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Standard Model

➢ Theory developed in the 1960s that describes the fundamental particles and the interactions between them
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Quantum Chromodynamics (QCD)
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● The strong interaction - described by the Quantum 
Chromodynamics (QCD) theory which is based on the gauge 
symmetry group SU(3)

● The particles that interact with the strong force (quarks and gluons) 
have an additional quantum number called color

● The quarks - one of the three colors: red, blue or green 
(antiquarks - anticolors)

● The eight gluons - the combination of color and anticolor



Running of the strong coupling constant αs
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● All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale (Q2) 
of process

⇒ At high scales Q, coupling becomes small 
quarks and gluons are almost free, 
interactions are weak 

⇒ At low scales, coupling becomes strong

NC - number of colors

Nf - number of q flavors



Color confinement
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Can we detect free quarks?

q q
➢ Exchange of virtual gluons between quarks
➢ The color field between the quarks is 

squeezed into a tube
➢ The energy stored in the field is proportional 

the separation of the quarks

⇒ infinite amount of energy to 
separate two quarks to infinity

V(r) ~ λr 



Color confinement
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● Quark arrange themselves into bound 
hadronic states that are colourless 
combinations with no colour field between 
them

● Hadrons can be mesons and baryons 



Hadronization
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Hadronization
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q q

q q ➢ Energy of the strong field between quarks increases 
as they are moving apart from each other



Hadronization
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q q ➢ Energy of the strong field between quarks increases 
as they are moving apart from each other

➢ Energy high enough - new pair of quarks is created



Hadronization
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➢ This process is repeated until…
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➢ Energy of the strong field between quarks increases 
as they are moving apart from each other

➢ Energy high enough - new pair of quarks is created



Hadronization
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➢ This process is repeated until the 
energy is low enough to create 
hadrons

➢ Energy of the strong field between quarks increases 
as they are moving apart from each other

➢ Energy high enough - new pair of quarks is created



Hadronization
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➢ This process is called 
hadronization

➢ The produced hadrons are often 
the results of boosted interactions, 
which makes the particles to be 
collinear and form what is called a 
jet



Jet production in e+e- collisions
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● Jet production in high-energy electron–positron collisions also provides direct evidence for the 
existence of gluons



Jets at LHC
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● Jets -  less well defined than leptons or muons, but 
important for understanding LHC physics

● Standard Model physics: 
○ Many standard model processes produce jets, 

are sensitive to αs 
○ Multijet cross section measurements test QCD 
○ Hadronic decays of heavy particles 

● New physics searches:
○ Many searches looking for final states with jets, or in 

regions of phase space with high jet multiplicities 



Jets at LHC
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● Jets of particles leave signals in components such as the tracker and 
the electromagnetic and hadronic calorimeters

https://cms.cern/news/tracker-detector
https://cms.cern/news/electromagnetic-calorimeter
https://cms.cern/news/hadron-calorimeter


Jet finding
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How many jets do you see?



Jet finding
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How many jets do you see?



Jet finding
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How many jets do you see?



Jets algorithms

19

● To decide unambiguously whether a measured object belongs to a jet or 
not, a mathematical prescription is required - jet algorithm

● Algorithm has to be applicable to theoretical calculations as well as to 
measurements from different experiments

Jets should be invariant with respect to certain modifications of the event:

➢ collinear splitting :
○ Collinear splittings should not bias jet finding

➢ infrared emission :
○ soft radiation should not affect jet configuration 
○ Only observables that are IR safe can be calculated in pQCD

➢ Jet should be independent of detector technology 



Jets algorithms
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● Cone algorithms

○ particles in jets will show up in conical regions and thus they cluster based on (η-φ) 
space, resulting in jets with rigid circular boundaries

○ select the most energetic particle as a seed with the 
○ constituents within cone of radius R are considered part of the jet

● Sequential Clustering Algorithms

○ particles within jets will have small differences in transverse momenta and thus groups 
particles based on momentum space, resulting in jets that have fluctuating areas in (η-
φ) space. 



Sequential Clustering Algorithm
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● Work their way backwards through this branching by combining pairs of particles into a 
single one

● A distance measure based on angular separation and energy/pT of constituent has to be 
determined

● The particles that are closest are combined
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Sequential Clustering Algorithm
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● Work their way backwards through this branching by combining pairs of particles into a 
single one

● A distance measure based on angular separation and energy/pT of constituent has to be 
determined

● The particles that are closest are combined

How do we decide which particles should we combine?

