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Outline:

o Instrumentation in HEP:
e ECAL (D. Lelas)
e Muon, HCAL (K. Cankocak)
e Tracker (A. Starodumov)
e Trigger/DAQ (S. Morovic)
o Brief introduction
o Basics of electromagnetic calorimetry
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Wonders of the World




Instrumentation in a nutshell
s LHC-

Large Hadron Collider
7x10'2eV  p-p Beam Energy (LHC) collisions and
1034 ¢m-2 s-' Luminosity

2835 Nb of bunches detectors
10" Nb p/bunch

7.5m (25 ns)
-~ me = ——

. >
~Ccm

| Bunch collisions 40 million/s

@ P ~25 interactions / Bunch crossing overlapping in time and space

¢ 1000 x 10° events/s
e - ;
New Particle Production > 1000 particle signals in the detector at 40MHz rate
(Higgs, SUSY, ....) 1 interesting collision in 1013
100 KHz 1 KHz
mar.capeans@cern.ch 29/10/2014 - -
1 MB/evt
High-Level Offline
" MHZ trigger reconstruction
I.'I trigger
Trigger and data acquisition
Computing time
1ns 1 ps 100 ms 1s
1 1 1 1
T 1 T =
latency constraint latency AND throughput
throughput constraint constraint
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The CMS detector: transverse view
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Electromagnetic
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Why Calorimetry?

* Measure both charge + neutral particles

* Obtain information fast
recognize and select interesting events in real time (trigger)

* Performance of calorimeters improves with energy
(~E1/2 if statistical processes are the limiting factor)
Important calorimeter features

= Energy resolution

= Position resolution (need 4-vectors for physics)
= Signal speed

= Particle ID capability
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Calorimetry: Basic Principles

latin: calor = heat

Calorimetry = Energy measurement by total absorption,
usually combined with spatial reconstruction.

(&
* LHC beam: Total stored beam energy: -
E = 10* protons x 14-10*? eV =1-108 J

e Which mass of water M, ... could one heat up (AT = 100 K) with
this amount of energy (¢, .y = 4.18J g-1 K-1) ?
M ;= E/ (cAT) = 239 kg

e What is the effect of a 1 GeV particle in 1 liter of water (at 20° C)?
AT=E/(cc-M =3.810-14 K !

WGtEf)

There must be more sensitive methods than measuring AT /
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Calorimetry: Basic Principles

 Basic mechanism for calorimetry in particle physics: formation of
- electromagnetic
- or hadronic showers.

* Finally, the energy is converted into ionization or excitation of the matter.

S

Charge Scintillation light
Cherenkov light

* Calorimetry is a “destructive” method. The energy and the particle get absorbed!
* Detector response X E
 Calorimetry works both for:

=% charged (ex and hadrons) <
=% and neutral particles (n,y)

Complementary information to p-measurement

\ Only way to get direct kinematical
information for neutral particles
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Interaction of charged particles
 Detection of charged particles
Particles can only be detected if they deposit energy in matter.

How do they lose energy in matter ?

Discrete collisions with the atomic electrons of the absorber material.

v, 11, .
<dE> " NE —h dw
ho, bk dx dE
o) N : electron density
\_ %

Collisions with nuclei not important (m_<<m,) for energy loss.

If i, Aik arein the right range = ionization.
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Interaction of charged particles: Bethe-Bloch formula

* Energy loss by ionization only: Bethe-Bloch formula

dE Z 1 2m cty? B* 5
<dx>=—4m’\/’Arjm80222A L <% 7 p Tmax—ﬂz—

* dE/dx in [MeV g1 cm?] 8
6 i Z/A=1
* Valid for “heavy”particles e - i . .,
(m=m) Fermi plateau
>m,).
e dE/dx depends only on
B, independent of m !

