Instrumentation in High Energy Physics - ECAL D. Lelas, University of Split, FESB

Sarajevo School of High Energy Physics 10 October 2022

Outline:

 \odot Instrumentation in HEP:

- ECAL (D. Lelas)
- Muon, HCAL (K. Cankocak)
- Tracker (A. Starodumov)
- Trigger/DAQ (S. Morović)

Brief introduction

Basics of electromagnetic calorimetry

Wonders of the World

D. Lelas, University of Split, FESB

Instrumentation in a nutshell

LHC•

Large Hadron Collider (LHC) collisions and detectors

1 KHz 100 KHz mar.capeans@cern.ch 29/10/2014 1 MB/evt **High-Level** Offline 40 MHz trigger reconstruction L1 trigger Trigger and data acquisition **Computing time** 1 ns 1 µs 100 ms 1 s latency AND throughput latency constraint throughput constraint constraint

D. Lelas, University of Split, FESB

The CMS detector: transverse view

D. Lelas, University of Split, FESB

Why Calorimetry?

- Measure both *charge + neutral* particles
- Obtain information *fast*

recognize and select interesting events in real time (trigger)

• Performance of calorimeters *improves with energy*

($\sim E^{-1/2}$ if statistical processes are the limiting factor)

Important calorimeter features

- Energy resolution
- Position resolution (need 4-vectors for physics)
- Signal speed
- Particle ID capability

Calorimetry: Basic Principles

Calorimetry = Energy measurement by total absorption, usually combined with spatial reconstruction.

- LHC beam: Total stored beam energy: $E = 10^{14} \text{ protons} \times 14 \cdot 10^{12} \text{ eV} \approx 1 \cdot 10^8 \text{ J}$
- Which mass of water M_{water} could one heat up ($\Delta T = 100$ K) with this amount of energy ($c_{water} = 4.18$ J g-1 K-1) ? $M_{water} = E / (c\Delta T) = 239$ kg
- What is the effect of a 1 GeV particle in 1 liter of water (at 20° C)? $\Delta T = E / (c \cdot M_{water}) = 3.8 \cdot 10 - 14 \text{ K }!$

There must be more sensitive methods than measuring ΔT !

latin: calor = heat

D. Lelas, University of Split, FESB

Calorimetry: Basic Principles

• Basic mechanism for calorimetry in particle physics: formation of

- electromagnetic
- or hadronic showers.

• Finally, the energy is converted into ionization or excitation of the matter.

Charge

Cherenkov light

Calorimetry is a "destructive" method. The energy and the particle get absorbed!

- Detector response $\propto E$
- Calorimetry works both for:
 ⇒ charged (e± and hadrons)
 ⇒ and neutral particles (n,γ)

Complementary information to p-measurement

Scintillation light

Only way to get direct kinematical information for neutral particles

D. Lelas, University of Split, FESB

Interaction of charged particles

Detection of charged particles

Particles can only be detected if they deposit energy in matter. How do they lose energy in matter ?

Discrete collisions with the atomic electrons of the absorber material.

$$\left\langle \frac{dE}{dx} \right\rangle = -\int_0^\infty NE \frac{d\sigma}{dE} \hbar \, d\omega$$

N: electron density

Collisions with nuclei not important ($m_e << m_N$) for energy loss.

If $\hbar\omega$, $\hbar k$ are in the right range \rightarrow **ionization**.

D. Lelas, University of Split, FESB

Interaction of charged particles: Bethe-Bloch formula

Energy loss by ionization only: <u>Bethe-Bloch formula</u>

$$\left\langle \frac{dE}{dx} \right\rangle = -4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2}{I^2} T^{\max} - \beta^2 - \frac{\delta}{2} \right]$$

- dE/dx in [MeV g⁻¹ cm²]
- Valid for "heavy" particles $(m \ge m_{\mu})$.
- dE/dx depends only on β, independent of m !
- First approximation: medium simply characterized by Z/A ~ electron density

D. Lelas, University of Split, FESB

Interaction of charged particles: Bremsstrahlung

Energy loss by bremsstrahlung

Radiation of real photons in the Coulomb field of the nuclei of the absorber medium:

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln\frac{183}{Z^{\frac{1}{3}}} \left(\propto \frac{E}{m^2} \right)^2$$

Effect plays a role only for e± and ultra-relativistic μ (>1000 GeV)

For electrons

D. Lelas, University of Split, FESB

Instrumentation in HEP - ECAL

e

Interaction of charged particles: Critical energy E_c

• Critical energy E_c

Unlike electrons, muons in multi-GeV range can travers thick layers of dense matter. Find charged particles traversing the calorimeter? \rightarrow most likely a muon \rightarrow Particle ID

D. Lelas, University of Split, FESB

Interaction of photons: Photo-electric effect

In order to be detected, a photon has to create charged particles and/or transfer energy to charged particles

Photo-electric effect:

(already met in photocathodes of photodetectors)

Only possible in the close neighborhood of a third collision partner \rightarrow photo effect releases mainly electrons from the K-shell.