When do we stop combining particles?



Sequential Clustering Algorithm
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● Distance between two particles:

● Distance between the beam axis and the 
detected particle:

space distance between the two 
particles

radius parameter which determines the 
final size of the jet 

exponent corresponding to a particular 
clustering algorithm



Sequential Clustering Algorithm
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● Distance between two particles:

● Distance between the beam axis and the 
detected particle:

Algorithm flow:

● Find the minimum distance

● If dij is the minimum : particles i and j are 
combined into one particle (ij), i and j are 
removed from the list of particles

● If diB is the minimum: i is labelled a final jet 
and removed from the list of particles

● This process is repeated until:
○ all particles are part of a jet with the 

distance between the jet axes Rij 
greater than R - inclusive clustering

○ desired amount of jets have been 
found - exclusive clustering



Sequential Clustering Algorithm
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Proton-proton collisions

➢ Protons are baryons composed of two u quarks and one d quark 
("valence" quarks) and “sea” quarks

➢ Quarks and gluons within protons are referred to as partons
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➢ Structure of proton described by the Parton model

⇒ partons carry a fraction of the total proton momentum, which 
gives the probability that parton has a fraction x of the total 
proton momentum P (pi = xP )



Parton distribution function

● The quarks inside the proton will interact with each other through the exchange of gluons
● The dynamics of this interacting system will result in a distribution of quark momenta within the 

proton
● These distributions are expressed in terms of Parton Distribution Functions (PDFs)

32single point-like particle 3 static quarks 3 interacting quarks which can 
exchange momentum

interacting quarks including 
higher-order diagrams

Forms of the quark PDFs :



Parton distribution function
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● Functional forms of the PDFs - not a priori known and have to be obtained from experiment
○ deep inelastic scattering (DIS) experiments such as lepton-hadron collider HERA
○ hadron colliders such as LHC
○ the fixed-target experiments

● The PDFs depend on the scale at which the hadron is probed
● Evolution of PDFs with the scale μF described by the Dokshitzer-Gribov-Lipatov- Altarelli-Parisi 

(DGLAP) equations:

- Pa→bc - Altarelli-Parisi splitting function, that gives the probability for a parton a to split into two partons bc. 
-   ξ  - resulting particle momentum fraction of the quark with momentum pa



Parton distribution function
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● Because of the universality of the PDFs, it is possible to use PDFs extracted from well-known 
processes to obtain predictions corresponding to different scales or different final states



Cross section
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➢ The cross section is a measure of quantum mechanical probability for the interaction
➢ It depends on the fundamental physics involved in the Feynman diagrams that contribute to the 

process

➢ The cross section of a proton-proton interaction cannot be computed easily, due to the complex 
structure of protons

cross section at the partonic level.



Drell-Yan process
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➢ Annihilation of quark-antiquark pairs from hadrons with the creation of a Z boson or a virtual photon, which 
decays into a lepton-antilepton pair

hard interaction



Drell-Yan process
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➢ Annihilation of quark-antiquark pairs from hadrons with the creation of a Z boson or a virtual photon, which 
decays into a lepton-antilepton pair

beam remnant

initial state radiation (ISR)

final state radiation (FSR)

hard interaction



Drell-Yan process higher orders
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Drell-Yan process cross section

39

● The cross section of the Drell-Yan process:

● Following the perturbative QCD, the partonic cross section can be 
expanded in series with respect to the coupling constant αs :

● The partonic cross section can be calculated using the Matrix Element of the Feynman 
diagram



Theoretical predictions
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● To establish connection between theory and experiment it is necessary to simulate 
the proton-proton interactions

● The evolution of an event in simulation starts with the two 
beam particles that are colliding

● The partons from beams start irradiating - initial state 
shower is simulated

● The incoming partons enter the hard interaction and the 
outgoing particles are produced

● In the hard process, short-lived resonances can be created 
and their decay is considered in this step

● The outgoing particles undergo radiation - final state 
radiation is simulated.

● The simulation of underlying events.
● The process of hadronization is simulated.
● The decay of long-life particles, such as τ leptons or 

B-hadrons.


