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Quantum fields

• The Basic Building Blocks of the Universe

Particles are ripples (excitations) 
of fields tied into little parcels of 
energy due to quantum mechanics.

Quantum + Fields
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̂ϕ(x)
Function of spacetime

Operator on the Hilbert 
space of particle states

All electrons in the universe 
are identical copies of each 
other.  They are excitations 
of a single electron field.
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88 Quantization of free fields

all momenta. Therefore the states a†
p|0⟩ and b†p|0⟩ represent particles

with momentum p, mass m, spin zero and opposite charge; a†
p|0⟩ has

QU(1) = +1 while b†p|0⟩ has QU(1) = − 1 and is called the antiparticle
of a†

p|0⟩.4 We now understand what is the proper interpretation of the4Of course the overall sign (and nor-
malization) of the Noether charge are
arbitrary, since if a current jµ is con-
served also −jµ is conserved, and it is
also an arbitrary convention what state
we call a particle and what an antipar-
ticle.

negative energy solutions of the KG equation. The coefficient of the pos-
itive energy solution e−ipx after quantization becomes the destruction
operator of a particle and the coefficient of eipx becomes the creation
operator of its antiparticle. In the case of the real scalar field the re-
ality condition requires ap = bp and therefore the particle is its own
antiparticle, and it is neutral under any U(1) symmetry.

4.2 Spin 1/2 fields

4.2.1 Dirac field

We start from the Lagrangian (3.89), L = Ψ̄(iγµ∂µ − m)Ψ. The conju-
gate momentum is

ΠΨ =
δL

δ(∂0Ψ)
= iΨ̄γ0 = iΨ† . (4.30)

A basic principle of quantum field theory is the spin-statistic theorem,
that requires that fields with half-integer spin are quantized imposing
equal time anticommutation relation, while spin with integer spin with
equal time commutation relation. We will not discuss this theorem in
full generality, but will see below how the need for anticommutators
arises in the case of Dirac fields. So we impose

{Ψa(x, t), Ψ†
b(y, t)} = δ(3)(x − y)δab , (4.31)

where { , } is the anticommutator and a, b = 1, . . . 4 are the Dirac indices.
The expansion of the free Dirac field in plane waves is written

Ψ(x) =
∫

d3p

(2π)3
√

2Ep

∑

s=1,2

(
ap,su

s(p)e−ipx + b†p,sv
s(p)eipx

)
, (4.32)

and therefore

Ψ̄(x) =
∫

d3p

(2π)3
√

2Ep

∑

s=1,2

(
bp,sv̄

s(p)e−ipx + a†
p,sū

s(p)eipx
)

. (4.33)

The wave functions us(p), vs(p) are given in eqs. (3.103) and (3.107).
Writing the anticommutation relations (4.31) in terms of the a, b oper-
ators we find

{ar
p, as†

q } = {br
p, bs†

q } = (2π)3δ(3)(p − q)δrs , (4.34)

• Free quantised Dirac field:
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with all other anticommutators equal to zero. The Fock space is con-
structed defining first a vacuum state annihilated by all destruction op-
erators

ap,s|0⟩ = bp,s|0⟩ = 0 . (4.35)

Then multiparticle states are obtained acting on the vacuum with a†
p,s

or b†p,s. Since these operators anticommute between themselves, the re-
sulting multiparticle state is antisymmetric under the exchange of two
particles, so spin 1/2 particles (as in general all half-integer spin parti-
cles) obey Fermi–Dirac statistics. The one-particle states are normalized
as in the case of the scalar field,

(2Ep)1/2 a†
p,s|0⟩ , (2Ep)1/2 b†p,s|0⟩ (4.36)

and depend on the momentum as well as on the spin degree of freedom
s, which takes the values s = 1, 2.

The Hamiltonian density is obtained computing first the classical ex-
pression,

H = ΠΨ∂0Ψ − L = iΨ†∂0Ψ − Ψ̄
(
iγ0∂0 + iγi∂i − m

)
Ψ

= Ψ̄
(
− iγi∂i + m

)
Ψ , (4.37)

and therefore we get the Dirac Hamiltonian

H =
∫

d3x Ψ̄
(
− iγi∂i + m

)
Ψ =

∫
d3x Ψ̄ (− iγ·∇ + m)Ψ . (4.38)

We then substitute the mode expansion (4.32) and we perform the nor-
mal ordering, which in this case means that we put all a†

p,s to the left of
all ap,s and all b†p,s to the left of all bp,s, adding a minus sign each time
we exchange the position of any destruction or creation operator, but
without paying the price of the Dirac delta; e.g. : ap,sa†

p,s : = − a†
p,sap,s.

The final result is

H =
∫

d3p

(2π)3
∑

s=1,2

Ep

(
a†
p,sap,s + b†p,sbp,s

)
. (4.39)

If we were to quantize the Dirac field in terms of commutators, at this
point we would have found a minus sign in front of the term b†p,sbp,s, and
therefore the energy would have been unbounded from below. In this
way, instead, we see that the situation becomes completely analogous
to the complex scalar field, and the coefficients of the negative energy
solutions eipx become the creation operators of another type of particle.
Let us now study the momentum, spin and charge of these particles.

The momentum operator is again obtained from the Noether theorem,

P =
∫

d3p

(2π)3
∑

s=1,2

p
(
a†
p,sap,s + b†p,sbp,s

)
. (4.40)

The new aspect compared to the complex scalar field is the spin degree
of freedom. The angular momentum is the Noether charge associated

• Particle state • Antiparticle state
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all momenta. Therefore the states a†
p|0⟩ and b†p|0⟩ represent particles

with momentum p, mass m, spin zero and opposite charge; a†
p|0⟩ has

QU(1) = +1 while b†p|0⟩ has QU(1) = − 1 and is called the antiparticle
of a†
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malization) of the Noether charge are
arbitrary, since if a current jµ is con-
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negative energy solutions of the KG equation. The coefficient of the pos-
itive energy solution e−ipx after quantization becomes the destruction
operator of a particle and the coefficient of eipx becomes the creation
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{Ψa(x, t), Ψ†
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where { , } is the anticommutator and a, b = 1, . . . 4 are the Dirac indices.
The expansion of the free Dirac field in plane waves is written

Ψ(x) =
∫

d3p

(2π)3
√

2Ep

∑

s=1,2
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ap,su

s(p)e−ipx + b†p,sv
s(p)eipx

)
, (4.32)

and therefore

Ψ̄(x) =
∫

d3p

(2π)3
√

2Ep

∑

s=1,2

(
bp,sv̄

s(p)e−ipx + a†
p,sū

s(p)eipx
)

. (4.33)

The wave functions us(p), vs(p) are given in eqs. (3.103) and (3.107).
Writing the anticommutation relations (4.31) in terms of the a, b oper-
ators we find

{ar
p, as†

q } = {br
p, bs†

q } = (2π)3δ(3)(p − q)δrs , (4.34)
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therefore the energy of the generic state (4.9) is given by the sum of the
energies Epi of the various particles,

H |p1 , . . .pn⟩ = (Ep1 + . . . + Epn) |p1 , . . .pn⟩ . (4.18)

Similarly we can compute the spatial momentum of these states. From
the Noether theorem, we know how to write the spatial momentum as
the conserved charge associated to spatial translations. For the real
scalar field we found it in Section 3.3.1. Performing the normal ordering
we have the quantum expression

P i =
∫

d3x : θ0i : =
∫

d3x : ∂0φ∂iφ : . (4.19)

Substituting φ from eq. (4.2) we see that the terms quadratic in the
destruction operators vanish because they are given by an integral over
d3p of the function pia−p ap, which is odd under p → − p . Similarly
for the terms quadratic in the creation operators, and we are left with22Actually, for the momentum operator

it is not really necessary to perform the
normal ordering, since the terms that
come out from the commutators are
odd under p → −p and cancel when
we integrate over d3p.

P i =
∫

d3p

(2π)3
pia†

pap . (4.20)

Therefore the states a†
p|0⟩ are one-particle states with momentum p, en-

ergy Ep =
√

p2 + m2 and mass m. The generic state of the Fock space
(4.9) is a multiparticle state, and its energy and momentum are the sum
of the individual energies and momenta. From the fact that the cre-
ation operators commute between themselves we see that the multipar-
ticle states (4.9) are symmetric under the exchange of any two particles,
and therefore obey Bose–Einstein statistics. This is an example of the
spin-statistics theorem, which states that particles with integer spin are
bosons and particles with half-integer spin are fermions.

Finally, we can examine the angular momentum of these states. From
the Noether theorem we found that for scalar fields the angular mo-
mentum operator has a part interpreted as orbital angular momentum,
eq. (3.50), and that there is no intrinsic spin part. Therefore the quanta
of the scalar field are spin-0 particles.

4.1.2 Complex scalar field; antiparticles

We now consider a free complex scalar field. Eq. (3.60) becomes

φ(x) =
∫

d3p

(2π)3
√

2Ep

(
ape−ipx + b†peipx

)
(4.21)

and the complex conjugate field φ∗ becomes the hermitian conjugate
operator,

φ†(x) =
∫

d3p

(2π)3
√

2Ep

(
a†
peipx + bpe−ipx

)
. (4.22)

Imposing the canonical commutation relation (4.1) gives

[ap, a†
q] = [bp, b†q] = (2π)3δ(3)(p − q) , (4.23)

spin = 1/2

58 Classical field theory

Using eq. (3.81) we see that the γ matrices satisfy the Clifford algebra,

{γµ, γν} = 2ηµν . (3.86)

In terms of Dirac spinors, the Dirac equation becomes

(i ̸∂ − m)Ψ = 0 . (3.87)

Here we have introduced the Feynman slash notation: for a generic four-
vector Aµ, we denote γµAµ by A̸; then ̸∂ is the notation for γµ∂µ.

In order to write the Lagrangian in a compact form it is convenient
to define the Dirac adjoint,

Ψ̄ = Ψ†γ0 . (3.88)

In the chiral representation Ψ̄ = (ψ†
R, ψ†

L) and the Dirac Lagrangian can
be written as

LD = Ψ̄ (i ̸∂ − m)Ψ . (3.89)

We also define γ5 = iγ0γ1γ2γ3, so in the chiral representation

γ5 =
(

− 1 0
0 1

)
. (3.90)

Therefore (1 ± γ5)/2 is a projector on the Weyl spinors,

1 − γ5

2
Ψ =

(
ψL

0

)
1 + γ5

2
Ψ =

(
0

ψR

)
. (3.91)

If we take the neutrinos to be massless, a single left-handed Weyl spinor
νL suffices for their description. Even in this case, however, it can be
convenient to use a Dirac notation, i.e. to describe the neutrino with a
Dirac spinor ν which, in the chiral representation, has the form

ν =
(

νL

0

)
, (3.92)

and therefore satisfies
1 − γ5

2
ν = ν . (3.93)

As we already remarked, the form (3.83) for the Dirac spinor is a possible
choice but, depending on the problem, other choices might be more
convenient. For instance, we can define a new Dirac spinor Ψ′ = UΨ,
with U a constant unitary matrix. Then the Dirac Lagrangian becomes

LD = (Ψ′)†Uγ0 (iγµ∂µ − m)U †Ψ′ = Ψ̄′ (iγµ′∂µ − m
)
Ψ′ (3.94)

with γµ′ = UγµU † and Ψ̄′ = (Ψ′)†γ0′. So the explicit form of the
γ matrices changes, as well as the relation between Ψ and the Weyl
spinors ψL, ψR. However, the action and therefore the Dirac equation



Quantum fields

• Local interactions:

ℒ(x) ⊃ y ϕ(x)ψ̄(x)ψ(x) ϕ
ψ̄

ψ
∝ y

Decay: The ripple of the  field excites  and  fieldsϕ ψ ψ̄
6
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ϕ

ψ mϕ > 2mψ
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Matter fields 
Quarks and Leptons 
Fermions / spin-1/28
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Force carrier fields 
Vector bosons / spin-1
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The Higgs field 
Scalar boson / spin-0
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Fundamental forces
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The Standard Model

gγ W, Z e+ e−

FEM /FGR ≈ 𝒪(1042)
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Quarks

Leptons

Elementary Particles of Matter
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Leptons

Elementary Particles of Matter

Strong force

u
u
d

Proton
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g Long-range ( ) but confining mg = 0
The charge of the strong force

Colors
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Elementary Particles of Matter

Strong force EM
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d

Hydrogen atom
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−
1
3

−1

0
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g γ Long-range ( )mγ = 0
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d
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Quarks

Leptons

Elementary Particles of Matter

Strong force EM Weak

Radioactivity
(d → ueν̄)

Scientific Reductionism
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g γ W, Z Short-range ( )mW,Z ≠ 0
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Mysterious property of matter!?
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1
3

−1

0
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• Generations:



Flavour Puzzle
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Parameterised in the SM,  
but not explained!

? Analogy:   
The periodic table of elements

SM predicts massless 
neutrinos!



The hierarchy of scales?
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Quantum Gravity

Z W

?
GF ≫ GN
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New Particles/
Forces?

Other open problems: 
 
Charge quantisation 
Dark matter 
Baryon asymmetry 
Inflation 
Strong CP problem 
Dark energy 
….

[GeV]
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Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV/c²

⅔

½

up

d
≃4.7 MeV/c²

−⅓

½

down

c
≃1.28 GeV/c²

⅔

½

charm

s
≃96 MeV/c²

−⅓

½

strange

t
≃173.1 GeV/c²

⅔

½

top

b
≃4.18 GeV/c²

−⅓

½

bottom

LE
PT

O
N

S

e
≃0.511 MeV/c²

−1

½

electron

νe
<1.0 eV/c²

0

½

electron
neutrino

µ
≃105.66 MeV/c²

−1

½

muon

νµ
<0.17 MeV/c²

0

½

muon
neutrino

τ
≃1.7768 GeV/c²

−1

½

tau

ντ
<18.2 MeV/c²

0

½

tau
neutrino G

A
U

G
E 

B
O

SO
N

S
VE

C
TO

R
 B

O
SO

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≃91.19 GeV/c²

0

1

Z boson

W
≃80.39 GeV/c²

±1

1

W boson

SC
A

LA
R

 B
O

SO
N

S

H
≃124.97 GeV/c²

0

0

higgs
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Gauge symmetry



Gauge symmetry
• Example: Electrodynamics has a  gauge (or local) symmetryU(1)
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Gauge symmetry

• The phase is an arbitrary function over spacetime θ(x)

ϕ(x) → eiθ(x)ϕ(x)

• Example: Electrodynamics has a  gauge (or local) symmetryU(1)

22
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ℒkin = ∂μϕ†∂μϕ

?