Cross section shows strong modulation if $E_{\gamma} \approx E_{shell}$

$$\sigma_{photo}^{K} = \left(\frac{32}{\varepsilon^{7}}\right)^{\frac{1}{2}} \alpha^{4} Z^{5} \sigma_{Th}^{e} \qquad \varepsilon = \frac{E_{\gamma}}{m_{e}c^{2}} \qquad \sigma_{Th}^{e} = \frac{8}{3}\pi r_{e}^{2} \quad \text{(Thomson)}$$

At high energies (E>>1)

$$\sigma_{photo}^{K} = 4\pi r_{e}^{2} \alpha^{4} Z^{5} \frac{1}{\varepsilon}$$

D. Lelas, University of Split, FESB

 $\sigma_{photo} \propto Z^5$

Interaction of photons: Compton scattering

0.15-

0.075

0.05-

0.15-0.125-0.1-0.1-

Klein-Nishina
$$\frac{d\sigma}{d\Omega}(\theta,\varepsilon)$$
 \rightarrow

At high energies approximately

$$\sigma_c^e \propto \frac{\ln \varepsilon}{\varepsilon}$$

Atomic Compton cross-section:

 $\sigma_c^{atomic} = Z \cdot \sigma_c^e$

D. Lelas, University of Split, FESB

Instrumentation in HEP - ECAL

Interaction of photons: Pair production

 $\gamma + nucleus \rightarrow e^+e^- + nucleus$

Only possible in the Coulomb field of a nucleus (or an electron) if $E_{\gamma} \ge 2m_e c^2$

Cross-section (high energy approximation)

Interaction of photons: Summary

D. Lelas, University of Split, FESB

Reminder: basic electromagnetic interactions

Electromagnetic cascades (showers)

Electromagnetic shower in a cloud chamber with lead absorbers

Simple qualitative model

$$N(t) = 2^t$$
 $E(t) / particle = E_0 \cdot 2^{-t}$

Process continues until $E(t) \le E_c$

$$N^{total} = \sum_{t=0}^{t_{max}} 2^{t} = 2^{(t_{max}+1)} - 1 \approx 2 \cdot 2^{t_{max}} = 2\frac{E_{0}}{E_{c}}$$
$$t_{max} = \frac{\ln E_{0}/E_{c}}{\ln 2}$$

After $t = t_{max}$ the dominating processes are ionization, Compton effect and photo effect \rightarrow absorption of energy.

Electromagnetic shower development

D. Lelas, University of Split, FESB

Instrumentation in HEP - ECAL

46 cm

Calorimeter energy resolution

D. Lelas, University of Split, FESB

Calorimeter types: Homogeneous calorimeters

Homogeneous calorimeters: Detector = absorber

⇒ good energy resolution

- ⇒ limited spatial resolution (particularly in longitudinal direction)
- ⇒ only used for electromagnetic calorimetry

	Scintillator	Density	X ₀	Light Yiel	ld τ ₁ [1	ns] λ_1 [nm	1] Rad.	Co	omments
		$[g/cm^3]$	[cm]	γ/MeV			Dam.		
				(rel. yield	*)		[Gy]		
rwo main types.	NaI (Tl)	3.67	2.59	$4{\times}10^4$	230	415	≥10	hy	droscopic,
								fra	gile
	CsI (Tl)	4.51	1.86	5×10^{4}	100	5 565	≥10	Sli	ghtly
1. Scintillators				(0.49)			,	hy	groscopic
	CSI pure	4.51	1.86	4×10^{4}	10	310	103	Sli	ghtly
				(0.04)	36	310		hy	groscopic
	BaF_2	4.87	2.03	104	0.6	220	105		
				(0.13)	620	310			
	BGO	7.13	1.13	8×10 ⁵	300	480	10		
Charankay daviasa	$PbW0_4$	8.28	0.89	≈100	440	broad band	1 104	lig	ht yield $= f(T)$
					530	broad band			
X				* Relativo	e light yie	eld: rel. to N	val(TI) rea	dout wit	h PM (bialkali PC
	Material	Density	X ₀ [cm]	n	Light yi	eld	$\lambda_{\rm cut} [{\rm nm}]$	Rad.	Comments
in both cases the signal		$[g/cm^3]$			[p.e./Ge	V]		Dam.	
consists of photons					(rel. p.e.	*)		[Gy]	
consists of photons.	SF-5	4.08	2.54	1.67	600	-1.	350	10*	
Readout via photomultiplier	Lead glass		1.00		(1.5×10^{-1})	-4)			
dia da Aria da ADD UDD	SF-6	5.20	1.69	1.81	900	-4.	350	102	
-aloae/trioae, APD, HPD	Lead glass		0.05	1.00	(2.3×10 ⁻	¬)		103	
	PDF ₂	7.66	0.95	1.82	2000			10-	Not available
and the second s					(5×10))			