—dE/dx (MeV g-lcm?)
[we]
|

..........

e First approximation:

medium simply ) i <c§>mlnﬂ2)’2
characterized by Z/A ~ 0. 100 ) .. .
blectram density ag\ 11 By = p/Mc relativistic rise
[ 5 By ~ 3-4
“kinematical term” minimum ionizing particles, MIPs
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Interaction of charged particles: Bremsstrahlung

- Energy loss by bremsstrahlung

Radiation of real photons in the Coulomb field
of the nuclei of the absorber medium: 4
dE Z2 1 2 ) 183
— " =daN T z° Eln
dx A Azeq me? 775
Effect plays a role only for ex and ultra-relativistic p (>1000 GeV)
2
For electrons: — % = =4aN 4 ‘ 183
dx Z}é
dE E —x/ X
| —_— 0
& X, E=FEe
A . .
Xo = > 5 183 radiation length [g/cm?]
4aN Z7r, “In——>

Z/ (divide by specific density to get X, in cm)
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Interaction of charged particles: Critical energy E_

- Critical energy E_

dE JE energy loss (radiative + ionization) of v
(Ecﬁ (Ec# electrons and protons in copper
dx Brems ion

103

For electrons one finds approximately: i (Leo)
o
E
ppsolidlig _ 610Me)” 80 _ T10MeV ©
¢ Z+124 ° T Z+4124 3 P
. 101
E(e') in Cu(Z=29) = 20 MeV S «—— Bremsstrahlung

2
m
For muons E_ ~ Ejle"(f“]

m,

10!
10—1 101 103 10°

EC(]J) inCu ~ 1TeV Energy [MeV]

Unlike electrons, muons in multi-GeV range can travers thick layers of dense matter.
Find charged particles traversing the calorimeter? — most likely a muon— Particle ID
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Interaction of photons: Photo-electric effect

In order to be detected, a photon has to create charged
particles and/or transfer energy to charged particles

Photo-electric effect: (already met in photocathodes of photodetectors)

e_/' Only possible in the close neighborhood of a
VAVAVAVAY. o @ @ third collision parther — photo effect releases
mainly electrons from the K-shell.

¥ +atom —> atom ' +e

Cross section shows strong modulation if £, ~ E

1

K 323 4.5 e By e _ 8. 2

O photo —[—J X 2L Op &= 5 O, =37, (Thomson)
& m,C

At high energies (e>>1)

K 4.2 4,51 5
Jphoro_él'meg Z E Jphoro xZ
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Interaction of photons: Compton scattering

B |
E’V _E’V1+6(l—cos¢93,)

E,=E -E

Compton cross-section (Klein-Nishina)

At high energies approximately

. Ing
oo —

‘ &
Atomic Compton cross-section: ! (/f@V) > 0~

atomic _ e
o =10,
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Interaction of photons: Pair production

¥ +nucleus —

Only possible in the Coulomb field of a nucleus (or an electron) if

ete” +nucleus

Cross-section (high energy approximation)

C pair = 400, Z{ In 1] independent of energy !

7. 183
9 73
WU N
ON, X,
et L
) NA ﬂ“pa:’r
//z’pair %XO

D. Lelas, University of Split, FESB

7 Instrumentation in HEP - ECAL

Y+e —ee +e

2
E, 22m,c

B,
‘-"'u
L]
T

15



Interaction of photons: Summary

In summary: g = [, M
Y

: i N _
w: mass attenuation coefficient 4z = 7‘403 em” | g H = Hphoto T Hcompton T Hpair T+
Part. Data Group . . . . Part. Data Group
| | | | | I | | M | | | | | | I |

— Ml
T . - o

{al Carbon (2= 6} — L‘E B, (b} Lead (Z = 82) =

1 M L) —E".'\.']]Ul'lllli"“lﬂl ﬁlm — "-I'.‘f a —["xl:lf‘]'“]]f'[]lﬂl Tt
IME ¥ _

photo effect m

1 kb _
1 kb

Cross section {barns!atom)

Cross section {barns/atom)

I b
I b

10 mb

[ ] ] 10 mb
) eV 1 keV 1MeV 1 OeV 100 GeV 10 =Y | keV | Me¥ 1 Ce¥ 1003 GeY

Raylelgh Scatterlng Photdn li]]L'-I'}-’._‘-' - - Photan Energy
(no energy loss !) pair production

Compton scattering
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Reminder: basic electromagnetic interactions

et/e ¥ lonisation ¥y ® Photoelectric effect

1 AN

E E
¢ Compton effect
B Bremsstrahlung

-

E

dE/dx

8 E  Pair production

|

E



Electromagnetic cascades (showers)

b |

Electromagnetic shower
in a cloud chamber with
lead absorbers

Simple qualitative model » Consider only Bremsstrahlung and
(symmetric) pair production.
« Assume: X5 ~ A

pair
/é N =2"  E@)/ particle=E,-2""
—
Eo Y_ et %<E Process continues until £ <E,
e :ﬁ Ntotal — rmzaxzzt — 2(fmax+l) _1 ~ 2 ] 2tmax _ 2&
? =0 Ec
. 11’1 EO I.;";IEC

E E E E ]
- 0/, | 04, | 0/g | {}/16= | | | _ max n2
o 1 'z 3 4 5 6 7 B tixyl  Afters=1¢ . the dominating processes are
ionization, Compton effect and photo effect —»
absorption of energy.