Gauge symmetry

• The phase is an arbitrary function over spacetime θ(x)

ϕ(x) → eiθ(x)ϕ(x)

Dμ = ∂μ + igAμ
• The covariant derivativeAμ(x) → Aμ(x) −

1
g

∂μθ(x)

• Example: Electrodynamics has a  gauge (or local) symmetryU(1)

23
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• Solution: Introduce a gauge field! Transformation



Gauge symmetry

• The phase is an arbitrary function over spacetime θ(x)

ϕ(x) → eiθ(x)ϕ(x)

Dμ = ∂μ + igAμ
• The covariant derivativeAμ(x) → Aμ(x) −

1
g

∂μθ(x)

• The invariant Lagrangian:

ℒ = (Dμϕ)†(Dμϕ) −
1
4

FμνFμν − 𝒱(ϕ)
• The field strength tensor:

• Example: Electrodynamics has a  gauge (or local) symmetryU(1)

24

Fμν = ∂μAν − ∂νAμ

Admir Greljo | The Standard Model

• Solution: Introduce a gauge field! Transformation



Gauge symmetry

• The phase is an arbitrary function over spacetime θ(x)

ϕ(x) → eiθ(x)ϕ(x)

Dμ = ∂μ + igAμ
• The covariant derivativeAμ(x) → Aμ(x) −

1
g

∂μθ(x)

• The invariant Lagrangian:

ℒ = (Dμϕ)†(Dμϕ) −
1
4
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• The field strength tensor:

• Example: Electrodynamics has a  gauge (or local) symmetryU(1)
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Fμν = ∂μAν − ∂νAμ
• The  is forbidden!m2AμAμ
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• Solution: Introduce a gauge field! Transformation



Quantum electrodynamics7
7.1 The QED Lagrangian 180

7.2 One-loop divergences 183

7.3 Solved problems 186

7.1 The QED Lagrangian

Quantum electrodynamics (QED) describes the interaction between elec-
trons (or any other charged spin 1/2 particle, like muons) and photons.
It is convenient to quantize the photons using the covariant quantiza-
tion of Section 4.3.2. Actually, it is also useful to generalize slightly the
Lagrangian used in Section 4.3.2: instead of eq. (4.102), we describe the
free electromagnetic field by

Lem = −1
4
FµνFµν − 1

2ξ
(∂µAµ)2 , (7.1)

with ξ a generic parameter. In Section 4.3.2 we set ξ = 1, but it can be
shown that for any ξ, after requiring that ∂µAµ vanishes between phys-
ical states, the spectrum of the theory is given by the two transverse
polarization states of the photon. Basically this comes out because the
only role of the term (1/2ξ)(∂A)2 is to break gauge invariance and to
allow us to define the momentum conjugate to A0. Then, between phys-
ical states, the operator ∂µAµ vanishes and the matrix elements between
physical states obtained with eq. (7.1) are independent of ξ. Of course
intermediate steps, like the equal time commutation relations between
Aµ and the conjugate momenta, or the propagator, do depend on ξ. In
the interacting theory, it will turn out that the dependence on ξ vanishes
if Aµ is coupled to matter respecting gauge invariance, so in particular
Aµ must be coupled to a conserved current.

It is sometimes useful to work with ξ generic, and to check the cor-
rectness of the computation verifying that in the end ξ cancels in the
matrix elements between physical states. Also, in different problems, dif-
ferent choices of ξ can simplify the calculation. The term (1/2ξ)(∂A)2
is called the gauge fixing term and ξ is the gauge fixing parameter; the
choice ξ = 1 is called the Feynman gauge, and is typically the simplest
choice. Sometimes also the choice ξ = 0 (Landau gauge) is useful; the
Lagrangian is singular in this limit, but we will see below that the photon
propagator is well defined at ξ = 0.

The interaction between the photon and the electron is written in
terms of the covariant derivative, as explained in Section 3.5.4. QED is
then described by the Lagrangian

LQED = Ψ̄(i ̸∂ − m)Ψ − 1
4
FµνFµν − 1

2ξ
(∂µAµ)2 − eAµΨ̄γµΨ . (7.2)

The Feynman rules of QED have already been given in Section 5.5.4. We

Quantum electrodynamics
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•  gauge theory for a Dirac fermionU(1)

134 Perturbation theory and Feynman diagrams

The interaction vertex. While the propagators are fixed by the ki-
netic terms, i.e. by the free theory, the interaction vertices depend of
course on the specific theory that we are considering. In QED the in-
teraction term in the Hamiltonian is eAµΨ̄γµΨ. Let us recall from Sec-
tion 4.2 that the expansion of the field Ψ, Ψ̄ in terms of creation and
annihilation operators is (see eqs. (4.32) and (4.33))

Ψ(x) =
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where ap,s destroys an electron (in a spin state labeled by s), a†

p,s cre-
ates an electron, bp,s destroys a positron and b†p,s creates a positron.
Therefore Ψ can destroy an electron or create a positron while Ψ̄ can
destroy a positron or create an electron. Similarly the gauge field, in the
covariant quantization, has the expansion (4.104),

Fig. 5.15 The QED vertex: the
solid lines represent the fermions
and the wavy line the photon.

Fig. 5.16 The same interaction ver-
tex, describing e−γ → e−.
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and can destroy or create a photon. Therefore in eAµΨ̄γµΨ there are
all possible terms with two fermion lines and one photon line, which
conserve the electric charge: for instance, we can destroy an electron with
Ψ and create it back with Ψ̄ while at the same time emitting a photon,
corresponding to a vertex e− → e−γ; or we can absorb the photon,
corresponding to a vertex e−γ → e−; or we can destroy an electron with
Ψ, destroy a positron with Ψ̄ and create a photon, e+e− → γ, etc.

All these possibilities are summarized associating a factor

−ieγµ (5.128)

to the interaction vertex of Fig. 5.15. As in the scalar field theory,
the factor −i in eq. (5.128) comes from the fact that in the T -product
appears the exponential of −iHI . In Fig. 5.15 the solid line can represent
either an electron propagating in the direction of the arrow or a positron
propagating in the opposite direction. If we imagine that time runs from
left to right, then Fig. 5.15 actually describes the process e+e− → γ,
while e−γ → e− will be drawn as in Fig. 5.16, etc.1010Observe that for the physical process

e+e− → γ the matrix element Mfi is
non-vanishing, iMfi = ieγµ but the
matrix element of iT is zero because
the Dirac delta in eq. (5.98) cannot be
satisfied, so the process is forbidden by
energy–momentum conservation. How-
ever, the vertex of Fig. 5.15 enters as
a building block in all other Feynman
diagrams of QED.

The interaction vertex is proportional to γµ and therefore is a matrix
in the Dirac indices and carries a Lorentz index.

The external lines. In the case of the scalar field, acting with the field
operator φ on the vacuum to create a particle brings a factor eipx while
destroying a particle brings a factor e−ipx, see eqs. (4.21) and (4.22).
This is the origin of the factors eipixi for each final particle and e−ikjyj
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7.1 The QED Lagrangian

Quantum electrodynamics (QED) describes the interaction between elec-
trons (or any other charged spin 1/2 particle, like muons) and photons.
It is convenient to quantize the photons using the covariant quantiza-
tion of Section 4.3.2. Actually, it is also useful to generalize slightly the
Lagrangian used in Section 4.3.2: instead of eq. (4.102), we describe the
free electromagnetic field by

Lem = −1
4
FµνFµν − 1

2ξ
(∂µAµ)2 , (7.1)

with ξ a generic parameter. In Section 4.3.2 we set ξ = 1, but it can be
shown that for any ξ, after requiring that ∂µAµ vanishes between phys-
ical states, the spectrum of the theory is given by the two transverse
polarization states of the photon. Basically this comes out because the
only role of the term (1/2ξ)(∂A)2 is to break gauge invariance and to
allow us to define the momentum conjugate to A0. Then, between phys-
ical states, the operator ∂µAµ vanishes and the matrix elements between
physical states obtained with eq. (7.1) are independent of ξ. Of course
intermediate steps, like the equal time commutation relations between
Aµ and the conjugate momenta, or the propagator, do depend on ξ. In
the interacting theory, it will turn out that the dependence on ξ vanishes
if Aµ is coupled to matter respecting gauge invariance, so in particular
Aµ must be coupled to a conserved current.

It is sometimes useful to work with ξ generic, and to check the cor-
rectness of the computation verifying that in the end ξ cancels in the
matrix elements between physical states. Also, in different problems, dif-
ferent choices of ξ can simplify the calculation. The term (1/2ξ)(∂A)2
is called the gauge fixing term and ξ is the gauge fixing parameter; the
choice ξ = 1 is called the Feynman gauge, and is typically the simplest
choice. Sometimes also the choice ξ = 0 (Landau gauge) is useful; the
Lagrangian is singular in this limit, but we will see below that the photon
propagator is well defined at ξ = 0.

The interaction between the photon and the electron is written in
terms of the covariant derivative, as explained in Section 3.5.4. QED is
then described by the Lagrangian

LQED = Ψ̄(i ̸∂ − m)Ψ − 1
4
FµνFµν − 1

2ξ
(∂µAµ)2 − eAµΨ̄γµΨ . (7.2)

The Feynman rules of QED have already been given in Section 5.5.4. We
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The interaction vertex. While the propagators are fixed by the ki-
netic terms, i.e. by the free theory, the interaction vertices depend of
course on the specific theory that we are considering. In QED the in-
teraction term in the Hamiltonian is eAµΨ̄γµΨ. Let us recall from Sec-
tion 4.2 that the expansion of the field Ψ, Ψ̄ in terms of creation and
annihilation operators is (see eqs. (4.32) and (4.33))
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where ap,s destroys an electron (in a spin state labeled by s), a†

p,s cre-
ates an electron, bp,s destroys a positron and b†p,s creates a positron.
Therefore Ψ can destroy an electron or create a positron while Ψ̄ can
destroy a positron or create an electron. Similarly the gauge field, in the
covariant quantization, has the expansion (4.104),

Fig. 5.15 The QED vertex: the
solid lines represent the fermions
and the wavy line the photon.

Fig. 5.16 The same interaction ver-
tex, describing e−γ → e−.
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and can destroy or create a photon. Therefore in eAµΨ̄γµΨ there are
all possible terms with two fermion lines and one photon line, which
conserve the electric charge: for instance, we can destroy an electron with
Ψ and create it back with Ψ̄ while at the same time emitting a photon,
corresponding to a vertex e− → e−γ; or we can absorb the photon,
corresponding to a vertex e−γ → e−; or we can destroy an electron with
Ψ, destroy a positron with Ψ̄ and create a photon, e+e− → γ, etc.

All these possibilities are summarized associating a factor

−ieγµ (5.128)

to the interaction vertex of Fig. 5.15. As in the scalar field theory,
the factor −i in eq. (5.128) comes from the fact that in the T -product
appears the exponential of −iHI . In Fig. 5.15 the solid line can represent
either an electron propagating in the direction of the arrow or a positron
propagating in the opposite direction. If we imagine that time runs from
left to right, then Fig. 5.15 actually describes the process e+e− → γ,
while e−γ → e− will be drawn as in Fig. 5.16, etc.1010Observe that for the physical process

e+e− → γ the matrix element Mfi is
non-vanishing, iMfi = ieγµ but the
matrix element of iT is zero because
the Dirac delta in eq. (5.98) cannot be
satisfied, so the process is forbidden by
energy–momentum conservation. How-
ever, the vertex of Fig. 5.15 enters as
a building block in all other Feynman
diagrams of QED.

The interaction vertex is proportional to γµ and therefore is a matrix
in the Dirac indices and carries a Lorentz index.

The external lines. In the case of the scalar field, acting with the field
operator φ on the vacuum to create a particle brings a factor eipx while
destroying a particle brings a factor e−ipx, see eqs. (4.21) and (4.22).
This is the origin of the factors eipixi for each final particle and e−ikjyj
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Quantum electrodynamics (QED) describes the interaction between elec-
trons (or any other charged spin 1/2 particle, like muons) and photons.
It is convenient to quantize the photons using the covariant quantiza-
tion of Section 4.3.2. Actually, it is also useful to generalize slightly the
Lagrangian used in Section 4.3.2: instead of eq. (4.102), we describe the
free electromagnetic field by

Lem = −1
4
FµνFµν − 1

2ξ
(∂µAµ)2 , (7.1)

with ξ a generic parameter. In Section 4.3.2 we set ξ = 1, but it can be
shown that for any ξ, after requiring that ∂µAµ vanishes between phys-
ical states, the spectrum of the theory is given by the two transverse
polarization states of the photon. Basically this comes out because the
only role of the term (1/2ξ)(∂A)2 is to break gauge invariance and to
allow us to define the momentum conjugate to A0. Then, between phys-
ical states, the operator ∂µAµ vanishes and the matrix elements between
physical states obtained with eq. (7.1) are independent of ξ. Of course
intermediate steps, like the equal time commutation relations between
Aµ and the conjugate momenta, or the propagator, do depend on ξ. In
the interacting theory, it will turn out that the dependence on ξ vanishes
if Aµ is coupled to matter respecting gauge invariance, so in particular
Aµ must be coupled to a conserved current.

