The Standard Model

Admir Greljo

FNSNF

Swiss National Science Foundation
Eccellenza, Project-186866

A timeline of the Nobel Prize

Year

Quantum fields

- The Basic Building Blocks of the Universe

Quantum + Fields =

Particles are ripples (excitations) of fields tied into little parcels of energy due to quantum mechanics.

Quantum fields

- Free quantised Dirac field: $\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi$

$$
\begin{gathered}
\Psi(x)=\int \frac{d^{3} p}{(2 \pi)^{3} \sqrt{2 E_{\mathbf{p}}}} \sum_{s=1,2}\left(a_{\mathbf{p}, s} u^{s}(p) e^{-i p x}+b_{\mathbf{p}, s}^{\dagger} v^{s}(p) e^{i p x}\right) \\
\bar{\Psi}=\Psi^{\dagger} \gamma^{0} \quad E_{\mathbf{p}}=\sqrt{\mathbf{p}^{2}+m^{2}} \quad \text { spin }=1 / 2
\end{gathered}
$$

- Particle state

$$
a_{\mathbf{p}, s}^{\dagger}|0\rangle
$$

- Antiparticle state

$$
b_{\mathbf{p}, s}^{\dagger}|0\rangle
$$

Quantum fields

- Local interactions:

Decay:The ripple of the ϕ field excites ψ and $\bar{\psi}$ fields

The Standard Model fields

.

The Standard Model fields

Matter fields
Quarks and Leptons
Fermions / spin-I/2

The Standard Model fields

Force carrier fields
Vector bosons / spin- I

The Standard Model fields

The Higgs field Scalar boson / spin-0

Fundamental forces

Elementary Particles of Matter

Quarks

(4)
(d)
(e)

Elementary Particles of Matter

Proton

Elementary Particles of Matter

Quarks

Elementary Particles of Matter

Flavour

Quarks

Leptons

- Generations:

Mysterious property of matter!

Flavour Puzzle

The hierarchy of scales?

Quantum Gravity ${ }_{10^{[8]}}^{[\operatorname{Cax}} \uparrow$

New Particles/

Strong scale

(C) (b)
(a)
(a)
(a)
(a) Forces?

Other open problems:
Charge quantisation
Dark matter
Baryon asymmetry
Inflation
Strong CP problem
Dark energy

Standard Model of Elementary Particles

Gauge symmetry

－Example：Electrodynamics has a $U(1)$ gauge（or local）symmetry

（

f

Abstract

－

_都
．

\square

Gauge symmetry
trodynamics has a $U(1)$ gauge（or lo

21
Gauge symmetry
\square

$$
\text { Example: Electrodynamics has a } U(1) \text { gauge (or }
$$

位冨
\qquad
\qquad trodynamics has a $U(1)$ gauge or
\qquad

 trodynamics has a $U(1)$ gauge\qquad trodynamics has a $U(1)$ gauge（or

促
\qquad
路
\qquad $($
．

Gauge symmetry

- Example: Electrodynamics has a $U(1)$ gauge (or local) symmetry
- The phase is an arbitrary function over spacetime $\theta(x)$

$$
\phi(x) \rightarrow e^{i \theta(x)} \phi(x)
$$

Gauge symmetry

- Example: Electrodynamics has a $U(1)$ gauge (or local) symmetry
- The phase is an arbitrary function over spacetime $\theta(x)$

$$
\phi(x) \rightarrow e^{i \theta(x)} \phi(x)
$$

- Solution: Introduce a gauge field! Transformation

$$
A^{\mu}(x) \rightarrow A^{\mu}(x)-\frac{1}{g} \partial^{\mu} \theta(x)
$$

- The covariant derivative $D^{\mu}=\partial^{\mu}+i g A^{\mu}$

Gauge symmetry

- Example: Electrodynamics has a $U(1)$ gauge (or local) symmetry
- The phase is an arbitrary function over spacetime $\theta(x)$

$$
\phi(x) \rightarrow e^{i \theta(x)} \phi(x)
$$

- Solution: Introduce a gauge field! Transformation

$$
A^{\mu}(x) \rightarrow A^{\mu}(x)-\frac{1}{g} \partial^{\mu} \theta(x)
$$

- The covariant derivative $D^{\mu}=\partial^{\mu}+i g A^{\mu}$
- The invariant Lagrangian:

$$
\mathscr{L}=\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\mathscr{V}(\phi)
$$

- The field strength tensor:

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Gauge symmetry

- Example: Electrodynamics has a $U(1)$ gauge (or local) symmetry
- The phase is an arbitrary function over spacetime $\theta(x)$

$$
\phi(x) \rightarrow e^{i \theta(x)} \phi(x)
$$

- Solution: Introduce a gauge field! Transformation

$$
A^{\mu}(x) \rightarrow A^{\mu}(x)-\frac{1}{g} \partial^{\mu} \theta(x)
$$

- The covariant derivative $D^{\mu}=\partial^{\mu}+i g A^{\mu}$
- The invariant Lagrangian:

$$
\mathscr{L}=\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\mathscr{V}(\phi)
$$

- The $m^{2} A^{\mu} A_{\mu}$ is forbidden!
- The field strength tensor:

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Quantum electrodynamics

- $U(1)$ gauge theory for a Dirac fermion

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\Psi}(i \not \partial-m) \Psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}\right)^{2}-e A_{\mu} \bar{\Psi} \gamma^{\mu} \Psi
$$

Fig. 5.15 The QED vertex: the solid lines represent the fermions and the wavy line the photon.

"for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles"

Quantum electrodynamics

- $U(1)$ gauge theory for a Dirac fermion
$\mathcal{L}_{\mathrm{QED}}=\bar{\Psi}(i \not \partial-m) \Psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\prime}\right.$
Example: Anomalous magnetic moment $\vec{\mu}=g \frac{e}{2 m} \vec{S}$ Dirac: $g=2$

Fig. 5.15 The QED vertex: the solid lines represent the fermions and the wavy line the photon.