Electromagnetic shower development

q - . \ F
E Longitudinal shower development T e Al
~ . -
dE . - . ==L
b < 1 N
e = W -8 GeV/c e
~
: Ey 1 N,
Shower maximum at 7, =In—2— o) \.
EC In2 o ,K
= Z
95% containment foso, =t +0.082 4+ 9.6 2 -
[
Size of a calorimeter grows only logarithmically with £, § w? ™
S N
o 10 20 o

B Transverse shower development

95% of the shower cone is located in a cylinder with radius 2 R,

Moliére radius RMZMEMXD [g/cm”]

&

transverse containment 90% (R,,)

(C. Fabjan, T. Ludlam,

CERN-EP/82-37)

8 cm

Example: £, = 100 GeV in lead glass

E=118 MeV — 1, ~ 13, fys, ~ 23

Xo=2cm, R,=18X,=3.6cm <
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Calorimeter energy resolution

general: _E(E} - % @ pr o = Also spatial and angular
E VE i E \ resolution scale like 1~/E
stochastic term ‘constant term’ ‘noise term’
« inhomogenities *Electronic noise
+ bad cell inter- *radioactivity
calibration [ile up
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+ non-linearities
v
Quality factor !
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Calorimeter types: Homogeneous calorimeters
B  Homogeneous calorimeters: Detector = absorber
= good energy resolution

= limited spatial resolution (particularly in longitudinal direction)
= only used for electromagnetic calorimetry

Scintillator Density | X Light Yield | t,[ns] 2, [nm] | Rad. Comments
[gfcnr’] [cm] v/MeV Dam.
. (rel. yield*) [Gv]
Two main types: Nal (T1) 367 259 | 4x10° 230 415 >10 hydroscopic,
fragile
CsI (T1) 451 18 | 5x10° 1005 565 >10 Slightly
1. Scintillators — —— (049) hygroscopic
CSI pure 451 1.86 | 4x10* 10 310 10° Slightly
(0.04) 36 310 hygroscopic
BaF, 487 2.03 10 0.6 220 10°
(0.13) 620 310
BGO 7.13 1.13 8x10° 300 480 10
. PbW0, 8.28 0.89 =100 440 broad band | 10 light yield =f{(T)
2. Cherenkov devices 530 broad band
\ * Relative light yield: rel. to Nal{Tl) readout with PM (bialkali PC)
) Material Density Xglem] | n Light yield Ae:[nm] | Rad. | Comments
In both cases the signal [g/cm’] [p.e/GeV] Dam.
. rel. pe.® G
consists of photons. SF-5 4.08 2.54 1.67 5500 o) 350 [1025[]
: =i Lead glass (1.5x10™9
Readout via photomultiplier e 0 — o = =
-diodeftriode, APD, HPD Lead glass (2.3x107
PbF, 7.66 095 1.82 | 2000 10° | Not available
(5x107% in quantity
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Homogeneous calorimeters: CMS ECAL

CMS PbWO . EM Calorimeter

vacuum chamber
central detector

electromagnetic
calorimeter

hadronic

76000
[Lead tungstate crystals
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Homogeneous calorimeters:

CMS PbWO0 , Test Beam Pe

Central impact: 18 3x3
matrices
SR ER RN R ENS EREE

CMS ECAL Test Beam

CMS ECAL
rformance

Average resolution at each energy point:

Resolution in 3x3 Energy (GeV)

Resolution (%)

—685 1085

684 1084
-683 | |-1083
—1105
— 1104

1103

1125
1124

20
30
50
80
120
180
250

Illllllllllllllllll

il

0.94 £ 0.05
0.74 £+ 0.04
0.56 £+ 0.03
0.45 £ 0.02
0.40 £ 0.01
0.38 £+ 0.01
0.34 £ 0.01

VE E

Stochastic Noise

, 2 fol7)\ 2

Constant




Calorimeter types: Sampling calorimeters

Sampling calorimeters = Absorber + detector (gaseous, liquid, solid)