It is sometimes useful to work with ξ generic, and to check the cor-
rectness of the computation verifying that in the end ξ cancels in the
matrix elements between physical states. Also, in different problems, dif-
ferent choices of ξ can simplify the calculation. The term (1/2ξ)(∂A)2
is called the gauge fixing term and ξ is the gauge fixing parameter; the
choice ξ = 1 is called the Feynman gauge, and is typically the simplest
choice. Sometimes also the choice ξ = 0 (Landau gauge) is useful; the
Lagrangian is singular in this limit, but we will see below that the photon
propagator is well defined at ξ = 0.

The interaction between the photon and the electron is written in
terms of the covariant derivative, as explained in Section 3.5.4. QED is
then described by the Lagrangian

LQED = Ψ̄(i ̸∂ − m)Ψ − 1
4
FµνFµν − 1

2ξ
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The interaction vertex. While the propagators are fixed by the ki-
netic terms, i.e. by the free theory, the interaction vertices depend of
course on the specific theory that we are considering. In QED the in-
teraction term in the Hamiltonian is eAµΨ̄γµΨ. Let us recall from Sec-
tion 4.2 that the expansion of the field Ψ, Ψ̄ in terms of creation and
annihilation operators is (see eqs. (4.32) and (4.33))
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where ap,s destroys an electron (in a spin state labeled by s), a†

p,s cre-
ates an electron, bp,s destroys a positron and b†p,s creates a positron.
Therefore Ψ can destroy an electron or create a positron while Ψ̄ can
destroy a positron or create an electron. Similarly the gauge field, in the
covariant quantization, has the expansion (4.104),

Fig. 5.15 The QED vertex: the
solid lines represent the fermions
and the wavy line the photon.

Fig. 5.16 The same interaction ver-
tex, describing e−γ → e−.
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and can destroy or create a photon. Therefore in eAµΨ̄γµΨ there are
all possible terms with two fermion lines and one photon line, which
conserve the electric charge: for instance, we can destroy an electron with
Ψ and create it back with Ψ̄ while at the same time emitting a photon,
corresponding to a vertex e− → e−γ; or we can absorb the photon,
corresponding to a vertex e−γ → e−; or we can destroy an electron with
Ψ, destroy a positron with Ψ̄ and create a photon, e+e− → γ, etc.

All these possibilities are summarized associating a factor

−ieγµ (5.128)

to the interaction vertex of Fig. 5.15. As in the scalar field theory,
the factor −i in eq. (5.128) comes from the fact that in the T -product
appears the exponential of −iHI . In Fig. 5.15 the solid line can represent
either an electron propagating in the direction of the arrow or a positron
propagating in the opposite direction. If we imagine that time runs from
left to right, then Fig. 5.15 actually describes the process e+e− → γ,
while e−γ → e− will be drawn as in Fig. 5.16, etc.1010Observe that for the physical process

e+e− → γ the matrix element Mfi is
non-vanishing, iMfi = ieγµ but the
matrix element of iT is zero because
the Dirac delta in eq. (5.98) cannot be
satisfied, so the process is forbidden by
energy–momentum conservation. How-
ever, the vertex of Fig. 5.15 enters as
a building block in all other Feynman
diagrams of QED.

The interaction vertex is proportional to γµ and therefore is a matrix
in the Dirac indices and carries a Lorentz index.

The external lines. In the case of the scalar field, acting with the field
operator φ on the vacuum to create a particle brings a factor eipx while
destroying a particle brings a factor e−ipx, see eqs. (4.21) and (4.22).
This is the origin of the factors eipixi for each final particle and e−ikjyj
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7.1 The QED Lagrangian

Quantum electrodynamics (QED) describes the interaction between elec-
trons (or any other charged spin 1/2 particle, like muons) and photons.
It is convenient to quantize the photons using the covariant quantiza-
tion of Section 4.3.2. Actually, it is also useful to generalize slightly the
Lagrangian used in Section 4.3.2: instead of eq. (4.102), we describe the
free electromagnetic field by

Lem = −1
4
FµνFµν − 1

2ξ
(∂µAµ)2 , (7.1)

with ξ a generic parameter. In Section 4.3.2 we set ξ = 1, but it can be
shown that for any ξ, after requiring that ∂µAµ vanishes between phys-
ical states, the spectrum of the theory is given by the two transverse
polarization states of the photon. Basically this comes out because the
only role of the term (1/2ξ)(∂A)2 is to break gauge invariance and to
allow us to define the momentum conjugate to A0. Then, between phys-
ical states, the operator ∂µAµ vanishes and the matrix elements between
physical states obtained with eq. (7.1) are independent of ξ. Of course
intermediate steps, like the equal time commutation relations between
Aµ and the conjugate momenta, or the propagator, do depend on ξ. In
the interacting theory, it will turn out that the dependence on ξ vanishes
if Aµ is coupled to matter respecting gauge invariance, so in particular
Aµ must be coupled to a conserved current.

It is sometimes useful to work with ξ generic, and to check the cor-
rectness of the computation verifying that in the end ξ cancels in the
matrix elements between physical states. Also, in different problems, dif-
ferent choices of ξ can simplify the calculation. The term (1/2ξ)(∂A)2
is called the gauge fixing term and ξ is the gauge fixing parameter; the
choice ξ = 1 is called the Feynman gauge, and is typically the simplest
choice. Sometimes also the choice ξ = 0 (Landau gauge) is useful; the
Lagrangian is singular in this limit, but we will see below that the photon
propagator is well defined at ξ = 0.

The interaction between the photon and the electron is written in
terms of the covariant derivative, as explained in Section 3.5.4. QED is
then described by the Lagrangian

LQED = Ψ̄(i ̸∂ − m)Ψ − 1
4
FµνFµν − 1

2ξ
(∂µAµ)2 − eAµΨ̄γµΨ . (7.2)

The Feynman rules of QED have already been given in Section 5.5.4. We
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The interaction vertex. While the propagators are fixed by the ki-
netic terms, i.e. by the free theory, the interaction vertices depend of
course on the specific theory that we are considering. In QED the in-
teraction term in the Hamiltonian is eAµΨ̄γµΨ. Let us recall from Sec-
tion 4.2 that the expansion of the field Ψ, Ψ̄ in terms of creation and
annihilation operators is (see eqs. (4.32) and (4.33))
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where ap,s destroys an electron (in a spin state labeled by s), a†

p,s cre-
ates an electron, bp,s destroys a positron and b†p,s creates a positron.
Therefore Ψ can destroy an electron or create a positron while Ψ̄ can
destroy a positron or create an electron. Similarly the gauge field, in the
covariant quantization, has the expansion (4.104),

Fig. 5.15 The QED vertex: the
solid lines represent the fermions
and the wavy line the photon.

Fig. 5.16 The same interaction ver-
tex, describing e−γ → e−.
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and can destroy or create a photon. Therefore in eAµΨ̄γµΨ there are
all possible terms with two fermion lines and one photon line, which
conserve the electric charge: for instance, we can destroy an electron with
Ψ and create it back with Ψ̄ while at the same time emitting a photon,
corresponding to a vertex e− → e−γ; or we can absorb the photon,
corresponding to a vertex e−γ → e−; or we can destroy an electron with
Ψ, destroy a positron with Ψ̄ and create a photon, e+e− → γ, etc.

All these possibilities are summarized associating a factor

−ieγµ (5.128)

to the interaction vertex of Fig. 5.15. As in the scalar field theory,
the factor −i in eq. (5.128) comes from the fact that in the T -product
appears the exponential of −iHI . In Fig. 5.15 the solid line can represent
either an electron propagating in the direction of the arrow or a positron
propagating in the opposite direction. If we imagine that time runs from
left to right, then Fig. 5.15 actually describes the process e+e− → γ,
while e−γ → e− will be drawn as in Fig. 5.16, etc.1010Observe that for the physical process

e+e− → γ the matrix element Mfi is
non-vanishing, iMfi = ieγµ but the
matrix element of iT is zero because
the Dirac delta in eq. (5.98) cannot be
satisfied, so the process is forbidden by
energy–momentum conservation. How-
ever, the vertex of Fig. 5.15 enters as
a building block in all other Feynman
diagrams of QED.

The interaction vertex is proportional to γµ and therefore is a matrix
in the Dirac indices and carries a Lorentz index.

The external lines. In the case of the scalar field, acting with the field
operator φ on the vacuum to create a particle brings a factor eipx while
destroying a particle brings a factor e−ipx, see eqs. (4.21) and (4.22).
This is the origin of the factors eipixi for each final particle and e−ikjyj
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248 Non-abelian gauge theories

10.3 QCD

Quantum chromodynamics (QCD) is a Yang–Mills theory with gauge
group SU(3). The matter fields are the quarks. They are in the fun-
damental representation of the gauge group and have spin 1/2. As we
already discussed in Chapter 8, there are six type of quarks, denoted as
u (up), d (down), c (charm), s (strange), t (top) and b (bottom). The
type of quark is called the flavor, while the index of the gauge group is
called the color index. Therefore a generic quark field has two indices,
Ψα,A with α = 1, 2, 3 the color index and A = u, d, c, s, t, b the flavor in-
dex. Each quark flavor is described by a Lagrangian of the type (10.27),
with a different mass for each flavor. The 32 − 1 = 8 gauge bosons are
called gluons. Therefore the QCD Lagrangian is

LQCD = iΨ̄α,A ̸∂ Ψα,A − mAΨ̄α,AΨα,A − 1
4

F a
µνF a µν

+gAa
µ Ψ̄α,AγµT a

αβΨβ,A , (10.29)

where we sum over both the color indices α, β and the flavor index A,
and T a are the generators of SU(3) in the fundamental representation.

QCD is the fundamental theory of strong interactions. A crucial prop-
erty of QCD, that we already discussed in Sections 5.9 and 9.5, is asymp-
totic freedom, which means that the running coupling constant geff(E)
(defined in Section 5.9) is small at high energies and large at low energies.
At small distances QCD is well described in terms of weakly interacting
quarks and gluons, while at large distances, of the order of 1 fm, the
theory becomes non-perturbative and quarks are confined. This means
that quarks cannot be observed as free particles, but we can only ob-
serve color-singlet bound states of quark–antiquarks (mesons) or of three
quarks or three antiquarks (baryons). Mesons and baryons are collec-
tively denoted as hadrons and, being composed of quarks, are subject
to strong interactions. The strong interactions generate dynamically a
characteristic energy scale ΛQCD ∼ (1 fm)−1 ≃ 200 MeV. The lightest
hadron is the pion, whose mass is in fact of this order of magnitude,
mπ ≃ 140 MeV.

Besides the exact local SU(3) color symmetry, QCD also has impor-
tant approximate global symmetries, due to the possibility of perform-
ing a coordinate-independent rotation in flavor space. We saw in Sec-
tion 3.4.3 that the free Lagrangian of a single massless Dirac fermion
has a U(1) × U(1) symmetry, in which we rotate independently the left-
handed and right-handed Weyl spinors,

ψL → eiθLψL , ψR → eiθRψR . (10.30)

In terms of the Dirac spinor Ψ the two independent transformations with
θR = θL = α and θR = −θL = β have been written in eqs. (3.125) and
(3.126), and we recall them here,

Ψ → eiαΨ , Ψ → eiβγ5
Ψ . (10.31)
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(defined in Section 5.9) is small at high energies and large at low energies.
At small distances QCD is well described in terms of weakly interacting
quarks and gluons, while at large distances, of the order of 1 fm, the
theory becomes non-perturbative and quarks are confined. This means
that quarks cannot be observed as free particles, but we can only ob-
serve color-singlet bound states of quark–antiquarks (mesons) or of three
quarks or three antiquarks (baryons). Mesons and baryons are collec-
tively denoted as hadrons and, being composed of quarks, are subject
to strong interactions. The strong interactions generate dynamically a
characteristic energy scale ΛQCD ∼ (1 fm)−1 ≃ 200 MeV. The lightest
hadron is the pion, whose mass is in fact of this order of magnitude,
mπ ≃ 140 MeV.

Besides the exact local SU(3) color symmetry, QCD also has impor-
tant approximate global symmetries, due to the possibility of perform-
ing a coordinate-independent rotation in flavor space. We saw in Sec-
tion 3.4.3 that the free Lagrangian of a single massless Dirac fermion
has a U(1) × U(1) symmetry, in which we rotate independently the left-
handed and right-handed Weyl spinors,

ψL → eiθLψL , ψR → eiθRψR . (10.30)

In terms of the Dirac spinor Ψ the two independent transformations with
θR = θL = α and θR = −θL = β have been written in eqs. (3.125) and
(3.126), and we recall them here,

Ψ → eiαΨ , Ψ → eiβγ5
Ψ . (10.31)
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10.3 QCD
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with a different mass for each flavor. The 32 − 1 = 8 gauge bosons are
called gluons. Therefore the QCD Lagrangian is

LQCD = iΨ̄α,A ̸∂ Ψα,A − mAΨ̄α,AΨα,A − 1
4

F a
µνF a µν

+gAa
µ Ψ̄α,AγµT a

αβΨβ,A , (10.29)

where we sum over both the color indices α, β and the flavor index A,
and T a are the generators of SU(3) in the fundamental representation.

QCD is the fundamental theory of strong interactions. A crucial prop-
erty of QCD, that we already discussed in Sections 5.9 and 9.5, is asymp-
totic freedom, which means that the running coupling constant geff(E)
(defined in Section 5.9) is small at high energies and large at low energies.
At small distances QCD is well described in terms of weakly interacting
quarks and gluons, while at large distances, of the order of 1 fm, the
theory becomes non-perturbative and quarks are confined. This means
that quarks cannot be observed as free particles, but we can only ob-
serve color-singlet bound states of quark–antiquarks (mesons) or of three
quarks or three antiquarks (baryons). Mesons and baryons are collec-
tively denoted as hadrons and, being composed of quarks, are subject
to strong interactions. The strong interactions generate dynamically a
characteristic energy scale ΛQCD ∼ (1 fm)−1 ≃ 200 MeV. The lightest
hadron is the pion, whose mass is in fact of this order of magnitude,
mπ ≃ 140 MeV.

