ♀ ₹

Visit Site seen places at Geneva city

Test Beam Activities STA TECHNICAL ACADEMY

- Exploring the test beam area and the instructions to follow.
- Gas room: learning how to adjust the gas mixture.
- Setup place
- 4. Control room (Where the data are taken and recorded)

Working days

Q 우 〒 Shifts for Data-Taking (Test beam control room)

Data Analysis (Room 13-2R13)

Test-Beam setup

Q 우 〒

Schematic diagram of test beam

Real photo of test beam

Calibration of Scintillators I

- In order to calculate the MRPC efficiency, we relay on scintillator detectors.
- As a first step we need to calibrate the scintillator detectors:
 - > by calculating the Time of Flight (ToF) theoretically and experimentally and calculate a calibration constant.

Calibration constant = ToF (Theoretical – Experimental)

 Calculating ToF theoretically for positrons (e+) by knowing the particle's momentum, mass

Where

Energy (E) =
$$(P^2C^2 + m^2C^4)^{1/2} = (P^2 + m^2)^{1/2}$$
, C=1

Speed
$$(v) = P/E$$

Time of Flight (ToF) = detector distance/(v * c) * 10⁹

Calibration of Scintillators II

- 2. Calibration of scintillators done experimentally by using Positron beam at different distances between scintillators (S1, S2 and S3)
 - Distance between S1- S2 is 268 cm & S1-S3 is 269.4 cm (standard)
 - Distance between S1-S2 is 218 cm & S1-S3 is 294.7 cm (Case1)
 - Distance between S1- S2 is 220.1 cm & S1-S3 is 295.6 cm (Case2)

ToF: the time taken by the particle to travel between the 2 scintillators.

る中東

Calibration of Scintillators III

ToF

Lesson Learned:

✓ When the distance between the scintillators increase we can distinguish between different charged particles because of different Time of Flight (ToF)

ToF

_ToF (x25 ps)

Efficiency I

- Efficiency was calculated at working operation voltage = 5000 volt for MRPC (MRPC0, MRPC1) with Standard gas mixture (SF6) and with Helium+ eco-Freon mixture.
 - 8 strips of MRPC 0 (Channels) right (Ch0 to Ch7)
 - 8 strips of MRPC 0 (Channels) left (Ch8 to Ch15)
 - 8 strips of MRPC 1 (Channels) right (Ch16 to Ch23)
 - 8 strips of MRPC 1 (Channels) left (Ch24 to Ch31)

Mapping

Efficiency
$$(\epsilon) = \frac{no.of\ hits\ in\ MRPC}{no.of\ hits\ from\ scintilattors\ coincidence\ (S1,S2,S3)}$$

Efficiency II

- To define the number of hits in MRPC, as a preliminary step,
 - > we defined an algorithm by checking the Time of Threshold (ToT) of signal trailing and leading edges

Standard gas mixture

ToT = signal edge (trailing – leading)

Results & lesson Learned

の中東

We calculate the efficiency for MRPC0 and MRPC1 and we found that:

 The efficiency obtained using SF6 gas is higher than the efficiency using ecofriendly gas (Helium 50%, 50% eco-freon)

But we collected data yesterday night with different percentage of eco-friendly gas mixture that would change the efficiency.

- The efficiency of MRPC0 is better than that of MRPC1 "approximately double"
 - We could increase the efficiency of MRPC1 by increase the high voltage since each detector can behave differently.

Ongoing & Next Steps

- The conclusion we got is very preliminary:
- We have a huge amount of data that have been collected during test beam:
 - We need to define a solid algorithm to calculate the efficiency.
 - We will compare the efficiency at different High voltage points to define the detector working point.
 - Repeat the exercise of comparing data with different gas mixtures (standard gas and eco-friendly)
 - Comparing data with different percentage of eco-friendly gas mixture.

Acknowledgment

- Thanks to Beamline school organizers at CERN to give us this great opportunity to be here.
- Thanks a lot to Markous & Margherita for perfect organization, help and support since the first day of perfect competition up till now.
- Thanks a lot to Matrien & Berare for the high efforts that they did.
 - Thanks a lot to Beamline school sponsors.