SCINTILLATOR
/ ( emession of

MWPC, streamer tubes e
warm liquids (TMP = -
tetramethylpentane, :
TMS = tetramethylsilane)
cryogenic noble gases:
mainly LAr (LXe, LKr)
scintillators, scintillation
fibres, silicon detectors

LIGHT DETECTOR

WAVELENGTH  SHIFTER

( florescent  emission
ot Ay > N )

a) b)

WLS bars/fibres

plastic scintillators

‘Shashlik’ readout 5
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Sampling calorimeters: ATLAS ECAL

ATLAS electromagnetic Calorimeter
Accordion geometry absorbers immersed in Liquid Argon

Liquid Argon (90K)

+ |ead-steal absorbers (1-2 mm)
Y + multilayer copper-polyimide

NANA~ readout boards
W\/\ — lonization chamber.

1 GeV E-deposit — 5 x10° e

« Accordion geometry
minimizes dead zones.

« Liquid Ar is intrinsically
radiation hard.

« Readout board allows fine
segmentation (azimuth,
pseudo-rapidity and
longitudinal) acc. to physics
needs

Test beam results  o(E)/E =9.24%/E ©0.23% Spatial resolution ~ 5 mm / VE



Calibration of calorimeter systems

* Determine relationship between signal (pC, p.e.) and energy (GeV)
* Fundamental problem in sampling calorimeters:
Different shower components are sampled differently
Shower composition changes as shower develops
m) Sampling fraction changes with the shower age ( also E dependent)
How to intercalibrate the sections of a
longitudinaly segmented calorimeter? (quite of a chalange...)

Calibration Techniques:
o Test Beams
o Cosmic muons
o Laser/LED Monitoring
o Guided 60 Co sources
o Low-level, stable radioactive background
o Cell-weighting to optimize resolution, uniformity
o In situ physics:
- Electromagnetic part: Z,J ly —e'e”; n°,n — yy
- Hadronic part: W,Z —qq; 'Z,y — jetbalancing'
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Future - CMS High Granularity Calorimeter

The High Granularity Calorimeter
(HGCAL) will possess
unprecedented spatial granularity

® 3D visualization of showers
® Excellent energy resolution

® Enables identification of electrons,
photons, pions and even muons

® Timing capabilities allowing for the
distinction of between spatially
overlapping showers

_E-H
Si & scintillator + steel

granularity 22 layars

-2.3m

' Tracksters of two
close-by photons.



Concluding remarks

Since the 1980's, calorimetric measurements have grown in importance with
the expanding energy frontier in elementary-particle physics, becoming the
precision instrument of choice due to their exploitation of high-statistics
counting methods.

Intense R&D programs have improved quantitative understanding of the
physics behind their operation and resulted in a huge variety of available
calorimeter technologies.

Today's applications of calorimeters extend from medical diagnostics to
neutrino astrophysics, from satellites to deep-sea arrays, from mountaintops
to Antarctic ice.

Extensive detector-development programs are in preparation around the
world, inspiring confidence in a bright future for progress in calorimetry and
further expansion of its range of applications.
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Materials based upon:

This presentation is widely based on:

C. Joram, Particle detectors : principles and techniques, Part 4, Calorimetry,

CERN Academic training lectures 2005,
http://indico.cern.ch/conferenceDisplay.py?confld=a042932

J. Crittenden, Calorimetry in High-Energy Elementary-Particle Physics,
Joint Dutch Belgian German Graduate School, Bad Honnef, 8-9 September 2006,

R. Wigmans, LHC luminosity upgrade: detector challenges (3/5),
CERN Academic training programme 2006,
http://indico.cern.ch/conferenceDisplay.py?confld=a056410
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Interaction of charged particles: Multiple Scattering

* This process will turn out to be closely related to the transverse profile of electromagnetic
showers.

* Coulomb-scattering scales with the squared charges, so scattering in matter is dominated by
scattering off nuclei (rather than off electrons), for Z>10. Scattering of spin 0 (Rutherford)
and spin 1/2 (Mott) particles are identical in a small-angle approximation.

* Result can be defined in terms of radiation length X, to be defined later.

In a sufficiently thick materal layer a particle will undergo ... V
F  Multiple Scattering

A o
P S

90 - gﬂm I|l .'9 2 \'.

plane = '\’l' :"-. plane |

—

-\."II 2 spase

1 ol

Approximation &, oc ! \.'; X, is radiation length of the medium (discuss later)
PyAay
&y 73

>
L
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