Besides the exact local SU(3) color symmetry, QCD also has impor-
tant approximate global symmetries, due to the possibility of perform-
ing a coordinate-independent rotation in flavor space. We saw in Sec-
tion 3.4.3 that the free Lagrangian of a single massless Dirac fermion
has a U(1) × U(1) symmetry, in which we rotate independently the left-
handed and right-handed Weyl spinors,

ψL → eiθLψL , ψR → eiθRψR . (10.30)

In terms of the Dirac spinor Ψ the two independent transformations with
θR = θL = α and θR = −θL = β have been written in eqs. (3.125) and
(3.126), and we recall them here,

Ψ → eiαΨ , Ψ → eiβγ5
Ψ . (10.31)
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each of the gauge fields Aa
µ as F a

µν = ∂µAa
ν − ∂νAa

µ, but it is immediate
to verify that this quantity does not have any simple transformation
property under (10.14). Instead, a straightforward computation (using
the identity 0 = ∂µ(UU †) = (∂µU)U † + U(∂µU †) and therefore ∂µU † =
−U †(∂µU)U †) shows that the quantity

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (10.22)

transforms as

Fµν(x) → U(x)Fµν (x)U †(x) . (10.23)

Fµν is called the non-abelian field strength. From eqs. (10.22) and
(10.13) we see that we can rewrite Fµν as

Fµν = F a
µνT a (10.24)

with

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν . (10.25)

Now it is easy to construct a gauge-invariant kinetic term for the gauge
field; it is given by

Lgauge = −1
2

TrFµνFµν = −1
4

F a
µνF a µν , (10.26)

where Fµν has been taken in the fundamental representation, and we
used the fact that Tr(T a

F T b
F ) = (1/2)δab. Under gauge transformations

TrFµνFµν → Tr (UFµνFµνU †) = Tr FµνFµν due to the cyclic property
of the trace.

The complete Lagrangian of the SU(N) Yang–Mills theory with Dirac
fermions in the representation R is therefore

LYM = iΨ̄α ̸∂Ψα−mΨ̄αΨα+gAa
µΨ̄αγµ(T a

R)αβΨβ− 1
4

F a
µνF a µν , (10.27)

or, in more compact form,

LYM = Ψ̄ (iD̸ − m)Ψ − 1
2

Tr FµνFµν . (10.28)

Observe, from eq. (10.25), that the term F 2 contains not only the

Fig. 10.1 The vertices with three
and with four non-abelian gauge
bosons.

standard kinetic term of the gauge fields, but also an interaction ver-
tex with three gauge bosons, proportional to g, and a vertex with four
gauge bosons, proportional to g2, as shown in Fig. 10.1. Observe also
that gauge invariance has fixed the three-boson, four-boson, and boson–
fermion–fermion vertices in terms of a single parameter, the gauge cou-
pling g.

NEW!

a = 1,...,8 Gluons
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Confinement Asymptotic freedom

"for the discovery of asymptotic freedom 
in the theory of the strong interaction"



The Standard Model running
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SU(3)C × SU(2)L × U(1)Y

QCD Electroweak

SM

MSSM Unification of Forces?

αi = g2
i /4π



The Electroweak sector
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The (Leptonic) Standard Model

SU(2)L × U(1)Y

U(1)EM

⟨ϕ⟩ ≠ 0
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"for their contributions to the theory of the unified weak 
and electromagnetic interaction between elementary 
particles, including, inter alia, the prediction of the weak 
neutral current"



The Higgs field

The Higgs 
mechanism
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• How do elementary particles get a mass?

• The Higgs field plays a key role!

• The Higgs particle is the excitation of the Higgs field.
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Spontaneous symmetry breaking 

• Complex scalar field: ℒ = ∂μϕ†∂μϕ − 𝒱
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Spontaneous symmetry breaking 

• Complex scalar field: ℒ = ∂μϕ†∂μϕ − 𝒱
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• Assume  symmetry:  U(1)
ϕ(x) → eiθϕ(x)

Admir Greljo | The Standard Model

*for the moment GLOBAL



Spontaneous symmetry breaking 

• Complex scalar field: ℒ = ∂μϕ†∂μϕ − 𝒱

𝒱 = − μ2ϕ†ϕ + λ(ϕ†ϕ)2
• The potential:
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• Assume  symmetry:  U(1)
ϕ(x) → eiθϕ(x)
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Spontaneous symmetry breaking 

• Complex scalar field: ℒ = ∂μϕ†∂μϕ − 𝒱

𝒱 = − μ2ϕ†ϕ + λ(ϕ†ϕ)2
• The potential:
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• Assume  symmetry:  U(1)
ϕ(x) → eiθϕ(x)

- Stability condition: 
- What about  ?

λ > 0
μ2
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Spontaneous symmetry breaking 

• Complex scalar field: ℒ = ∂μϕ†∂μϕ − 𝒱

𝒱 = − μ2ϕ†ϕ + λ(ϕ†ϕ)2
• The potential:
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• Assume  symmetry:  U(1)
ϕ(x) → eiθϕ(x)

- Stability condition: 
- What about  ?

λ > 0
μ2

μ2 > 0
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Spontaneous symmetry breaking 

• Complex scalar field: ℒ = ∂μϕ†∂μϕ − 𝒱

𝒱 = − μ2ϕ†ϕ + λ(ϕ†ϕ)2
• The potential:
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• Assume  symmetry:  U(1)
ϕ(x) → eiθϕ(x)

- Stability condition: 
- What about  ?

λ > 0
μ2

μ2 > 0

• SSB phenomena:  
Theory has a symmetry but predicts multiple 
degenerate asymmetrical ground states.
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The vacuum expectation value (VEV)

Expansion around a ground state

ϕ(x) =
v+h(x)

2
ei ξ(x)

v

Spontaneous symmetry breaking 
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Spontaneous symmetry breaking 

• Expansion around a ground state

ϕ(x) =
v + h(x)

2
ei ξ(x)

v
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•  - The Higgsh(x)

Figure 6.1: The Mexican hat potential. The masses of the two DoF correspond to the second

derivative of the potential around the minimum. One direction (left) is flat, while the other

(center) is not. The plot on the right shows the symmetric point. Yet, it is unsable and does not

correspond to a particle. In the case of a global symmetry, the flat direction corresponds to the

massless Goldstone boson, while the non-flat direction corresponds to the massive DoF. In the case

of a local symmetry, the flat direction corresponds to the longitudinal component of the vector

boson, while the non-flat direction corresponds to the massive Higgs boson.

5. The quartic terms, with dimensionless couplings, are the same in Eqs. (6.15) and (6.21).

Only dimensionful couplings are modified.

6. We chose a basis by assigning the VEV to the real component of �. This is an arbitrary

choice. We made it since it is convenient. The physics does not depend on this choice.

7. We write the VEV as h�Ri = v or equivalently as h�i = v/
p
2. The factor of

p
2 between

the two VEVs is just the one that we encounter many times when moving between real and

complex fields.

One of the most interesting features of the model presented here is the existence of a massless

scalar field. This feature is not particular to our specific model, but rather the result of a general

theorem called The Goldstone Theorem: The spontaneous breaking of a global continuous sym-

metry is accompanied by massless scalars. Their number and quantum numbers equal those of the

broken generators. The massless scalars are called Nambu-Goldstone Bosons.

While we do not prove here the theorem, we briefly describe the intuition behind it. SSB is

possible only when the vacuum is degenerate. For a continuous symmetry, the set of degenerate

vacua is also continuous. In the case of a U(1) symmetry, the shape of the potential is usually

called “a Mexican hat,” see Fig. 6.1. When expanding around any point in the “valley,” it can

be seen that one direction is flat. A flat direction in the potential corresponds to a massless DoF.

The Goldstone theorem is a generalization of this simple picture. Fig. 6.1 demonstrates the point.
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m2
h =

∂2𝒱
∂h2

h=0

•  - the Goldstoneξ(x)
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correspond to a particle. In the case of a global symmetry, the flat direction corresponds to the

massless Goldstone boson, while the non-flat direction corresponds to the massive DoF. In the case

of a local symmetry, the flat direction corresponds to the longitudinal component of the vector

boson, while the non-flat direction corresponds to the massive Higgs boson.
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Only dimensionful couplings are modified.

6. We chose a basis by assigning the VEV to the real component of �. This is an arbitrary
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2. The factor of
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2 between
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possible only when the vacuum is degenerate. For a continuous symmetry, the set of degenerate

vacua is also continuous. In the case of a U(1) symmetry, the shape of the potential is usually
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Massive particle

m2
ξ = 0

Massless particle

𝒱 = − μ2ϕ†ϕ + λ(ϕ†ϕ)2
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The Higgs mechanism

• Weak force carriers: W±, Z

• Matter : Quarks and Leptons

• In the SM, the Higgs mechanism gives masses to:
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• The symmetry is gauged when .
• This introduces a vector field .

• Gauge theories predict massless  with 2 d.o.f.
• When SSB happens, the vector field becomes massive (3 d.o.f)!
• The Goldstone boson is the longitudinal polarisation of .

θ → θ(x)
Aμ(x)

Aμ(x)

Aμ(x)
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•  - the Goldstone
• Massless particle

ξ(x)

Figure 6.1: The Mexican hat potential. The masses of the two DoF correspond to the second

derivative of the potential around the minimum. One direction (left) is flat, while the other

(center) is not. The plot on the right shows the symmetric point. Yet, it is unsable and does not

correspond to a particle. In the case of a global symmetry, the flat direction corresponds to the

massless Goldstone boson, while the non-flat direction corresponds to the massive DoF. In the case

of a local symmetry, the flat direction corresponds to the longitudinal component of the vector

boson, while the non-flat direction corresponds to the massive Higgs boson.

5. The quartic terms, with dimensionless couplings, are the same in Eqs. (6.15) and (6.21).

Only dimensionful couplings are modified.

6. We chose a basis by assigning the VEV to the real component of �. This is an arbitrary

choice. We made it since it is convenient. The physics does not depend on this choice.

7. We write the VEV as h�Ri = v or equivalently as h�i = v/
p
2. The factor of

p
2 between

the two VEVs is just the one that we encounter many times when moving between real and

complex fields.

One of the most interesting features of the model presented here is the existence of a massless

scalar field. This feature is not particular to our specific model, but rather the result of a general

theorem called The Goldstone Theorem: The spontaneous breaking of a global continuous sym-

metry is accompanied by massless scalars. Their number and quantum numbers equal those of the

broken generators. The massless scalars are called Nambu-Goldstone Bosons.

While we do not prove here the theorem, we briefly describe the intuition behind it. SSB is

possible only when the vacuum is degenerate. For a continuous symmetry, the set of degenerate

vacua is also continuous. In the case of a U(1) symmetry, the shape of the potential is usually

called “a Mexican hat,” see Fig. 6.1. When expanding around any point in the “valley,” it can

be seen that one direction is flat. A flat direction in the potential corresponds to a massless DoF.

The Goldstone theorem is a generalization of this simple picture. Fig. 6.1 demonstrates the point.
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The Higgs mechanism
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The Higgs mechanism

ℒ = (Dμϕ)†(Dμϕ) −
1
4

FμνFμν − 𝒱(ϕ)

• Start with

• And assume  satisfies the SSB condition𝒱(ϕ)
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The Higgs mechanism

ℒ = (Dμϕ)†(Dμϕ) −
1
4

FμνFμν − 𝒱(ϕ)

• Start with

• And assume  satisfies the SSB condition𝒱(ϕ)

ϕ(x) =
v + h(x)

2
ei ξ(x)

v• Expand around the minimum:
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• Fix a gauge: θ(x) = − ξ(x)/v
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The Higgs mechanism

ℒ = (Dμϕ)†(Dμϕ) −
1
4

FμνFμν − 𝒱(ϕ)

• Start with

• And assume  satisfies the SSB condition𝒱(ϕ)

ϕ(x) =
v + h(x)

2
ei ξ(x)

v• Expand around the minimum:

• Fix a gauge: θ(x) = − ξ(x)/v

• The gauge boson eats up the Goldstone boson to become massive!

ℒ ⊃
1
2

g2v2 AμAμ

The covariant derivative: Dμ = ∂μ + igAμ

(Dμϕ)†(Dμϕ)

48
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symmetry breaking 

49

The Higgs mechanism

Figure 6.1: The Mexican hat potential. The masses of the two DoF correspond to the second

derivative of the potential around the minimum. One direction (left) is flat, while the other

(center) is not. The plot on the right shows the symmetric point. Yet, it is unsable and does not

correspond to a particle. In the case of a global symmetry, the flat direction corresponds to the

massless Goldstone boson, while the non-flat direction corresponds to the massive DoF. In the case

of a local symmetry, the flat direction corresponds to the longitudinal component of the vector

boson, while the non-flat direction corresponds to the massive Higgs boson.

5. The quartic terms, with dimensionless couplings, are the same in Eqs. (6.15) and (6.21).

Only dimensionful couplings are modified.

6. We chose a basis by assigning the VEV to the real component of �. This is an arbitrary

choice. We made it since it is convenient. The physics does not depend on this choice.

7. We write the VEV as h�Ri = v or equivalently as h�i = v/
p
2. The factor of

p
2 between

the two VEVs is just the one that we encounter many times when moving between real and

complex fields.

One of the most interesting features of the model presented here is the existence of a massless

scalar field. This feature is not particular to our specific model, but rather the result of a general

theorem called The Goldstone Theorem: The spontaneous breaking of a global continuous sym-

metry is accompanied by massless scalars. Their number and quantum numbers equal those of the

broken generators. The massless scalars are called Nambu-Goldstone Bosons.