The Nobel Prize in Physics 1965

"for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles"

Quantum electrodynamics

- $U(1)$ gauge theory for a Dirac fermion

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{QED}}=\bar{\Psi}(i \not \partial-m) \Psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}\right. \\
& \text { Example: Anomalous magnetic moment } \vec{\mu}=g \frac{e}{2 m} \vec{S}
\end{aligned}
$$ Dirac: $g=2$

Schwinger: $(g-2) / 2 \approx$

Fig. 5.15 The QED vertex: the solid lines represent the fermions and the wavy line the photon.

The Nobel Prize in Physics 1965

"for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles"

Quantum electrodynamics

- $U(1)$ gauge theory for a Dirac fermion

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{QED}}=\bar{\Psi}(i \not \partial-m) \Psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}\right. \\
& \text { Example: Anomalous magnetic moment } \vec{\mu}=g \frac{e}{2 m} \vec{S}
\end{aligned}
$$ Dirac: $g=2$

Schwinger: $(g-2) / 2 \approx$

Kinoshita et al $a_{\mathrm{e}}=0.001159652181643$ (764) (5 loops) Phys.Rev.D91 (2015)
Experiment $a_{\mathrm{e}}=0.00115965218073(28)$

Fig. 5.15 The QED vertex: the solid lines represent the fermions and the wavy line the photon.

The Nobel Prize in Physics 1965
 particles"
"for their fundamental work in quantum
electrodynamics, with deep-ploughing
consequences for the physics of elementary
"for their fundamental work in quantum
electrodynamics, with deep-ploughing
consequences for the physics of elementary
"for their fundamental work in quantum
electrodynamics, with deep-ploughing
consequences for the physics of elementary
Sin-Itiro Tomonaga
Richard P. Feynman

Quantum chromodynamics

- $S U(3)$ non-Abelian gauge theory
- Quark: Dirac fermion in 3 of $S U(3)$

$$
\mathcal{L}_{Q C D}=i \bar{\Psi}^{\alpha, A} \not \partial \Psi^{\alpha, A}-m_{A} \bar{\Psi}^{\alpha, A} \Psi^{\alpha, A}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

$$
+g A_{\mu}^{a} \bar{\Psi}^{\alpha, A} \gamma^{\mu} T_{\alpha \beta}^{a} \Psi^{\beta, A}
$$

$\alpha=1,2,3$ the color
$A=u, d, c, s, t, b$ the flavor
$a=1, \ldots, 8$ Gluons

Quantum chromodynamics

The Nobel Prize in Physics 2004

"for the discovery of asymptotic freedom in the theory of the strong interaction"

Confinement
Asymptotic freedom

$$
\frac{d g_{i}}{d \log \mu}=-\frac{b_{i}}{(4 \pi)^{2}} g_{i}^{3} \quad b_{3}=\frac{33}{3}-\frac{4}{3} N_{g}
$$

The Standard Model running

$$
\frac{S U(3)_{C}}{\mathrm{QCD}} \times \frac{S U(2)_{L} \times U(1)_{Y}}{\text { Electroweak }}
$$

Unification of Forces?

$$
\alpha_{i}=g_{i}^{2} / 4 \pi
$$

The Electroweak sector

The (Leptonic) Standard Model

The Nobel Prize in Physics 1979

$S U(2)_{L} \times U(1)_{Y}$
 $\langle\phi\rangle \neq 0$
 $U(1)_{E M}$

$\mathcal{L}_{\text {kin }}=-\frac{1}{4} W_{a}^{\mu \nu} W_{a \mu \nu}-\frac{1}{4} B^{\mu \nu} B_{\mu \nu}+i \overline{L_{L}^{i}} D L_{L}^{i}+i \overline{E_{R}^{i}} D E_{R}^{i}+\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)$.
$-\mathcal{L}_{\phi}=\mu^{2}\left(\phi^{\dagger} \phi\right)+\lambda\left(\phi^{\dagger} \phi\right)^{2} \quad-\mathcal{L}_{\text {Yuk }}=Y_{i j}^{e} \overline{L_{L}^{i}} E_{R}^{j} \phi+$ h.c.

Photo from the Nobel Sheldon Lee Glashow

Photo from the Nobel Abdus Salam

Photo from the Nobel
Foundation archive. Steven Weinberg
"for their contributions to the theory of the unified weak and electromagnetic interaction between elementary particles, including, inter alia, the prediction of the weak neutral current"
(i) The symmetry is a local

$$
S U(2)_{L} \times U(1)_{Y} .
$$

(ii) There are three fermion generations, each consisting of two different representations:

$$
L_{L}^{i}(2)_{-1 / 2}, \quad E_{R}^{i}(1)_{-1}, \quad i=1,2,3
$$

(iii) There is a single scalar multiplet:

$$
\phi(2)_{+1 / 2} .
$$

The Higgs field

- How do elementary particles get a mass?
The Higgs
mechanism
- The Higgs field plays a key role!
- The Higgs particle is the excitation of the Higgs field.

Spontaneous symmetry breaking
 - Complex scalar field: $\mathscr{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-\mathscr{V}$
 Span

d

Abstract

\qquad

\square
-
-

Abstract

.