D. Lelas, University of Split, FESB

Homogeneous calorimeters: CMS ECAL

CMS PbW0₄ EM Calorimeter

vacuum chamber

central detector electromagnetic calorimeter hadronic calorimeter

superconducting

return yoke

muon chamber

76000 Lead tungstate crystals

Homogeneous calorimeters: CMS ECAL

CMS PbW0₄ Test Beam Performance

Alexandre Zabi

12th International Conference on Calorimetry in High-Energy Physics Chicago, Illinois, 6-9 June 2006

Calorimeter types: Sampling calorimeters

Sampling calorimeters = Absorber + detector (gaseous, liquid, solid)

- MWPC, streamer tubes
- warm liquids (TMP = tetramethylpentane, TMS = tetramethylsilane)
- cryogenic noble gases: mainly LAr (LXe, LKr)
- scintillators, scintillation fibres, silicon detectors

'Shashlik' readout D. Lelas, University of Split, FESB

c) Instrumentation in HEP - ECAL

Sampling calorimeters: ATLAS ECAL

ATLAS electromagnetic Calorimeter

Accordion geometry absorbers immersed in Liquid Argon

Liquid Argon (90K)

- + lead-steal absorbers (1-2 mm)
- multilayer copper-polyimide readout boards
- \rightarrow lonization chamber.
- 1 GeV E-deposit \rightarrow 5 x10⁶ e⁻
- Accordion geometry minimizes dead zones.
- Liquid Ar is intrinsically radiation hard.
- Readout board allows fine segmentation (azimuth, pseudo-rapidity and longitudinal) acc. to physics needs

Spatial resolution ≈ 5 mm / \sqrt{E}

Test beam results
$$\sigma(E)/E = 9.24\%/\sqrt{E} \oplus 0.23\%$$

Calibration of calorimeter systems

• Determine relationship between *signal* (pC, p.e.) and *energy* (GeV)

• Fundamental problem in sampling calorimeters:

Different shower components are sampled differently Shower composition changes as shower develops

Sampling fraction changes with the shower age (also E dependent) How to intercalibrate the sections of a longitudinaly segmented calorimeter? (quite of a chalange...)

Calibration Techniques:

- Test Beams
- Cosmic muons
- Laser/LED Monitoring
- Guided 60 Co sources
- Low-level, stable radioactive background
- \circ Cell-weighting to optimize resolution, uniformity
- In situ physics:

- Electromagnetic part: $Z, J / \psi \rightarrow e^+ e^-; \pi^0, \eta \rightarrow \gamma \gamma$ - Hadronic part: $W, Z \rightarrow q\overline{q}; Z, \gamma - jet$ balancing'

D. Lelas, University of Split, FESB

Future - CMS High Granularity Calorimeter

The High Granularity Calorimeter (HGCAL) will possess unprecedented spatial granularity

- 3D visualization of showers
- Excellent energy resolution
- Enables identification of electrons, photons, pions and even muons
- Timing capabilities allowing for the distinction of between spatially overlapping showers

Concluding remarks

Since the 1980's, calorimetric measurements have grown in importance with the expanding energy frontier in elementary-particle physics, becoming the precision instrument of choice due to their exploitation of high-statistics counting methods.

Intense R&D programs have improved quantitative understanding of the physics behind their operation and resulted in a huge variety of available calorimeter technologies.

Today's applications of calorimeters extend from medical diagnostics to neutrino astrophysics, from satellites to deep-sea arrays, from mountaintops to Antarctic ice.

Extensive detector-development programs are in preparation around the world, inspiring confidence in a bright future for progress in calorimetry and further expansion of its range of applications.

Materials based upon:

This presentation is widely based on:

C. Joram, Particle detectors : principles and techniques, Part 4, Calorimetry, CERN Academic training lectures 2005, <u>http://indico.cern.ch/conferenceDisplay.py?confld=a042932</u>

J. Crittenden, Calorimetry in High-Energy Elementary-Particle Physics, Joint Dutch Belgian German Graduate School, Bad Honnef, 8-9 September 2006,

R. Wigmans, LHC luminosity upgrade: detector challenges (3/5), CERN Academic training programme 2006, <u>http://indico.cern.ch/conferenceDisplay.py?confld=a056410</u>

Bibliography

- R. Wigmans, Energy Measurement in Particle Physics (2000)
- P. B. Cushman, Electromagnetic and Hadronic Calorimeters, in Instrumentation in High Energy Physics, ed. F.Sauli (1992)
- **C. Fabjan, Calorimetry in High-Energy Physics,** in Experimental Techniques in High-Energy Physics, ed. T.Ferbel (1987)
- U. Amaldi, Calorimetry in High-Energy Physics, in Experimental Techniques in High-Energy Physics, ed. T.Ferbel (1987)
- R. Fernow, Introduction to Experimental Particle Physics (1986)
- C. Grupen, Particle Detectors (1996)

Interaction of charged particles: Multiple Scattering

- This process will turn out to be closely related to the transverse profile of electromagnetic showers.
- Coulomb-scattering scales with the squared charges, so scattering in matter is dominated by scattering off nuclei (rather than off electrons), for Z>10. Scattering of spin 0 (Rutherford) and spin 1/2 (Mott) particles are identical in a small-angle approximation.
- Result can be defined in terms of radiation length X₀, to be defined later.