While we do not prove here the theorem, we briefly describe the intuition behind it. SSB is

possible only when the vacuum is degenerate. For a continuous symmetry, the set of degenerate

vacua is also continuous. In the case of a U(1) symmetry, the shape of the potential is usually

called “a Mexican hat,” see Fig. 6.1. When expanding around any point in the “valley,” it can

be seen that one direction is flat. A flat direction in the potential corresponds to a massless DoF.

The Goldstone theorem is a generalization of this simple picture. Fig. 6.1 demonstrates the point.
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The Goldstone

• 1 d.o.f.

• Weak force carriers
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The Higgs mechanism

Figure 6.1: The Mexican hat potential. The masses of the two DoF correspond to the second

derivative of the potential around the minimum. One direction (left) is flat, while the other

(center) is not. The plot on the right shows the symmetric point. Yet, it is unsable and does not

correspond to a particle. In the case of a global symmetry, the flat direction corresponds to the

massless Goldstone boson, while the non-flat direction corresponds to the massive DoF. In the case

of a local symmetry, the flat direction corresponds to the longitudinal component of the vector

boson, while the non-flat direction corresponds to the massive Higgs boson.

5. The quartic terms, with dimensionless couplings, are the same in Eqs. (6.15) and (6.21).

Only dimensionful couplings are modified.

6. We chose a basis by assigning the VEV to the real component of �. This is an arbitrary

choice. We made it since it is convenient. The physics does not depend on this choice.

7. We write the VEV as h�Ri = v or equivalently as h�i = v/
p
2. The factor of

p
2 between

the two VEVs is just the one that we encounter many times when moving between real and

complex fields.

One of the most interesting features of the model presented here is the existence of a massless

scalar field. This feature is not particular to our specific model, but rather the result of a general

theorem called The Goldstone Theorem: The spontaneous breaking of a global continuous sym-

metry is accompanied by massless scalars. Their number and quantum numbers equal those of the

broken generators. The massless scalars are called Nambu-Goldstone Bosons.

While we do not prove here the theorem, we briefly describe the intuition behind it. SSB is

possible only when the vacuum is degenerate. For a continuous symmetry, the set of degenerate

vacua is also continuous. In the case of a U(1) symmetry, the shape of the potential is usually

called “a Mexican hat,” see Fig. 6.1. When expanding around any point in the “valley,” it can

be seen that one direction is flat. A flat direction in the potential corresponds to a massless DoF.

The Goldstone theorem is a generalization of this simple picture. Fig. 6.1 demonstrates the point.
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The Goldstone Massless Vector

θ → θ(x)

• 2 d.o.f.• 1 d.o.f.

• Weak force carriers
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The Higgs mechanism

Figure 6.1: The Mexican hat potential. The masses of the two DoF correspond to the second

derivative of the potential around the minimum. One direction (left) is flat, while the other

(center) is not. The plot on the right shows the symmetric point. Yet, it is unsable and does not

correspond to a particle. In the case of a global symmetry, the flat direction corresponds to the

massless Goldstone boson, while the non-flat direction corresponds to the massive DoF. In the case

of a local symmetry, the flat direction corresponds to the longitudinal component of the vector

boson, while the non-flat direction corresponds to the massive Higgs boson.

5. The quartic terms, with dimensionless couplings, are the same in Eqs. (6.15) and (6.21).

Only dimensionful couplings are modified.

6. We chose a basis by assigning the VEV to the real component of �. This is an arbitrary

choice. We made it since it is convenient. The physics does not depend on this choice.

7. We write the VEV as h�Ri = v or equivalently as h�i = v/
p
2. The factor of

p
2 between

the two VEVs is just the one that we encounter many times when moving between real and

complex fields.

One of the most interesting features of the model presented here is the existence of a massless

scalar field. This feature is not particular to our specific model, but rather the result of a general

theorem called The Goldstone Theorem: The spontaneous breaking of a global continuous sym-

metry is accompanied by massless scalars. Their number and quantum numbers equal those of the

broken generators. The massless scalars are called Nambu-Goldstone Bosons.

While we do not prove here the theorem, we briefly describe the intuition behind it. SSB is

possible only when the vacuum is degenerate. For a continuous symmetry, the set of degenerate

vacua is also continuous. In the case of a U(1) symmetry, the shape of the potential is usually

called “a Mexican hat,” see Fig. 6.1. When expanding around any point in the “valley,” it can

be seen that one direction is flat. A flat direction in the potential corresponds to a massless DoF.

The Goldstone theorem is a generalization of this simple picture. Fig. 6.1 demonstrates the point.
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The Goldstone Massless Vector

θ → θ(x)

Massive Vector

• 2 d.o.f. • 3 d.o.f.• 1 d.o.f.

• Weak force carriers
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• Matter : Quarks and Leptons

θfL ≠ θfR ⟹
• The left-handed and the right-handed fields have different  phases:U(1)Y

The mass  is forbidden!mf f̄L fR

52

The Higgs mechanism

⃗p
⃗S

⃗p
⃗S
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• Matter : Quarks and Leptons

θfL ≠ θfR ⟹
• The left-handed and the right-handed fields have different  phases:U(1)Y

The mass  is forbidden!mf f̄L fR
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• The Higgs field saves the day, θH + θfR = θfL

ℒ ⊃ − yf f̄L fR ϕ ⟹ mf = yf ⟨ϕ⟩

The Higgs mechanism

• The mass  the strength of the interaction with the Higgs field∝

SSB

⃗p
⃗S

⃗p
⃗S
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−ℒ ⊃ yf f̄L fR ϕ

?
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The Higgs field

Analogy
*Credit to Professor David J Miller 
Here is my adaption:
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Top quark, mt = 173 GeV
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Analogy

Admir Greljo | The Standard Model



57

Top quark, mt = 173 GeV

Analogy
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Electron, me = 0.0005 GeV

Analogy

Admir Greljo | The Standard Model



59

Analogy

Electron, me = 0.0005 GeV
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Prof. Einstein!
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Analogy

An excitation…
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The Higgs particle
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Analogy
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• Constrain 
HEL model 
parameters ci

• related to Wilson coefficient fi, 

where new physics manifest in 
non-zero value 

• Determination of coupling modifier  

• Generic, effective, fundamental vector boson and 
fermion,…


• SMEFT Wilson coefficients


Higgs couplings interpretation

11

CMS-PAS-HIG-19-005

ATLAS-CONF-2021-053

• The Standard Model predicts: 
the interaction strength  the particle mass

• Confirmed for the weak bosons and 3rd 
generation or matter with  precision

∝

10 %

Open questions:

1. Higgs interactions with light generations?

2. Do Higgs interactions mix generations?

3. Higgs self-interactions?

4. Is there another Higgs field?

5. …

Admir Greljo | The Standard Model



The Standard Model 
(advanced)



Table 1: The SM particles

particle spin color QEM mass [v]

W
± 1 (1) ±1 1

2g

Z
0 1 (1) 0 1

2

p
g2 + g02

A
0 1 (1) 0 0
g 1 (8) 0 0

h 0 (1) 0
p
2�

e, µ, ⌧ 1/2 (1) �1 ye,µ,⌧/
p
2

⌫e, ⌫µ, ⌫⌧ 1/2 (1) 0 0
u, c, t 1/2 (3) +2/3 yu,c,t/

p
2

d, s, b 1/2 (3) �1/3 yd,s,b/
p
2

2.2 The spectrum

The spectrum of the standard model is presented in Table 1.
All masses are proportional to the VEV of the scalar field, v. For the three massive gauge bosons,

and for the fermions, this is expected: In the absence of spontaneous symmetry breaking, the former
would be protected by the gauge symmetry and the latter by their chiral nature. For the Higgs boson, the
situation is different, as a mass-squared term does not violate any symmetry.

For the charged fermions, the spontaneous symmetry breaking allows their masses because they
are in vector-like representations of the SU(3)C ⇥ U(1)EM group: The LH and RH charged lepton
fields, e, µ and ⌧ , are in the (1)�1 representation; The LH and RH up-type quark fields, u, c and t, are
in the (3)+2/3 representation; The LH and RH down-type quark fields, d, s and b, are in the (3)�1/3

representation. On the other hand, the neutrinos remain massless in spite of the fact that they are in the
(1)0 representation of SU(3)C ⇥ U(1)EM, which allows for Majorana masses. Such masses require a
VEV carried by a scalar field in the (1, 3)+1 representation of the SU(3)C⇥SU(2)L⇥U(1)Y symmetry,
but there is no such field in the SM.

The experimental values of the charged fermion masses are [1] 2

me = 0.510998946(3) MeV , mµ = 105.6583745(24) MeV , m⌧ = 1776.86(12) MeV ,

mu = 2.2+0.5
�0.4 MeV , mc = 1.275+0.025

�0.035 GeV , mt = 173.1± 0.9 GeV ,

md = 4.7+0.5
�0.3 MeV , ms = 95+9

�3 MeV , mb = 4.18+0.04
�0.03 GeV . (26)

2.3 The interactions

Within the SM, the fermions have five types of interactions. These interactions are summarized in Ta-
ble 2. In the next few subsections, we explain the entries of this table.

2.3.1 EM and strong interactions
By construction, a local SU(3)C ⇥ U(1)EM symmetry survives the SSB. The SM has thus the photon
and gluon massless gauge fields. All charged fermions interact with the photon:

LQED, = �2e

3
uiA/ui +

e

3
diA/di + e`iA/`i , (27)

2See [1] for detailed explanations of the quoted quark masses. For q = u, d, s, c, b, mq are the running quark masses in the
MS scheme, with mu,d,s = mu,d,s(µ = 2 GeV) and mc,b = mc,b(µ = mc,b).
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2 The Standard Model

A model of elementary particles and their interactions is defined by the following ingredients: (i) The
symmetries of the Lagrangian and the pattern of spontaneous symmetry breaking (SSB); (ii) The repre-
sentations of fermions and scalars. The Standard Model (SM) is defined as follows:

– The symmetry is a local

GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y . (1)

– It is spontaneously broken by the VEV of a single Higgs scalar,

�(1, 2)+1/2, (h�0i = v/

p
2) , (2)

GSM ! SU(3)C ⇥ U(1)EM (QEM = T3 + Y ) . (3)

– There are three fermion generations, each consisting of five representations of GSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)�1/3, LLi(1, 2)�1/2, ERi(1, 1)�1 . (4)

2.1 The Lagrangian

The most general renormalizable Lagrangian with scalar and fermion fields can be decomposed into

L = Lkin + L + LYuk + L� . (5)

Here Lkin describes free propagation in spacetime, as well as gauge interactions, L gives fermion mass
terms, LYuk describes the Yukawa interactions, and L� gives the scalar potential. We now find the
specific form of the Lagrangian made of the fermion fields QLi, URi, DRi, LLi and ERi (4), and the
scalar field (2), subject to the gauge symmetry (1) and leading to the SSB of Eq. (3).

2.1.1 Lkin

The local symmetry requires the following gauge boson degrees of freedom:

G
µ

a(8, 1)0, W
µ

a (1, 3)0, B
µ(1, 1)0 . (6)

The corresponding field strengths are given by

G
µ⌫

a = @
µ
G
⌫

a � @
⌫
G

µ

a � gsfabcG
µ

b
G
⌫

c ,

W
µ⌫

a = @
µ
W

⌫

a � @
⌫
W

µ

a � g✏abcW
µ

b
W

⌫

c ,

B
µ⌫ = @

µ
B
⌫ � @

⌫
B

µ
. (7)

The covariant derivative is

D
µ = @

µ + igsG
µ

aLa + igW
µ

b
Tb + ig

0
B

µ
Y , (8)

where the La’s are SU(3)C generators (the 3 ⇥ 3 Gell-Mann matrices 1
2�a for triplets, 0 for singlets),

the Tb’s are SU(2)L generators (the 2⇥2 Pauli matrices 1
2⌧b for doublets, 0 for singlets), and the Y ’s are

the U(1)Y charges. Explicitly, the covariant derivatives acting on the various scalar and fermion fields
are given by

D
µ
� =

✓
@
µ +

i

2
gW

µ

b
⌧b +

i

2
g
0
B

µ

◆
� ,
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D
µ
QLi =

✓
@
µ +

i

2
gsG

µ

a�a +
i

2
gW

µ

b
⌧b +

i

6
g
0
B

µ

◆
QLi ,

D
µ
URi =

✓
@
µ +

i

2
gsG

µ

a�a +
2i

3
g
0
B

µ

◆
URi ,

D
µ
DRi =

✓
@
µ +

i

2
gsG

µ

a�a �
i

3
g
0
B

µ

◆
DRi ,

D
µ
LLi =

✓
@
µ +

i

2
gW

µ

b
⌧b �

i

2
g
0
B

µ

◆
LLi ,

D
µ
ERi =

�
@
µ � ig

0
B

µ
�
ERi . (9)

Lkin is given by

LSM
kin = �1

4
G

µ⌫

a Gaµ⌫ �
1

4
W

µ⌫

b
Wbµ⌫ �

1

4
B

µ⌫
Bµ⌫

�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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•  sans Yukawaℒ4

ψ : 3 generations of qi, Ui, Di, li, Ei

U(3)q × U(3)U × U(3)D × U(3)l × U(3)E

66

gS ∼ 1, gW ∼ 0.6, gY ∼ 0.3, λH ∼ 0.2
θ ≲ 10−10 - The strong CP problem

Accidental symmetry

4

The Standard Model 
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D
µ
QLi =

✓
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2
gsG
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a�a +
i

2
gW

µ

b
⌧b +

i

6
g
0
B

µ

◆
QLi ,

D
µ
URi =

✓
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µ +

i

2
gsG

µ

a�a +
2i

3
g
0
B

µ

◆
URi ,

D
µ
DRi =

✓
@
µ +

i

2
gsG

µ

a�a �
i

3
g
0
B

µ

◆
DRi ,

D
µ
LLi =

✓
@
µ +

i

2
gW

µ

b
⌧b �

i

2
g
0
B

µ

◆
LLi ,

D
µ
ERi =

�
@
µ � ig

0
B

µ
�
ERi . (9)