I

(1) (1) (1)

■
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(

都
\square

Spontaneous symmetry breaking

- Complex scalar field: $\mathscr{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-\mathscr{V}$
- Assume $U(1)$ symmetry:*for the moment GLOBAL $\phi(x) \rightarrow e^{i \theta} \phi(x)$

Spontaneous symmetry breaking

- Complex scalar field: $\mathscr{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-\mathscr{V}$
- Assume $U(1)$ symmetry:
$\phi(x) \rightarrow e^{i \theta} \phi(x)$
- The potential:

$$
\mathscr{V}=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

Spontaneous symmetry breaking

- Complex scalar field: $\mathscr{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-\mathscr{V}$
- Assume $U(1)$ symmetry:
$\phi(x) \rightarrow e^{i \theta} \phi(x)$
- The potential:

$$
\mathscr{V}=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

- Stability condition: $\lambda>0$
- What about μ^{2} ?

Spontaneous symmetry breaking

- Complex scalar field: $\mathscr{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-\mathscr{V}$
- Assume $U(1)$ symmetry: $\phi(x) \rightarrow e^{i \theta} \phi(x)$
- The potential:

$$
\mathscr{V}=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

- Stability condition: $\lambda>0$
- What about μ^{2} ?

$$
\mu^{2}>0
$$

Spontaneous symmetry breaking

- Complex scalar field: $\mathscr{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-\mathscr{V}$
- Assume $U(1)$ symmetry: $\phi(x) \rightarrow e^{i \theta} \phi(x)$
- The potential:

$$
\mathscr{V}=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

- Stability condition: $\lambda>0$
- What about μ^{2} ?

- SSB phenomena: Theory has a symmetry but predicts multiple degenerate asymmetrical ground states.

Spontaneous symmetry breaking

Spontaneous symmetry breaking

- Expansion around a ground state

$$
\phi(x)=\frac{v+h(x)}{\sqrt{2}} e^{i \frac{\xi(x)}{v}}
$$

- $h(x)$ - The Higgs

Massive particle

$$
m_{h}^{2}=\left.\frac{\partial^{2} \mathscr{V}}{\partial h^{2}}\right|_{h=0}
$$

$$
\mathscr{V}=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

Massless particle
$\xi(x)$ - the Goldstone

$$
m_{\xi}^{2}=0
$$

The Higgs mechanism

- In the SM, the Higgs mechanism gives masses to:

Weak force carriers: $W^{ \pm}, Z$

Matter: Quarks and Leptons

The Higgs mechanism

- The symmetry is gauged when $\theta \rightarrow \theta(x)$.
- This introduces a vector field $A_{\mu}(x)$.
- Gauge theories predict massless $A_{\mu}(x)$ with 2 d.o.f.
- When SSB happens, the vector field becomes massive (3 d.o.f)!
- The Goldstone boson is the longitudinal polarisation of $A_{\mu}(x)$.

The Higgs mechanism

- Start with

$$
\mathscr{L}=\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\mathscr{V}(\phi)
$$

- And assume $\mathscr{V}(\phi)$ satisfies the SSB condition

The Higgs mechanism

- Start with

$$
\mathscr{L}=\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\mathscr{V}(\phi)
$$

- And assume $\mathscr{V}(\phi)$ satisfies the SSB condition
- Expand around the minimum: $\phi(x)=\frac{v+h(x)}{\sqrt{2}} e^{i \frac{\xi(x)}{v}}$
- Fix a gauge: $\theta(x)=-\xi(x) / v$

The Higgs mechanism

- Start with

$$
\mathscr{L}=\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\mathscr{V}(\phi)
$$

- And assume $\mathscr{V}(\phi)$ satisfies the SSB condition
- Expand around the minimum: $\phi(x)=\frac{v+h(x)}{\sqrt{2}} e^{i \frac{\xi(x)}{v}}$
- Fix a gauge: $\theta(x)=-\xi(x) / v$
- The gauge boson eats up the Goldstone boson to become massive!

$$
\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right) \quad \longrightarrow \quad \mathscr{L} \supset \frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu}
$$

The covariant derivative: $D^{\mu}=\partial^{\mu}+i g A^{\mu}$

The Higgs mechanism

- Weak force carriers

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Spontaneous</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">symmetry breaking</td>
</tr>
</tbody>
</table>
<table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Spontaneous</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">symmetry breaking</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Spontaneous |
| :---: |
| symmetry breaking |</table-markdown></div>
 \square

The Goldstone

- I d.o.f.

The

l of

The Higgs mechanism

Weak force carriers

- I d.o.f.
- 2 d.o.f.

The Higgs mechanism

- Weak force carriers

- I d.o.f.
- 2 d.o.f.
- 3 d.o.f.

The Higgs mechanism

Matter: Quarks and Leptons

- The left-handed and the right-handed fields have different $U(1)_{Y}$ phases:

$$
\theta_{f_{L}} \neq \theta_{f_{R}} \quad \Longrightarrow \quad \text { The mass } m_{f} \bar{f}_{L} f_{R} \text { is forbidden! }
$$

The Higgs mechanism

- Matter: Quarks and Leptons

- The left-handed and the right-handed fields have different $U(1)_{Y}$ phases:

$$
\theta_{f_{L}} \neq \theta_{f_{R}} \quad \Longrightarrow \quad \text { The mass } m_{f} \bar{f}_{L} f_{R} \text { is forbidden! }
$$

- The Higgs field saves the day, $\theta_{H}+\theta_{f_{R}}=\theta_{f_{L}}$

$$
\mathscr{L} \supset-y_{f} \bar{f}_{L} f_{R} \phi \quad \Longrightarrow \quad m_{f}=y_{f}\langle\phi\rangle
$$

- The mass \propto the strength of the interaction with the Higgs field

Flavour Puzzle

*Credit to Professor David J Miller Analogy Here is my adaption:

The Higgs field

Analogy

Top quark, $m_{t}=173 \mathrm{GeV}$

Analogy

Top quark, $m_{t}=173 \mathrm{GeV}$

Analogy

Electron, $m_{e}=0.0005 \mathrm{GeV}$

Analogy

Electron, $m_{e}=0.0005 \mathrm{GeV}$

Analogy

An excitation...

Analogy

The Higgs particle

Experiment

- The Standard Model predicts: the interaction strength \propto the particle mass
- Confirmed for the weak bosons and 3rd generation or matter with 10% precision

Open questions:

I. Higgs interactions with light generations?
2. Do Higgs interactions mix generations?
3. Higgs self-interactions?
4. Is there another Higgs field?
5. ...

The Standard Model

(advanced)

The Standard Model

Table 1: The SM particles

particle	spin	color	$Q_{\text {EM }}$	mass $[v]$
$W^{ \pm}$	1	(1)	± 1	$\frac{1}{2} g$
Z^{0}	1	(1)	0	$\frac{1}{2} \sqrt{g^{2}+g^{\prime 2}}$
A^{0}	1	(1)	0	0
g	1	(8)	0	0
h	0	(1)	0	$\sqrt{2 \lambda}$
e, μ, τ	$1 / 2$	(1)	-1	$y_{e, \mu, \tau} / \sqrt{2}$
$\nu_{e}, \nu_{\mu}, \nu_{\tau}$	$1 / 2$	(1)	0	0
u, c, t	$1 / 2$	(3)	$+2 / 3$	$y_{u, c, t} / \sqrt{2}$
d, s, b	$1 / 2$	(3)	$-1 / 3$	$y_{d, s, b} / \sqrt{2}$

The Standard Model

- The symmetry is a local

$$
G_{\mathrm{SM}}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

- It is spontaneously broken by the VEV of a single Higgs scalar,

$$
\begin{gathered}
\phi(1,2)_{+1 / 2}, \quad\left(\left\langle\phi^{0}\right\rangle=v / \sqrt{2}\right) \\
G_{\mathrm{SM}} \rightarrow S U(3)_{C} \times U(1)_{\mathrm{EM}} \quad\left(Q_{\mathrm{EM}}=T_{3}+Y\right)
\end{gathered}
$$

- There are three fermion generations, each consisting of five representations of G_{SM} :

$$
Q_{L i}(3,2)_{+1 / 6}, \quad U_{R i}(3,1)_{+2 / 3}, \quad D_{R i}(3,1)_{-1 / 3}, \quad L_{L i}(1,2)_{-1 / 2}, \quad E_{R i}(1,1)_{-1}
$$

Covariant derivative example:

$$
D^{\mu} Q_{L i}=\left(\partial^{\mu}+\frac{i}{2} g_{s} G_{a}^{\mu} \lambda_{a}+\frac{i}{2} g W_{b}^{\mu} \tau_{b}+\frac{i}{6} g^{\prime} B^{\mu}\right) Q_{L i}
$$

The Standard Model

- \mathscr{L}_{4} sans Yukawa
$g_{S} \sim 1, g_{W} \sim 0.6, g_{Y} \sim 0.3, \lambda_{H} \sim 0.2$
$\theta \lesssim 10^{-10}$ - The strong CP problem
$\psi: 3$ generations of $q_{i}, U_{i}, D_{i}, l_{i}, E_{i}$

$$
\begin{aligned}
\mathcal{L}_{4} & =-\frac{1}{4} F_{\mu \nu} F \mu \\
& +i \bar{\psi} \ngtr \psi+h \cdot c .
\end{aligned}
$$ Accidental symmetry

$U(3)_{q} \times U(3)_{U} \times U(3)_{D} \times U(3)_{l} \times U(3)_{E}$

$$
\begin{aligned}
& +\bar{\psi}_{i} y_{i j} \psi_{i} \phi+h \cdot c . \\
& +\left.\left.\right|_{r} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

The Standard Model

$$
\begin{aligned}
\mathcal{L}_{4} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \bar{\psi} \phi \psi+h \cdot c . \\
& +\bar{\psi}_{i} y_{i j} \psi_{\nu} \phi+h \cdot c . \\
& +b_{\mu} \phi l^{2}-V(\phi)
\end{aligned}
$$

The Standard Model

- The kinetic Lagrangian (flavor and CP conserving)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{kin}}^{\mathrm{SM}}= & -\frac{1}{4} G_{a}^{\mu \nu} G_{a \mu \nu}-\frac{1}{4} W_{b}^{\mu \nu} W_{b \mu \nu}-\frac{1}{4} B^{\mu \nu} B_{\mu \nu} \\
& -i \overline{{Q_{L i}}_{L i}} \not D Q_{L i}-i \overline{\bar{U}_{R i}} D D U_{R i}-i \overline{\overline{D_{R i}}} D D_{R i}-i \overline{L_{L i}} D D L_{L i}-i \overline{E_{R i}} D E_{R i} \\
& -\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)
\end{aligned}
$$

The Standard Model

- The kinetic Lagrangian (flavor and CP conserving)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{kin}}^{\mathrm{SM}}= & -\frac{1}{4} G_{a}^{\mu \nu} G_{a \mu \nu}-\frac{1}{4} W_{b}^{\mu \nu} W_{b \mu \nu}-\frac{1}{4} B^{\mu \nu} B_{\mu \nu} \\
& -i \overline{\bar{Q}_{L i}} D D Q_{L i}-i \overline{U_{R i}} D U_{R i}-i \overline{D_{R i}} D D D_{R i}-i \overline{L_{L i}} D L_{L i}-i \overline{E_{R i}} D E_{R i} \\
& -\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right) .
\end{aligned}
$$

- The global symmetry
$G_{\text {global }}^{\mathrm{SM}}\left(Y^{u, d, e}=0\right)=S U(3)_{q}^{3} \times S U(3)_{\ell}^{2} \times U(1)^{5}$