Lkin is given by

LSM
kin = �1

4
G

µ⌫

a Gaµ⌫ �
1

4
W

µ⌫

b
Wbµ⌫ �

1

4
B

µ⌫
Bµ⌫

�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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✓
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◆
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D
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✓
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2
gW

µ
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⌧b �

i

2
g
0
B

µ

◆
LLi ,

D
µ
ERi =

�
@
µ � ig

0
B

µ
�
ERi . (9)

Lkin is given by

LSM
kin = �1

4
G

µ⌫

a Gaµ⌫ �
1

4
W

µ⌫

b
Wbµ⌫ �

1

4
B

µ⌫
Bµ⌫

�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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• The kinetic Lagrangian (flavor and CP conserving)

Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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Lkin is given by

LSM
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4
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1

4
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�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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• The global symmetry

• Reminder:
U(1) : ϕ → eiαQϕ
ϕ†ϕ → ϕ†e−iαQeiαQϕ = ϕ†ϕ

• The kinetic Lagrangian (flavor and CP conserving)
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Lkin is given by
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�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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• The global symmetry

• Reminder:
U(1) : ϕ → eiαQϕ
ϕ†ϕ → ϕ†e−iαQeiαQϕ = ϕ†ϕ

U(N ) = SU(N ) × U(1)
SU(N ) : group of N × N unitary matrices with det = 1

U†U = 1 , det U = 1

• The kinetic Lagrangian (flavor and CP conserving)
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
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– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
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⌫
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⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:
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u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,
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U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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• The global symmetry

• Reminder:
U(1) : ϕ → eiαQϕ
ϕ†ϕ → ϕ†e−iαQeiαQϕ = ϕ†ϕ

U(N ) = SU(N ) × U(1)
SU(N ) : group of N × N unitary matrices with det = 1

U†U = 1 , det U = 1

U = eiαaTa a : 1,...,N2 − 1

ϕi → Uijϕj i, j : 1,...,N

ϕ†ϕ → ϕ†U†Uϕ = ϕ†ϕ

• The kinetic Lagrangian (flavor and CP conserving)

SU(N ) :
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• Flavour and CP violation is in the Yukawa Lagrangian

−ℒYuk = Q̄YuH̃U + Q̄YdHD + L̄YeHE
One can think of the quark Yukawa couplings as spurions that break the global SU(3)3q symmetry

(but are neutral under U(1)B),

Y
u ⇠ (3, 3̄, 1)SU(3)3q

, Y
d ⇠ (3, 1, 3̄)SU(3)3q

, (51)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2
`

symmetry (but are neutral
under U(1)e ⇥ U(1)µ ⇥ U(1)⌧ ),

Y
e ⇠ (3, 3̄)

SU(3)2
`

. (52)

The spurion formalism is convenient for several purposes: parameter counting (see below), identification
of flavor suppression factors (see Section 7), and the idea of minimal flavor violation (see Section 7.2).

2.5 Counting parameters

How many independent parameters are there in Lq

Yuk? The two Yukawa matrices, Y u and Y
d, are 3⇥ 3

and complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all of
them are, however, physical. The pattern of Gglobal breaking means that there is freedom to remove 9 real
and 17 imaginary parameters (the number of parameters in three 3⇥ 3 unitary matrices minus the phase
related to U(1)B). For example, we can use the unitary transformations QL ! VQQL, UR ! VUUR

and DR ! VDDR, to lead to the following interaction basis:

Y
d = �d, Y

u = V
†
�u , (53)

where �d,u are diagonal,

�d = diag(yd, ys, yb) , �u = diag(yu, yc, yt) , (54)

while V is a unitary matrix that depends on three real angles and one complex phase. We conclude that
there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis, we identify the
nine real parameters as six quark masses and three mixing angles, while the single phase is �KM.

How many independent parameters are there in L`

Yuk? The Yukawa matrix Y
e is 3 ⇥ 3 and

complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix. There is, however,
freedom to remove 6 real and 9 imaginary parameters (the number of parameters in two 3 ⇥ 3 unitary
matrices minus the phases related to U(1)3). For example, we can use the unitary transformations LL !
VLLL and ER ! VEER, to lead to the following interaction basis:

Y
e = �e = diag(ye, yµ, y⌧ ) . (55)

We conclude that there are 3 real lepton flavor parameters. In the mass basis, we identify these parameters
as the three charged lepton masses. We must, however, modify the model when we take into account the
evidence for neutrino masses.

3 The CKM matrix

Among the SM interactions, the W -mediated interactions are the only ones that are not diagonal. Conse-
quently, all flavor changing processes depend on the CKM parameters. The fact that there are only four
independent CKM parameters, while the number of measured flavor changing processes is much larger,
allows for stringent tests of the CKM mechanism for flavor changing processes.

3.1 Parametrization of the CKM matrix

The CKM matrix V is a 3⇥ 3 unitary matrix. Its form, however, is not unique:
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−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE
[  transformation and a singular value decomposition theorem]U(3)5

• After EWSB, the CKM matrix can be rotated

As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)

86

which tells us straightforwardly how to transform to the mass basis:

0

@
uL

cL

tL

1

A = V

0

@
udL

usL

ubL

1

A . (36)

Using Eq. (36), we obtain the form of the W interactions (34) in the mass basis:

� gp
2

�
uL cL tL

�
V W/

+

0

@
dL

sL

bL

1

A+ h.c. . (37)

You can easily convince yourself that we would have obtained the same form starting from any arbitrary
interaction basis. We remind you that

V = VuLV
†
dL

(38)

is basis independent. The matrix V is called the CKM matrix [2, 3].
Similarly to the leptons, only left-handed quarks take part in charged-current interactions and,

consequently, parity is violated by these interactions. But then there is an important difference:

1. The W couplings to the quark mass eigenstates are neither universal nor diagonal. The universality
of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we obtain the
following predictions for the W decays:

�(W+ ! `
+
⌫`) / 1 ,

�(W+ ! uidj) / 3|Vij |2 (i = 1, 2; j = 1, 2, 3) . (39)

The top quark is not included because it is heavier than the W boson. Taking this fact into account, and
the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , (40)

we obtain
�(W ! hadrons)/�(W ! leptons) ⇡ 2 . (41)

Experimentally

BR((W ! leptons) = (32.40± 0.27)% BR((W ! hadrons) = (67.60± 0.27)% , (42)

which leads to
�(W ! hadrons)/�(W ! leptons) = 2.09± 0.1 , (43)

which. taking into account radiative corrections, is in beautiful agreement with the SM prediction. The
(hidden) universality within the quark sector is tested by the prediction

�(W ! uX) = �(W ! cX) =
1

2
�(W ! hadrons) . (44)

Experimentally,
�(W ! cX)/�(W ! hadrons) = 0.49± 0.04 . (45)

87

The CKM matrix

Admir Greljo | The Standard Model



75

−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE
[  transformation and a singular value decomposition theorem]U(3)5

• After EWSB, the CKM matrix can be rotated

As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],
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BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,
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⌧
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µ
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µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
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⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
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+
e
�
L
+ ⌫µL W/
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µ
�
L
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⌧
�
L
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�
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Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)

86

which tells us straightforwardly how to transform to the mass basis:

0

@
uL

cL

tL

1

A = V

0

@
udL

usL

ubL

1

A . (36)

Using Eq. (36), we obtain the form of the W interactions (34) in the mass basis:

� gp
2

�
uL cL tL

�
V W/

+

0

@
dL

sL

bL

1

A+ h.c. . (37)

You can easily convince yourself that we would have obtained the same form starting from any arbitrary
interaction basis. We remind you that

V = VuLV
†
dL

(38)

is basis independent. The matrix V is called the CKM matrix [2, 3].
Similarly to the leptons, only left-handed quarks take part in charged-current interactions and,

consequently, parity is violated by these interactions. But then there is an important difference:

1. The W couplings to the quark mass eigenstates are neither universal nor diagonal. The universality
of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we obtain the
following predictions for the W decays:

�(W+ ! `
+
⌫`) / 1 ,

�(W+ ! uidj) / 3|Vij |2 (i = 1, 2; j = 1, 2, 3) . (39)

The top quark is not included because it is heavier than the W boson. Taking this fact into account, and
the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , (40)

we obtain
�(W ! hadrons)/�(W ! leptons) ⇡ 2 . (41)

Experimentally

BR((W ! leptons) = (32.40± 0.27)% BR((W ! hadrons) = (67.60± 0.27)% , (42)

which leads to
�(W ! hadrons)/�(W ! leptons) = 2.09± 0.1 , (43)

which. taking into account radiative corrections, is in beautiful agreement with the SM prediction. The
(hidden) universality within the quark sector is tested by the prediction

�(W ! uX) = �(W ! cX) =
1

2
�(W ! hadrons) . (44)

Experimentally,
�(W ! cX)/�(W ! hadrons) = 0.49± 0.04 . (45)
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The CKM matrix

No FCNC at tree-level ! 
They are suppressed in the SM.

• It only appears in the  interactions, not in W γ, g, Z, h
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−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE
[  transformation and a singular value decomposition theorem]U(3)5

• After EWSB, the CKM matrix can be rotated

which tells us straightforwardly how to transform to the mass basis:

0

@
uL

cL

tL

1

A = V

0

@
udL

usL

ubL

1

A . (36)

Using Eq. (36), we obtain the form of the W interactions (34) in the mass basis:

� gp
2

�
uL cL tL

�
V W/

+

0

@
dL

sL

bL

1

A+ h.c. . (37)

You can easily convince yourself that we would have obtained the same form starting from any arbitrary
interaction basis. We remind you that

V = VuLV
†
dL

(38)

is basis independent. The matrix V is called the CKM matrix [2, 3].
Similarly to the leptons, only left-handed quarks take part in charged-current interactions and,

consequently, parity is violated by these interactions. But then there is an important difference:

1. The W couplings to the quark mass eigenstates are neither universal nor diagonal. The universality
of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we obtain the
following predictions for the W decays:

�(W+ ! `
+
⌫`) / 1 ,

�(W+ ! uidj) / 3|Vij |2 (i = 1, 2; j = 1, 2, 3) . (39)

The top quark is not included because it is heavier than the W boson. Taking this fact into account, and
the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , (40)

we obtain
�(W ! hadrons)/�(W ! leptons) ⇡ 2 . (41)

Experimentally

BR((W ! leptons) = (32.40± 0.27)% BR((W ! hadrons) = (67.60± 0.27)% , (42)

which leads to
�(W ! hadrons)/�(W ! leptons) = 2.09± 0.1 , (43)

which. taking into account radiative corrections, is in beautiful agreement with the SM prediction. The
(hidden) universality within the quark sector is tested by the prediction

�(W ! uX) = �(W ! cX) =
1

2
�(W ! hadrons) . (44)

Experimentally,
�(W ! cX)/�(W ! hadrons) = 0.49± 0.04 . (45)
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As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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which tells us straightforwardly how to transform to the mass basis:

0

@
uL

cL

tL

1

A = V

0

@
udL

usL

ubL

1

A . (36)

Using Eq. (36), we obtain the form of the W interactions (34) in the mass basis:

� gp
2

�
uL cL tL

�
V W/

+

0

@
dL

sL

bL

1

A+ h.c. . (37)

You can easily convince yourself that we would have obtained the same form starting from any arbitrary
interaction basis. We remind you that

V = VuLV
†
dL

(38)

is basis independent. The matrix V is called the CKM matrix [2, 3].
Similarly to the leptons, only left-handed quarks take part in charged-current interactions and,

consequently, parity is violated by these interactions. But then there is an important difference:

1. The W couplings to the quark mass eigenstates are neither universal nor diagonal. The universality
of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we obtain the
following predictions for the W decays:

�(W+ ! `
+
⌫`) / 1 ,

�(W+ ! uidj) / 3|Vij |2 (i = 1, 2; j = 1, 2, 3) . (39)

The top quark is not included because it is heavier than the W boson. Taking this fact into account, and
the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , (40)

we obtain
�(W ! hadrons)/�(W ! leptons) ⇡ 2 . (41)

Experimentally

BR((W ! leptons) = (32.40± 0.27)% BR((W ! hadrons) = (67.60± 0.27)% , (42)

which leads to
�(W ! hadrons)/�(W ! leptons) = 2.09± 0.1 , (43)

which. taking into account radiative corrections, is in beautiful agreement with the SM prediction. The
(hidden) universality within the quark sector is tested by the prediction

�(W ! uX) = �(W ! cX) =
1

2
�(W ! hadrons) . (44)

Experimentally,
�(W ! cX)/�(W ! hadrons) = 0.49± 0.04 . (45)

87

• It only appears in the  interactions, not in W γ, g, Z, h

CKM

•   universality!V1V† = 1 ⟹ ūi
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the

5

• Flavour universal  
/ blind

• Flavour diagonal 
non-universal

• Flavour changing  
/ violating

Recap: The SM interactions
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1
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=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the
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• Flavour universal  
/ blind

• Flavour diagonal 
non-universal

• Flavour changing  
/ violating

Recap: The SM interactions
As an example to experimental tests of diagonality and universality, we can take the leptonic

sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23
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1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.
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Table 2: The SM fermion interactions

interaction fermions force carrier coupling flavor

Electromagnetic u, d, ` A
0

eQ universal
Strong u, d g gs universal

NC weak all Z
0 e(T3�s

2
W

Q)
sW cW

universal
CC weak ūd/¯̀⌫ W

±
gV/g non-universal/universal

Yukawa u, d, ` h yq diagonal

where u1,2,3 = u, c, t, d1,2,3 = d, s, b and `1,2,3 = e, µ, ⌧ . We emphasize the following points:

1. The photon couplings are vector-like and parity conserving.
2. Diagonality: The photon couples to e

+
e
�, µ+

µ
� and ⌧

+
⌧
�, but not to e

±
µ
⌥, e±⌧⌥ or µ±

⌧
⌥

pairs, and similarly in the up and down sectors.
3. Universality: The couplings of the photon to different generations are universal.