The Standard Model

- The kinetic Lagrangian (flavor and CP conserving)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{kin}}^{\mathrm{SM}}= & -\frac{1}{4} G_{a}^{\mu \nu} G_{a \mu \nu}-\frac{1}{4} W_{b}^{\mu \nu} W_{b \mu \nu}-\frac{1}{4} B^{\mu \nu} B_{\mu \nu} \\
& -i \overline{Q_{L i}} \not D Q_{L i}-i \overline{U_{R i}} D D U_{R i}-i \overline{\bar{D}_{R i}} D D D_{R i}-i \overline{L_{L i}} D D L_{L i}-i \overline{E_{R i}} D E_{R i} \\
& -\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right) .
\end{aligned}
$$

- The global symmetry
$G_{\text {global }}^{\mathrm{SM}}\left(Y^{u, d, e}=0\right)=S U(3)_{q}^{3} \times S U(3)_{\ell}^{2} \times U(1)^{5}$
- Reminder:

$$
\begin{aligned}
& U(1): \phi \rightarrow e^{i \alpha Q} \phi \\
& \phi^{\dagger} \phi \rightarrow \phi^{\dagger} e^{-i \alpha Q} e^{i \alpha Q} \phi=\phi^{\dagger} \phi
\end{aligned}
$$

The Standard Model

- The kinetic Lagrangian (flavor and CP conserving)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{kin}}^{\mathrm{SM}}= & -\frac{1}{4} G_{a}^{\mu \nu} G_{a \mu \nu}-\frac{1}{4} W_{b}^{\mu \nu} W_{b \mu \nu}-\frac{1}{4} B^{\mu \nu} B_{\mu \nu} \\
& -i \overline{{Q_{L i}}_{L i}} D Q_{L i}-i \overline{U_{R i}} D U_{R i}-i \overline{\bar{D}_{R i}} D D D_{R i}-i \overline{L_{L i}} D D L_{L i}-i \overline{E_{R i}} D E_{R i} \\
& -\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right) .
\end{aligned}
$$

- The global symmetry
$G_{\mathrm{global}}^{\mathrm{SM}}\left(Y^{u, d, e}=0\right)=S U(3)_{q}^{3} \times S U(3)_{\ell}^{2} \times U(1)^{5}$
- Reminder:

$$
U(1): \phi \rightarrow e^{i \alpha Q} \phi
$$

$$
\phi^{\dagger} \phi \rightarrow \phi^{\dagger} e^{-i a Q} e^{i a Q} \phi=\phi^{\dagger} \phi
$$

$$
U(N)=S U(N) \times U(1)
$$

$$
S U(N) \text { : group of } \mathrm{N} \times \mathrm{N} \text { unitary matrices with det }=1
$$

$$
U^{\dagger} U=1, \operatorname{det} U=1
$$

The Standard Model

- The kinetic Lagrangian (flavor and CP conserving)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{kin}}^{\mathrm{SM}}= & -\frac{1}{4} G_{a}^{\mu \nu} G_{a \mu \nu}-\frac{1}{4} W_{b}^{\mu \nu} W_{b \mu \nu}-\frac{1}{4} B^{\mu \nu} B_{\mu \nu} \\
& -i \overline{Q_{L i}} D D Q_{L i}-i \overline{U_{R i}} D D U_{R i}-i \overline{\bar{D}_{R i}} D D D_{R i}-i \overline{L_{L i}} D L_{L i}-i \overline{E_{R i}} D E_{R i} \\
& -\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right) .
\end{aligned}
$$

- The global symmetry

$$
G_{\text {global }}^{\mathrm{SM}}\left(Y^{u, d, e}=0\right)=S U(3)_{q}^{3} \times S U(3)_{\ell}^{2} \times U(1)^{5}
$$

- Reminder:

$$
\begin{aligned}
& U(1): \phi \rightarrow e^{i \alpha Q} \phi \\
& \phi^{\dagger} \phi \rightarrow \phi^{\dagger} e^{-i \alpha Q} e^{i \alpha Q} \phi=\phi^{\dagger} \phi
\end{aligned}
$$

$$
U(N)=S U(N) \times U(1)
$$

$$
S U(N) \text { : group of } \mathrm{N} \times \mathrm{N} \text { unitary matrices with det }=1
$$

$$
U^{\dagger} U=1, \operatorname{det} U=1
$$

$$
\begin{aligned}
& U=e^{i \alpha^{a} T^{a}} \quad a: 1, \ldots, N^{2}-1 \\
& S U(N): \quad \phi_{i} \rightarrow U_{i j} \phi_{j} \quad i, j: 1, \ldots, N \\
& \phi^{\dagger} \phi \rightarrow \phi^{\dagger} U^{\dagger} U \phi=\phi^{\dagger} \phi
\end{aligned}
$$

The Standard Model

- Flavour and CP violation is in the Yukawa Lagrangian
$-\mathscr{L}_{\text {Yuk }}=\bar{Q} Y^{u} \tilde{H} U+\bar{Q} Y^{d} H D+\bar{L} Y^{e} H E$
- Flavour breaking spurions

$$
\begin{gathered}
Y^{u} \sim(3, \overline{3}, 1)_{S U(3)_{q}^{3}} \quad, \quad Y^{d} \sim(3,1, \overline{3})_{S U(3)_{q}^{3}} \\
Y^{e} \sim(3, \overline{3})_{S U(3)_{\ell}^{2}}
\end{gathered}
$$

The CKM matrix

$-\mathscr{L}_{\mathrm{Yuk}}=\bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} U+\bar{q} \hat{Y}^{d} H D+\bar{l} \hat{Y}^{e} H E$

[U(3) ${ }^{5}$ transformation and a singular value decomposition theorem]

- After EWSB, the CKM matrix can be rotated

$$
\mathcal{L}_{\mathrm{Yuk}}^{u}=\left(\overline{u_{d L}} \overline{u_{s L}} \overline{u_{b L}}\right) V^{\dagger} \hat{Y}^{u}\left(\begin{array}{c}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right) \quad\left(\begin{array}{c}
u_{L} \\
c_{L} \\
t_{L}
\end{array}\right)=V\left(\begin{array}{c}
u_{d L} \\
u_{s L} \\
u_{b L}
\end{array}\right)
$$

The CКM matrix

$-\mathscr{L}_{\mathrm{Yuk}}=\bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} U+\bar{q} \hat{Y}^{d} H D+\bar{l} \hat{Y}^{e} H E$
[$U(3)^{5}$ transformation and a singular value decomposition theorem]

- After EWSB, the CKM matrix can be rotated

$$
\mathcal{L}_{\text {Yuk }}^{u}=\left(\overline{u_{d L}} \overline{u_{s L}} \overline{u_{b L}}\right) V^{\dagger} \hat{Y}^{u}\left(\begin{array}{l}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{l}
u_{L} \\
c_{L} \\
t_{L}
\end{array}\right)=V\left(\begin{array}{l}
u_{d L} \\
u_{S L} \\
u_{b L}
\end{array}\right)
$$

- $V \mathbf{1} V^{\dagger}=1 \Longrightarrow \bar{u}_{L}^{i} Z u_{L}^{i}$ universality!
- It only appears in the W interactions, not in γ, g, Z, h

No FCNC at tree-level!
They are suppressed in the SM.

The CKM matrix

$-\mathscr{L}_{\mathrm{Yuk}}=\bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} U+\bar{q} \hat{Y}^{d} H D+\bar{l} \hat{Y}^{e} H E$
[$U(3)^{5}$ transformation and a singular value decomposition theorem]

- After EWSB, the CKM matrix can be rotated

$$
\mathcal{L}_{\text {Yuk }}^{u}=\left(\overline{u_{d L}} \overline{u_{s L}} \overline{u_{b L}}\right) V^{\dagger} \hat{Y}^{u}\left(\begin{array}{l}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{l}
u_{L} \\
c_{L} \\
t_{L}
\end{array}\right)=V\left(\begin{array}{l}
u_{d L} \\
u_{S L} \\
u_{b L}
\end{array}\right)
$$

- $V \mathbf{1} V^{\dagger}=1 \Longrightarrow \bar{u}_{L}^{i} Z u_{L}^{i}$ universality!
- It only appears in the W interactions, not in γ, g, Z, h

$$
\text { FCCC: }-\frac{g}{\sqrt{2}}\left(\overline{u_{L}} \overline{c_{L}} \overline{t_{L}}\right) \underset{\text { скм }}{V} \mathscr{W}^{+}\left(\begin{array}{c}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)+\text { h.c. }
$$

Recap: The SM interactions

Flavour universal / blind

Recap: The SM interactions

Flavour universal
/ blind

Recap: The SM interactions

Flavour universal / blind

Flavour diagonal non-universal

Recap: The SM interactions

Flavour universal / blind

CKM matrix V

Flavour changing / violating

Recap: The SM interactions

Table 2: The SM fermion interactions

interaction	fermions	force carrier	coupling	flavor
Electromagnetic	u, d, ℓ	A^{0}	$e Q$	universal
Strong	u, d	g	g_{s}	universal
NC weak	all	Z^{0}	$\frac{e\left(T_{3}-s_{W}^{2} Q\right)}{s_{W} c_{W}}$	universal
CC weak	$\bar{u} d / \bar{\ell} \nu$	$W^{ \pm}$	$g V / g$	non-universal/universal
Yukawa	u, d, ℓ	h	y_{q}	diagonal

Hierarchy problem
 Flavour puzzle
 Strong CP problem
 Charge quantisation

Dark matter
Baryon asymmetry Neutrino masses Inflation

Dark energy
Quantum gravity

Backup

Effective theory

$$
\begin{aligned}
& R \gg a \longrightarrow \vec{R} \\
& \stackrel{\longleftrightarrow}{\longleftrightarrow} \Phi(\vec{R})=\frac{Q_{0}}{R}+\frac{Q_{1}^{i} R^{i}}{R^{3}}+\frac{Q_{2}^{i j} R^{i} R^{j}}{R^{5}}+\ldots \\
& 1 / R \quad a / R^{2} \quad a^{2} / R^{3}
\end{aligned}
$$

n -multipole contribution is of relative size $\left(\frac{a}{R}\right)^{n}$
at fixed
accuracy $\left[\begin{array}{lll}R \rightarrow \text { large: } & \text { fewer multipoles needed } & \rightarrow \text { Universality } \\ R \rightarrow \text { small: } & \text { more multipoles needed } & \rightarrow \text { Reductionism }\end{array}\right.$
$R \sim a \quad$ expansion breaks down: ∞ number of parameters needed
Lectures by Rattazzi, GGI 2020

Effective quantum field theory

Infrared,
Long-distance, Soft

Ultraviolet,
Short-distance,
Hard

Matching

Tree-level example

Figure 1: Generating higher dimension operators by integrating out fields.

Matching

Tree-level example

Figure 1: Generating higher dimension operators by integrating out fields.

$$
\begin{gathered}
\langle 0| T\left\{\underset{\text { (Propagator) }}{\{(0) \Phi(x)\}|0\rangle}=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k x} \frac{i}{k^{2}-M^{2}}\right. \\
k^{2} \sim \mathcal{O}\left(E^{2}\right) \ll M^{2} \\
\frac{1}{k^{2}-M^{2}}-\frac{1}{M_{8}}\left[1+0\left(\frac{k^{2}}{M^{2}}\right)\right]
\end{gathered}
$$

Matching

Tree-level example

Local interaction:

The Compton wavelength M^{-1} is very small.