All colored fermions (namely, quarks) interact with the gluon:

LQCD, = �gs

2
q�aG/aq , (28)

where q = u, c, t, d, s, b. We emphasize the following points:

1. The gluon couplings are vector-like and parity conserving.
2. Diagonality: The gluon couples to t̄t, c̄c, etc., but not to t̄c or any other flavor changing pair.
3. Universality: The couplings of the gluon to different quark generations are universal.

The universality of the photon and gluon couplings are a result of the SU(3)C ⇥ U(1)EM gauge invari-
ance, and thus hold in any model, and not just within the SM.

2.3.2 Z-mediated weak interactions
All SM fermions couple to the Z-boson:

LZ, =
e

sW cW


�
✓
1

2
� s

2
W

◆
eLiZ/eLi + s

2
W eRiZ/eRi +

1

2
⌫L↵Z/⌫L↵ (29)

+

✓
1

2
� 2

3
s
2
W

◆
uLiZ/uLi �

2

3
s
2
W uRiZ/uRi �

✓
1

2
� 1

3
s
2
W

◆
dLiZ/dLi +

1

3
s
2
W dRiZ/dRi

�
.

where ⌫↵ = ⌫e, ⌫µ, ⌫⌧ . We emphasize the following points:

1. The Z-boson couplings are chiral and parity violating.
2. Diagonality: The Z-boson couples diagonally and, as a result of this, there are no Z-mediated

flavor changing neutral current (FCNC) processes.
3. Universality: The couplings of the Z-boson to different fermion generations are universal.

The universality is a result of a special feature of the SM: all fermions of given chirality and given charge
come from the same SU(2)L ⇥ U(1)Y representation.
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New Physics

•The list of open question  
 
Hierarchy problem 
Flavour puzzle 
Strong CP problem 
Charge quantisation 
 
Dark matter 
Baryon asymmetry    
Neutrino masses 
Inflation 
 
Dark energy 
Quantum gravity 
….
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Effective quantum field theory

Ultraviolet, 
Short-distance,  
Hard

Infrared,  
Long-distance,  
Soft

10 Chapter 1. Introduction to E↵ective Field Theories

At high energies, this expansion is no longer valid and the e↵ective description breaks
down. This breakdown is particularly obvious when computing matrix elements at
loop-order, where the EFT will produce matrix elements that are more divergent
in the UV than their corresponding counterparts from the UV theory. This can be
seen at the example in eq. (1.6). In the e↵ective theory, this graph becomes:

'' =
� C6
⇤2

Z
ddl

(2⇡)d

✓
1

l2 �m2

◆2

=
i� C6

16⇡2⇤2

⇢
1

✏
+ log

µ2

m2

�
, (1.18)

where we worked in dimensional regularization with d = 4 � 2✏. The quantity C6
is the Wilson coe�cient of the e↵ective �6 interaction. The ultraviolet divergence
present in this graph was absent in eq. (1.6). It originates from regions in the
integration over l where the virtual modes becomes hard enough to probe the non-
locality in the e↵ective vertex. In this region, the EFT breaks down and produces
UV divergences. We can actually make use of that fact later to solve the problems
of the aforementioned large logarithms.

We have yet to determine the Wilson coe�cients of the EFT. To this end, let us
return to the statement from which we started and focus on the part of it we have
not discussed: The UV theory and the EFT must agree in the IR.

At the cuto↵ scale ⇤ at which we integrated out the hard modes, LUV and Le↵ must
produce consistent matrix elements. Given that the full theory LUV is known, this
fixed the couplings of Le↵ order by order in power-counting and in perturbation
theory. This producedure is called matching and the cuto↵ scale, ⇤ is often also
called matching scale.

Matching can be done through several methods. By far the most common one is
diagrammatic. One computes matrix elements in both the e↵ective and UV theories
and equates them to detmermine the coupling constants of the e↵ective Lagrangian.
Note that this does not only apply to the Wilson coe�cients of the “new” e↵ective
operators but also to the coupling constants of operators that both Le↵ and LUV

share. For example, the coupling � in our Lagrangian (1.4) will not be the same as
the � in the UV Lagrangian (1.2). Instead, it will receive corrections from virtual
hard modes.

Another way of performing the matching is the background field method. In
this method, fields are separated into the classical fields and quantum fluctuations.
One can then integrate out the hard modes by solving the path integral for them
explicitely. See section 1.6 for an introduction.

1.4.1 Matching at tree-level: Muon decay

A classic example of an e↵ective theory is the Fermi theory of muon decay. The
decay of the muon µ ! e⌫̄e⌫µ proceeds through a virtual W boson in the SM.
The momentum transfer is however much lower than the mass of the W boson,

cutoff
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Figure 1: Generating higher dimension operators by integrating out fields.

The Cuto↵

We normally refer to the common scale ⇤ as the cuto↵. The reason for this is that as we
approach that energy the scattering amplitudes, proportional to (E/⇤)n, start to approach
unity. When this happens the perturbative series will not converge, since 1n = 1, and
operators of arbitrarily high dimension are contributing equally to the scattering amplitude.
When this occurs we must specify the new full theory of microscopic physics that occurs
at the scale ⇤, where now this new physics will involve new fields (sometimes we say new
degrees of freedom, or new particles, all meaning the same thing). In other words, when
this happens we are using the wrong description: The physics at high energies can no longer
be factorised out and we must specify it. For the example of eq. (2.2), we may have a new
scalar particle that has generated this interaction, as in fig. 1, and we should now include
all of the e↵ects of this particle in our calculations.

With all of this in mind, we know what it means to define an EFT. An EFT is entirely
defined by it’s field content and its symmetries, and to some extent the cuto↵. No more and
no less. Once so defined, you can make choices as to what values the coe�cients of operators
take, and calculate!

2.1 Spurions

The concept of spurions is extremely useful in BSM theories. The idea is the following:
Imagine your theory would respect some global symmetry, G, but for a single operator in
the theory which actually breaks this symmetry explicitly. Lets call the coe�cient of this
operator c̃. Then we are safe to assume that above this scale there is only one parameter in
the theory that breaks the symmetry.

In a quantum field theory everything that can happen will happen, by which I mean that
if you go to high enough loop order then every physical observable will eventually feel the
e↵ects of c̃. However, any e↵ects associated with the breaking of the symmetry breaking will
always be accompanied by c̃. If we take the limit c̃ ! 0 then a symmetry is restored. This
is tremendously useful.

Let us see how this works in practise. Consider a single complex scalar field and a Weyl
fermion, both with mass and interactions that we will describe later. The Lagrangian is

L = �
Z

d
4
x


|@µ�|2 + i 

†/@ � M
2
�
|�|2 + 1

2
M  

2

�
+ ... , (2.3)

where the usual spinor contractions are implied. Now, there are only two parameters here,
but there are actually four non-trivial symmetries to consider here. Let us first take M� ! 0.
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theory of gravity (which in turn, can be thought of as an e↵ective theory for General
Relativity).

E↵ective Field Theories (EFTs) are quantum field theories (QFTs) that are less
general by construction. They focus on an isolated region compared to a more
complete QFT (for example the SM), for which they are designed and treat e↵ects
from other regions as perturbations in a well-defined and systematic way. As an
example, consider a theory of two real scalars, � and ' with the Lagrangian:

L =
1

2
(@µ�)(@

µ�)� 1

2
M2�2 +

1

2
(@µ')(@

µ')� 1

2
m2'2 +

�

4!
'4 +

g

3!
'3� . (1.2)

Let � be much heavier than ', meaning M � m and let us consider a process
at very low energy E ⌧ M . Processes with intermediate � particles will then be
suppressed by the propagator

h0|T{�(0)�(x)}|0i =
Z

d4k

(2⇡)4
e�ikx

i

k2 �M2
, (1.3)

where k2 ⇠ O(E2) ⌧ M2. We can see immediately, that neglecting k2 makes
the expressions we are dealing with structurally simpler while still being a good
approximation up to corrections of order O(k2/M2).

The next important point is that at low energies the heavy scalar � cannot be
produced as a real particle. We should therefore be able to describe physics with a
Lagrangian that contains only ':

Le↵ =
1

2
(@µ')(@

µ')� 1

2
m2'2 +

�

4!
'4 +�L . (1.4)

Here �L is a new ingredient with interactions of ' that were previously not part of
the Lagrangian (1.2). While in the full theory we had processes of the form '3 ! '3

through virtual � particles, the interaction terms generating these amplitudes are
missing from the e↵ective Lagrangian since it does not contain �. Therefore, we
must include an interaction of the form

�L � C6
M2

'6 , (1.5)

to describe this process. Note how this operator needs to have a prefactor with two
inverse powers of mass. We have chosen the heavy mass as a prefactor 1/M2 with
no further explanation other than the propagator of � being of this form in the
low-energy limit, but we will justify this later on in more detail.

You might now ask, why we need an e↵ective Lagrangian when we can simply
compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
we are computing radiative corrections. As an example, take the Lagrangian (1.2)
again. At one loop, the interactions in this theory generate a contribution to the

Tree-level example

M

λ2

M2
Φ
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The Cuto↵

We normally refer to the common scale ⇤ as the cuto↵. The reason for this is that as we
approach that energy the scattering amplitudes, proportional to (E/⇤)n, start to approach
unity. When this happens the perturbative series will not converge, since 1n = 1, and
operators of arbitrarily high dimension are contributing equally to the scattering amplitude.
When this occurs we must specify the new full theory of microscopic physics that occurs
at the scale ⇤, where now this new physics will involve new fields (sometimes we say new
degrees of freedom, or new particles, all meaning the same thing). In other words, when
this happens we are using the wrong description: The physics at high energies can no longer
be factorised out and we must specify it. For the example of eq. (2.2), we may have a new
scalar particle that has generated this interaction, as in fig. 1, and we should now include
all of the e↵ects of this particle in our calculations.

With all of this in mind, we know what it means to define an EFT. An EFT is entirely
defined by it’s field content and its symmetries, and to some extent the cuto↵. No more and
no less. Once so defined, you can make choices as to what values the coe�cients of operators
take, and calculate!

2.1 Spurions

The concept of spurions is extremely useful in BSM theories. The idea is the following:
Imagine your theory would respect some global symmetry, G, but for a single operator in
the theory which actually breaks this symmetry explicitly. Lets call the coe�cient of this
operator c̃. Then we are safe to assume that above this scale there is only one parameter in
the theory that breaks the symmetry.

In a quantum field theory everything that can happen will happen, by which I mean that
if you go to high enough loop order then every physical observable will eventually feel the
e↵ects of c̃. However, any e↵ects associated with the breaking of the symmetry breaking will
always be accompanied by c̃. If we take the limit c̃ ! 0 then a symmetry is restored. This
is tremendously useful.

Let us see how this works in practise. Consider a single complex scalar field and a Weyl
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where the usual spinor contractions are implied. Now, there are only two parameters here,
but there are actually four non-trivial symmetries to consider here. Let us first take M� ! 0.
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theory of gravity (which in turn, can be thought of as an e↵ective theory for General
Relativity).

E↵ective Field Theories (EFTs) are quantum field theories (QFTs) that are less
general by construction. They focus on an isolated region compared to a more
complete QFT (for example the SM), for which they are designed and treat e↵ects
from other regions as perturbations in a well-defined and systematic way. As an
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where k2 ⇠ O(E2) ⌧ M2. We can see immediately, that neglecting k2 makes
the expressions we are dealing with structurally simpler while still being a good
approximation up to corrections of order O(k2/M2).

The next important point is that at low energies the heavy scalar � cannot be
produced as a real particle. We should therefore be able to describe physics with a
Lagrangian that contains only ':
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Here �L is a new ingredient with interactions of ' that were previously not part of
the Lagrangian (1.2). While in the full theory we had processes of the form '3 ! '3

through virtual � particles, the interaction terms generating these amplitudes are
missing from the e↵ective Lagrangian since it does not contain �. Therefore, we
must include an interaction of the form

�L � C6
M2

'6 , (1.5)

to describe this process. Note how this operator needs to have a prefactor with two
inverse powers of mass. We have chosen the heavy mass as a prefactor 1/M2 with
no further explanation other than the propagator of � being of this form in the
low-energy limit, but we will justify this later on in more detail.

You might now ask, why we need an e↵ective Lagrangian when we can simply
compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
we are computing radiative corrections. As an example, take the Lagrangian (1.2)
again. At one loop, the interactions in this theory generate a contribution to the
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compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
we are computing radiative corrections. As an example, take the Lagrangian (1.2)
again. At one loop, the interactions in this theory generate a contribution to the
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where k2 ⇠ O(E2) ⌧ M2. We can see immediately, that neglecting k2 makes
the expressions we are dealing with structurally simpler while still being a good
approximation up to corrections of order O(k2/M2).
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Here nk denotes the number of operators at order k. The dimensionless coupling
coe�cients of the operators Cj are called Wilson coe�cients. They encode the
short-distance physics that we have integrated out, hence they are sometimes called
short-distance coe�cients. At a given order k, the number of operators nk is finite.
Once we truncate the sum over k at a finite value N , Le↵ will contain a finite number
of operators.

While the example of heavy and light particles in low-energy processes is by far
the most common type of EFT construction, let us briefly digress into a di↵erent
example to point out some points that are generic to the idea of EFTs and some
points that are specific to the example at hand.

The light fields in our previous example counted as soft because of their low
invariant mass. We immediately knew that their invariant mass would be small
since we assumed every component of their momenta to be small, k ⇠ E = �M .
However, when looking at eq. (1.14), it is clear that it su�ces to have k2 to be small.
This can be the case for massless, highly energetic fields with kµ ⇠ (M, 0, 0,M). In
this example, the field would still count as soft, since k2 ⇠ 0 even though individual
components of its momentum kµ are large. Note that in contrast to our previous
example, derivatives in the operators do not necessarily yield a power-suppression,
since the derivative along the direction of k is actually of the high scale. Similarly,
a completely massless field can count as hard, if it is highly o↵-shell. Its propagator
would then be of the form 1/k2 with k2 ⇠ M2. This example leads to the Soft-
Collinear E↵ective Theory, an e↵ective theory developed for hard processes in QCD.