Figure 1: Generating higher dimension operators by integrating out fields.

$$
\begin{aligned}
&\langle 0| T\{\Phi(0) \Phi(x)\}|0\rangle=\underset{\text { (Propagator) }}{\iint^{2}} \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k x} \frac{i}{k^{2}-M^{2}} \\
& k^{2} \sim \mathcal{O}\left(E^{2}\right) \ll M^{2} \\
& \frac{1}{k^{2}-M^{2}}=-\frac{1}{M^{2}}\left[1+\mathcal{O}\left(\frac{k^{2}}{M^{2}}\right)\right]
\end{aligned}
$$

Effective quantum field theory

Example: a theory with just one scalar field φ

The cut-off

$$
\Lambda \equiv \frac{1}{\tau} \equiv \frac{1}{L}
$$

Lagrangian is organized in series in inverse powers of Λ : close analogy with multipole expansion

$$
\begin{aligned}
\mathcal{L}= & \partial_{\mu} \varphi \partial^{\mu} \varphi-m^{2} \varphi^{2}+\lambda_{4} \varphi^{4} & & \Lambda^{\geq 0} \\
& +\frac{\lambda_{6}}{\Lambda^{2}} \varphi^{6}+\frac{\eta_{4}}{\Lambda^{2}} \varphi^{2} \partial_{\mu} \varphi \partial^{\mu} \varphi & & \Lambda^{-2} \\
& +\frac{\lambda_{8}}{\Lambda^{4}} \varphi^{8}+\frac{\eta_{6}}{\Lambda^{4}}\left(\partial_{\mu} \varphi \partial^{\mu} \varphi\right)^{2}+\cdots & & \Lambda^{-4} \\
& +\cdots & & \Lambda \leq-4
\end{aligned}
$$

- $\lambda_{4}, \lambda_{6}, \eta_{6}, \ldots$ expected to be $<\mathrm{O}(1)$
- must assume $m^{2} \ll \Lambda^{2}$ otherwise no long wavelength quanta

Effective quantum field theory

at low energy only lowest dimension coupling matters
the infinite set of couplings with negative mass dimension is irrelevant!
Lectures by Rattazzi, GGI 2020

Accidental symmetries in Effective theory

Long Distance Physics: Simplicity \& Accidental Symmetries

accidental

$S O(3)$

Ex.: electrostatic potential at large distance

Lectures by Rattazzi, GGI 2020

\mathscr{L}_{2} : The EW hierarchy puzzle

- $\mathscr{L}_{2}=\mu^{2} H^{\dagger} H$ sets the EW scale.

$$
\mu^{2} \ll M_{P}^{2}
$$

\mathscr{L}_{2} : The EW hierarchy puzzle

- $\mathscr{L}_{2}=\mu^{2} H^{\dagger} H$ sets the EW scale.

$$
\mu^{2} \ll M_{P}^{2}
$$

?

- Pion mass splitting:
$m_{\pi_{+}}^{2}-m_{\pi_{0}}^{2}=\mathcal{O}(1) \times \frac{e^{2}}{16 \pi^{2}} m_{\rho}^{2}$

\mathscr{L}_{2} : The EW hierarchy puzzle

- $\mathscr{L}_{2}=\mu^{2} H^{\dagger} H$ sets the EW scale.

$$
\mu^{2} \ll M_{P}^{2}
$$

- Pion mass splitting:
$m_{\pi_{+}}^{2}-m_{\pi_{0}}^{2}=\mathcal{O}(1) \times \frac{e^{2}}{16 \pi^{2}} m_{\rho}^{2}$
- Naturalness: New mass threshold not far above the EW scale
- Supersymmetry?
- Composite Higgs / Extra Dimensions?

$\mathscr{L}_{4}:$ Accidental symmetries

$\mathscr{L}_{4}^{S M}$ sans Yukawa: $U(3)_{q} \times U(3)_{U} \times U(3)_{D} \times U(3)_{l} \times U(3)_{E}$

$\mathscr{L}_{4}:$ Accidental symmetries

$\mathscr{L}_{4}^{S M}$ sans Yukawa: $U(3)_{q} \times U(3)_{U} \times U(3)_{D} \times U(3)_{l} \times U(3)_{E}$
$-\mathscr{L}_{\mathrm{Yuk}}=\bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} U+\bar{q} \hat{Y}^{d} H D+\bar{l} \hat{Y}^{e} H E$ [$U(3)^{5}$ transformation and a singular value decomposition theorem]

$\mathscr{L}_{4}:$ Accidental symmetries

$\mathscr{L}_{4}^{S M}$ sans Yukawa: $U(3)_{q} \times U(3)_{U} \times U(3)_{D} \times U(3)_{l} \times U(3)_{E}$

$$
-\mathscr{L}_{\text {Yuk }}=\bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} U+\bar{q} \hat{Y}^{d} H D+\bar{l} \hat{Y}^{e} H E
$$

\mathscr{L}_{4} : Accidental symmetries

$$
\mathscr{L}_{4}^{S M} \text { sans Yukawa: } U(3)_{q} \times U(3)_{U} \times U(3)_{D} \times U(3)_{l} \times U(3)_{E}
$$

$-\mathscr{L}_{\mathrm{Yuk}}=\bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} U+\bar{q} \hat{Y}^{d} H D+\bar{l} \hat{Y}^{e} H E$ [$U(3)^{5}$ transformation and a singular value decomposition theorem]

- $\Lambda_{N P}^{-1}$ truncation at the $\left[\mathscr{L}^{\text {SMEFT }}\right] \leq 4 \Longrightarrow$ Exact accidental symmetries

$\mathscr{L}_{4}:$ Accidental symmetries

$$
\mathscr{L}_{4}^{S M} \text { sans Yukawa: } U(3)_{q} \times U(3)_{U} \times U(3)_{D} \times U(3)_{l} \times U(3)_{E}
$$

$$
-\mathscr{L}_{\mathrm{Yuk}}=\bar{q} V^{\dagger} \hat{Y} u \tilde{H} U+\bar{q} \hat{Y}^{d} H D+\bar{l} \hat{Y}^{e} H E
$$

[$U(3)^{5}$ transformation and a singular value decomposition theorem]

- $\Lambda_{N P}^{-1}$ truncation at the $\left[\mathscr{L}^{\text {SMEFT }}\right] \leq 4 \Longrightarrow$ Exact accidental symmetries
- Peculiar observed values of $Y^{u, d, e} \Longrightarrow$ Approximate accidental symmetries [Mass hierarchy \& CKM alignment]
[Quark flavour, CP, LFU, etc]

\mathscr{L}_{4} : Approximate symmetries

Approximate Quark Flavor Conservation:

- When $V=1 \Rightarrow U(1)_{u+d} \times U(1)_{c+s} \times U(1)_{t+b}$

\mathscr{L}_{4} : Approximate symmetries

Approximate Quark Flavor Conservation:

- When $V=1 \Rightarrow U(1)_{u+d} \times U(1)_{c+s} \times U(1)_{t+b}$
- GIM mechanism:When up or down-quark masses are degenerate, i.e. $\hat{Y}^{u} \propto 1$ or $\hat{Y}^{d} \propto 1$, no quark flavour violation.
$-\mathscr{L}_{\text {Yuk }}=\bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} U+\bar{q}^{\hat{Y}} H D+\bar{l} \hat{Y}^{\bullet} H E$
$\Longrightarrow \mid f \hat{Y}^{d} \propto 1$, rotate $q \rightarrow V^{\dagger} q, D \rightarrow V^{\dagger} D$, and vice versa

\mathscr{L}_{4} : Approximate symmetries

- Approximate Quark Flavor Conservation:
- When $V=1 ~=>U(1)_{u+d} \times U(1)_{c+s} \times U(1)_{t+b}$
- GIM mechanism: When up or down-quark masses are degenerate, i.e. $\hat{Y}^{u} \propto 1$ or $\hat{Y}^{d} \propto 1$, no quark flavour violation.
$-\mathscr{L}_{\text {Yuk }}=\bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} U+\bar{q} \hat{Y}^{d} H D+\bar{l} \hat{Y}^{e} H E$
\Longrightarrow If $\hat{Y}^{d} \propto 1$, rotate $q \rightarrow V^{\dagger} q, D \rightarrow V^{\dagger} D$, and vice versa
$\square V$ spurion appears only in $W_{\mu}^{ \pm}$interaction \Longrightarrow No tree-level FCNC

\mathscr{L}_{4} : Approximate symmetries

- Approximate CP

$$
\mathscr{L} \supset \frac{g}{\sqrt{2}} \bar{u}_{L}^{i} V_{i j} \gamma_{\mu} d_{L}^{j} W^{\mu}
$$

$$
\text { Jarlskog invariant: } \quad V_{i j} \rightarrow e^{i\left(\theta_{u}^{i}-\theta_{d}^{j}\right)} V_{i j}
$$

$$
J=\operatorname{Im}\left(V_{u d} V_{c s} V_{u s}^{*} V_{c d}^{*}\right) \sim 3 \times 10^{-5}
$$

\mathscr{L}_{4} : Approximate symmetries

- Approximate CP
$\mathscr{L} \supset \frac{g}{\sqrt{2}} \bar{u}_{L}^{i} V_{i j} \gamma_{\mu} d_{L}^{j} W^{\mu}$

$$
\begin{aligned}
& \text { Jarlskog invariant: } \quad V_{i j} \rightarrow e^{i\left(\theta_{u}^{i}-\theta_{d}^{j}\right)} V_{i j} \\
& J=\operatorname{Im}\left(V_{u d} V_{c s} V_{u s}^{*} V_{c d}^{*}\right) \sim 3 \times 10^{-5}
\end{aligned}
$$

Example: Electron electric dipole moment

- Accidental symmetries (exact and approximate) are broken by the irrelevant couplings / new physics.
- Testing accidental symmetries is an opportunity \Longrightarrow Efficient probe of high-energy dynamics.

\mathscr{L}_{5} : Neutrino masses

$$
\mathscr{L}_{5}=\frac{Y_{i j}^{M}}{\Lambda} L_{i} L_{j} H H
$$

Large Λ explains tiny m_{ν}

\mathscr{L}_{5} : Neutrino masses

$$
\mathscr{L}_{5}=\frac{Y_{i j}^{M}}{\Lambda} L_{i} L_{j} H H
$$

$U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau}$

$$
\begin{aligned}
& \downarrow{ }_{M_{\nu, j}}=Y_{i j}^{M} \frac{v^{2}}{\Lambda} \\
& \varnothing
\end{aligned}
$$

LFV
Neutrino oscillations

\mathscr{L}_{5} : Neutrino masses

$$
\mathscr{L}_{5}=\frac{Y_{i j}^{M}}{\Lambda} L_{i} L_{j} H H
$$

$U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau}$

$$
\begin{aligned}
& \not{ }_{l}^{M_{\nu, i j}=Y_{i j}^{M}} \frac{v^{2}}{\Lambda} \\
& \varnothing
\end{aligned}
$$

Neutrino oscillations

$$
\mathscr{B}(\mu \rightarrow e \gamma)_{\mathrm{SM}} \sim 10^{-54}
$$

Experiment:
$B R(\mu \rightarrow e \gamma) \lesssim 10^{-13}$
Efficient GIM mechanism!