1.4 Matching

In the previous section we established that in order to construct an EFT, we split
the degrees of freedom of the UV theory into hard and soft modes and remove hard
modes, which we defined in connection with a cuto↵ ⇤. The di↵erence between the
e↵ective and the UV theory were the absence of the hard modes and the presence
of new interactions of the soft modes in the EFT. These new interactions came with
to-be-determined coupling constants, the Wilson coe�cients. In a top-down EFT,
i.e. when the UV theory is known, these constants can be determined from the
following line of reasoning: The UV theory and the EFT must agree in the IR, but
will generally di↵er in the UV.

The fact that they di↵er is almost too trivial to dwell upon: Processes in the
deep UV can involve external fields that we classified as hard modes before, which
can obviously not be generated in the EFT. But even scattering processes between
the soft modes at hard-scale momentum transfers will in general produce di↵erent
results. This is due to the fact that the e↵ective interactions in the EFT are con-
structed in a local OPE, since we argued that the soft modes cannot probe the small
non-locality in the short-distance e↵ects generated by hard physics. In the language
of Feynman diagrams, we expanded the propagator as

1

k2 �M2
= � 1

M2


1 +O

✓
k2

M2

◆�
(1.17)
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Figure 1: Generating higher dimension operators by integrating out fields.

The Cuto↵

We normally refer to the common scale ⇤ as the cuto↵. The reason for this is that as we
approach that energy the scattering amplitudes, proportional to (E/⇤)n, start to approach
unity. When this happens the perturbative series will not converge, since 1n = 1, and
operators of arbitrarily high dimension are contributing equally to the scattering amplitude.
When this occurs we must specify the new full theory of microscopic physics that occurs
at the scale ⇤, where now this new physics will involve new fields (sometimes we say new
degrees of freedom, or new particles, all meaning the same thing). In other words, when
this happens we are using the wrong description: The physics at high energies can no longer
be factorised out and we must specify it. For the example of eq. (2.2), we may have a new
scalar particle that has generated this interaction, as in fig. 1, and we should now include
all of the e↵ects of this particle in our calculations.

With all of this in mind, we know what it means to define an EFT. An EFT is entirely
defined by it’s field content and its symmetries, and to some extent the cuto↵. No more and
no less. Once so defined, you can make choices as to what values the coe�cients of operators
take, and calculate!

2.1 Spurions

The concept of spurions is extremely useful in BSM theories. The idea is the following:
Imagine your theory would respect some global symmetry, G, but for a single operator in
the theory which actually breaks this symmetry explicitly. Lets call the coe�cient of this
operator c̃. Then we are safe to assume that above this scale there is only one parameter in
the theory that breaks the symmetry.

In a quantum field theory everything that can happen will happen, by which I mean that
if you go to high enough loop order then every physical observable will eventually feel the
e↵ects of c̃. However, any e↵ects associated with the breaking of the symmetry breaking will
always be accompanied by c̃. If we take the limit c̃ ! 0 then a symmetry is restored. This
is tremendously useful.

Let us see how this works in practise. Consider a single complex scalar field and a Weyl
fermion, both with mass and interactions that we will describe later. The Lagrangian is

L = �
Z

d
4
x
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†/@ � M
2
�
|�|2 + 1

2
M  

2

�
+ ... , (2.3)

where the usual spinor contractions are implied. Now, there are only two parameters here,
but there are actually four non-trivial symmetries to consider here. Let us first take M� ! 0.
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theory of gravity (which in turn, can be thought of as an e↵ective theory for General
Relativity).

E↵ective Field Theories (EFTs) are quantum field theories (QFTs) that are less
general by construction. They focus on an isolated region compared to a more
complete QFT (for example the SM), for which they are designed and treat e↵ects
from other regions as perturbations in a well-defined and systematic way. As an
example, consider a theory of two real scalars, � and ' with the Lagrangian:
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Let � be much heavier than ', meaning M � m and let us consider a process
at very low energy E ⌧ M . Processes with intermediate � particles will then be
suppressed by the propagator

h0|T{�(0)�(x)}|0i =
Z

d4k

(2⇡)4
e�ikx

i

k2 �M2
, (1.3)

where k2 ⇠ O(E2) ⌧ M2. We can see immediately, that neglecting k2 makes
the expressions we are dealing with structurally simpler while still being a good
approximation up to corrections of order O(k2/M2).

The next important point is that at low energies the heavy scalar � cannot be
produced as a real particle. We should therefore be able to describe physics with a
Lagrangian that contains only ':

Le↵ =
1

2
(@µ')(@

µ')� 1

2
m2'2 +

�

4!
'4 +�L . (1.4)

Here �L is a new ingredient with interactions of ' that were previously not part of
the Lagrangian (1.2). While in the full theory we had processes of the form '3 ! '3

through virtual � particles, the interaction terms generating these amplitudes are
missing from the e↵ective Lagrangian since it does not contain �. Therefore, we
must include an interaction of the form

�L � C6
M2

'6 , (1.5)

to describe this process. Note how this operator needs to have a prefactor with two
inverse powers of mass. We have chosen the heavy mass as a prefactor 1/M2 with
no further explanation other than the propagator of � being of this form in the
low-energy limit, but we will justify this later on in more detail.

You might now ask, why we need an e↵ective Lagrangian when we can simply
compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
we are computing radiative corrections. As an example, take the Lagrangian (1.2)
again. At one loop, the interactions in this theory generate a contribution to the
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Here nk denotes the number of operators at order k. The dimensionless coupling
coe�cients of the operators Cj are called Wilson coe�cients. They encode the
short-distance physics that we have integrated out, hence they are sometimes called
short-distance coe�cients. At a given order k, the number of operators nk is finite.
Once we truncate the sum over k at a finite value N , Le↵ will contain a finite number
of operators.

While the example of heavy and light particles in low-energy processes is by far
the most common type of EFT construction, let us briefly digress into a di↵erent
example to point out some points that are generic to the idea of EFTs and some
points that are specific to the example at hand.

The light fields in our previous example counted as soft because of their low
invariant mass. We immediately knew that their invariant mass would be small
since we assumed every component of their momenta to be small, k ⇠ E = �M .
However, when looking at eq. (1.14), it is clear that it su�ces to have k2 to be small.
This can be the case for massless, highly energetic fields with kµ ⇠ (M, 0, 0,M). In
this example, the field would still count as soft, since k2 ⇠ 0 even though individual
components of its momentum kµ are large. Note that in contrast to our previous
example, derivatives in the operators do not necessarily yield a power-suppression,
since the derivative along the direction of k is actually of the high scale. Similarly,
a completely massless field can count as hard, if it is highly o↵-shell. Its propagator
would then be of the form 1/k2 with k2 ⇠ M2. This example leads to the Soft-
Collinear E↵ective Theory, an e↵ective theory developed for hard processes in QCD.

1.4 Matching

In the previous section we established that in order to construct an EFT, we split
the degrees of freedom of the UV theory into hard and soft modes and remove hard
modes, which we defined in connection with a cuto↵ ⇤. The di↵erence between the
e↵ective and the UV theory were the absence of the hard modes and the presence
of new interactions of the soft modes in the EFT. These new interactions came with
to-be-determined coupling constants, the Wilson coe�cients. In a top-down EFT,
i.e. when the UV theory is known, these constants can be determined from the
following line of reasoning: The UV theory and the EFT must agree in the IR, but
will generally di↵er in the UV.

The fact that they di↵er is almost too trivial to dwell upon: Processes in the
deep UV can involve external fields that we classified as hard modes before, which
can obviously not be generated in the EFT. But even scattering processes between
the soft modes at hard-scale momentum transfers will in general produce di↵erent
results. This is due to the fact that the e↵ective interactions in the EFT are con-
structed in a local OPE, since we argued that the soft modes cannot probe the small
non-locality in the short-distance e↵ects generated by hard physics. In the language
of Feynman diagrams, we expanded the propagator as
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Effective Quantum Field Theory

Any QFT is but an effective description
characterized by a short distance cut-off

⇤ ⌘ 1

⌧
⌘ 1

L

<latexit sha1_base64="Iq2klMJRR45XW4o5AguVRpQ0aDA="></latexit>

Like in all other cases,  short distance effects are 
controlled by an infinite, but systematic, expansion

in powers of                        L = 1/⇤

<latexit sha1_base64="oxcxgZW96JgT6GNbvMy4qlC2wkI="></latexit>

The cut-off
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(dim 𝒪 − 4)

Theory construction: 
1. Space-time & gauge invariance + field content, 
2. Lagrangian(x) = infinite polynomial in fields and derivatives,

• IR relevance: dim[𝒪] ≤ 4

ℒ = ∑ c𝒪Λ4−dim 𝒪
𝒪 𝒪

• Irrelevant couplings suppressed by Λ4−dim 𝒪
𝒪
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ρ

= + +

Figure 1: The one loop corrections to the Higgs mass parameter in the SM. All three diagrams
are quadratically divergent, leading to the hierarchy problem.

• In the above discussion we have been somewhat cavalier with the cut-off scale ⇤2. One
might worry (and indeed many people do!) that the hierarchy problem is merely an ar-
tifact of using a crude cut-off regulator. However, those understanding effective theories
well realize quickly that the hierarchy problem is not at all about various regularization
schemes. As in any good effective theory, ⇤ in our calculations is merely standing in
for the physical mass threshold at which new heavy particles appear. You can think
of ⇤ as literally the mass of a new heavy particle (mNP ), and the “quadratically di-
vergent" contributions to the Higgs mass parameter simply as log-divergent or finite
contribution from the heavy particle which are proportional to m2

NP
. Moreover, these

contributions contain an imaginary part from the new particle going on-shell, which is
physical and cannot be removed by regulation scheme. Thus using dimensional regular-
ization (a scheme where power law divergences are simply regulated to zero) is really
not a solution of the hierarchy problem.

• The hierarchy problem is really the sensitivity to new scales. If there is no new scale
there really is no hierarchy problem. However most physicists believe that there are at
least two issues that will force us to extend the SM: the appearance of quantum gravity
around the Planck scale and the appearance of a Landau pole in the hypercharge gauge
coupling at exponentially large scales.

• For a while it was popular to play with the idea that the terms in Eq. (1.2) actually
cancel each other. This used to be known as the “Veltman condition", which would have
singled out a very particular value for the Higgs mass. However we can easily see that
even if the mass had turned out to be the magical value (which it did not) this would not
have solved the hierarchy problem. As we discussed in Eq. (1.2) ⇤ is merely a stand-in
for the mass of a heavy particle that will ultimately regulate these loops. However this
can numerically be different for the three diagrams, thus one should really be talking
about the gauge cut-off scale ⇤g, the fermion cut-off scale ⇤f and the Higgs cut-off scale
⇤H , which could all be different by O(1) factors or even more. Thus it is not really
meaningful to talk about a Veltman-like condition, unless some symmetry ensures that
all these cut-off scales are equal.

• A simple way to phrase the hierarchy problem is the fact that the Higgs mass term
µ2

|H|
2 is a relevant operator, which grows towards the IR. The Wilsonian formulation

of the hierarchy problem then is that it is difficult to choose a RG trajectory which in

– 3 –

π+ π−

γ
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•  sets the EW scale.ℒ2 = μ2H†H

• Naturalness: New mass threshold not 
far above the EW scale

• Supersymmetry?
• Composite Higgs / Extra Dimensions?
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physical and cannot be removed by regulation scheme. Thus using dimensional regular-
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Approximate Quark Flavor Conservation:

• When  => V = 1 U(1)u+d × U(1)c+s × U(1)t+b
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 Approximate symmetriesℒ4 :

Approximate Quark Flavor Conservation:

• When  => V = 1 U(1)u+d × U(1)c+s × U(1)t+b

• GIM mechanism: When up or down-quark masses are degenerate, 
i.e.  or , no quark flavour violation.̂Yu ∝ 1 ̂Yd ∝ 1
−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE

 If , rotate , and vice versa⟹ ̂Yd ∝ 1 q → V†q, D → V†D
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 spurion appears only in  interaction  No tree-level FCNCV W±
μ ⟹

 Approximate symmetriesℒ4 :

qi

qi

�, Z

qi

qi

g

qi

qi

h

dj

ui

W

Vij

Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the

5

Approximate Quark Flavor Conservation:

ℒ ⊃
g

2
ūi

LVijγμdj
L Wμ
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• Approximate CP

The CKM alignment

Jarlskog invariant: 
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g
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ūi

LVijγμdj
L Wμ

Vij → ei(θi
u−θ j

d)Vij
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• Approximate CP

The CKM alignment

Jarlskog invariant: 
ℒ ⊃

g

2
ūi

LVijγμdj
L Wμ

Vij → ei(θi
u−θ j

d)Vij

Experiment:
SM:

Example: Electron electric dipole moment

2109.15085

•   higher loop suppression
• Chirality flips  The mass hierarchy suppression

J →
→

 Approximate symmetriesℒ4 :



• Accidental symmetries (exact and approximate) are 
broken by the irrelevant couplings / new physics. 

• Testing accidental symmetries is an opportunity  
 Efficient probe of high-energy dynamics.⟹
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 Neutrino massesℒ5 :

ℒ5 =
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Λ
LiLjHH

Large  explains tiny Λ mν
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• LFV
Neutrino oscillations
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ℬ(μ → eγ)SM ∼ 10−54

• LFV
Neutrino oscillations

Mν,ij = YM
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v2

Λ

Experiment:
BR(μ → eγ) ≲ 10−13

 Neutrino massesℒ5 :

ℒ5 =
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Λ
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Efficient GIM mechanism!


