

QCD at LHC

Jelena Mijušković

University of Montenegro and IRFU, CEA, University Paris Saclay

Sarajevo School of High Energy Physics October 2022

Standard Model

➤ Theory developed in the 1960s that describes the fundamental particles and the interactions between them

Quantum Chromodynamics (QCD)

- The strong interaction described by the Quantum
 Chromodynamics (QCD) theory which is based on the gauge symmetry group SU(3)
- The particles that interact with the strong force (quarks and gluons) have an additional quantum number called color
- The quarks one of the three colors: red, blue or green (antiquarks - anticolors)
- The eight gluons the combination of color and anticolor

Running of the strong coupling constant α_s

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale (Q²)
of process

- ⇒ At high scales Q, coupling becomes small quarks and gluons are almost free, interactions are weak
- ⇒ At low scales, coupling becomes strong

Color confinement

Can we detect free quarks?

- The color field between the quarks is squeezed into a tube
- The energy stored in the field is proportional the separation of the quarks

$$V(r) \sim \lambda r$$

⇒ infinite amount of energy to separate two quarks to infinity

Color confinement

UNIVERSITÉ PARIS-SACLAY

- Quark arrange themselves into bound hadronic states that are colourless combinations with no colour field between them
- Hadrons can be mesons and baryons

Nucleons

Particle	Mass (MeV/c^2)	τ (sec)
P	938.2	$> 10^{11}$
n	939.5	10^{3}

Hyperons

Particle	Mass (MeV/c ²)	τ (sec)
Λ	1115	2.6×10^{-10}
Σ^+	1189	0.8×10^{-10}
Σ^0	1192	10^{-14}
Σ^-	1197	1.6×10^{-10}
$\mathcal{\Xi}^0$	1314	3×10^{-10}
\mathcal{E}^-	1321	1.8×10^{-10}
Ω^-	1675	1.3×10^{-10}

Hadrons

Mesons

Pions

Particle	Mass (MeV/c^2)	τ (sec)
π^-, π^+	139	2.5×10^{-8}
π^0	135	1.8×10^{-1}

Kaons

Particle	Mass (MeV/c^2)	τ (sec)
K^-, K^+	494	$1.2 \times 10^{-}$
K^0	498	
η	550	10^{-18}

Energy of the strong field between quarks increases as they are moving apart from each other

Energy high enough - new pair of quarks is created

This process is repeated until...

- This process is called hadronization
- The produced hadrons are often the results of boosted interactions, which makes the particles to be collinear and form what is called a jet

Jet production in e⁺e⁻ collisions

• Jet production in high-energy electron—positron collisions also provides direct evidence for the existence of gluons

Jets at LHC

 Jets - less well defined than leptons or muons, but important for understanding LHC physics

Standard Model physics:

- Many standard model processes produce jets, are sensitive to $\alpha_{_{\rm S}}$
- Multijet cross section measurements test QCD
- Hadronic decays of heavy particles

New physics searches:

 Many searches looking for final states with jets, or in regions of phase space with high jet multiplicities

Jets at LHC

 Jets of particles leave signals in components such as the tracker and the electromagnetic and hadronic calorimeters

Jet finding

How many jets do you see?

Jet finding

How many jets do you see?

Jet finding

How many jets do you see?

Jets algorithms

- To decide unambiguously whether a measured object belongs to a jet or not, a mathematical prescription is required - jet algorithm
- Algorithm has to be applicable to theoretical calculations as well as to measurements from different experiments

Jets should be invariant with respect to certain modifications of the event:

collinear splitting:

Collinear splittings should not bias jet finding

infrared emission :

- soft radiation should not affect jet configuration
- Only observables that are IR safe can be calculated in pQCD

Jets algorithms

Cone algorithms

- o particles in jets will show up in conical regions and thus they cluster based on (η-φ) space, resulting in jets with rigid circular boundaries
- select the most energetic particle as a seed with the
- o constituents within cone of radius R are considered part of the jet

Sequential Clustering Algorithms

 \circ particles within jets will have small differences in transverse momenta and thus groups particles based on momentum space, resulting in jets that have fluctuating areas in (η- ϕ) space.

- Work their way backwards through this branching by combining pairs of particles into a single one
- A distance measure based on angular separation and energy/pT of constituent has to be determined
- The particles that are closest are combined

- Work their way backwards through this branching by combining pairs of particles into a single one
- A distance measure based on angular separation and energy/pT of constituent has to be determined
- The particles that are closest are combined

- Work their way backwards through this branching by combining pairs of particles into a single one
- A distance measure based on angular separation and energy/pT of constituent has to be determined
- The particles that are closest are combined

- Work their way backwards through this branching by combining pairs of particles into a single one
- A distance measure based on angular separation and energy/pT of constituent has to be determined
- The particles that are closest are combined

- Work their way backwards through this branching by combining pairs of particles into a single one
- A distance measure based on angular separation and energy/pT of constituent has to be determined
- The particles that are closest are combined

- Work their way backwards through this branching by combining pairs of particles into a single one
- A distance measure based on angular separation and energy/pT of constituent has to be determined
- The particles that are closest are combined

- Work their way backwards through this branching by combining pairs of particles into a single one
- A distance measure based on angular separation and energy/pT of constituent has to be determined
- The particles that are closest are combined

How do we decide which particles should we combine?

When do we stop combining particles?

Distance between two particles:

 Distance between the beam axis and the detected particle:

$$d_{iB} = p_{ti}^a$$

Distance between two particles:

$$d_{ij} = min(p_{ti}^a, p_{tj}^a) \times \frac{R_{ij}^2}{R}$$

 Distance between the beam axis and the detected particle:

$$d_{iB} = p_{ti}^a$$

Algorithm flow:

- Find the minimum distance
- If d_{ij} is the minimum: particles i and j are combined into one particle (ij), i and j are removed from the list of particles
- If d_{iB} is the minimum: i is labelled a final jet and removed from the list of particles
- This process is repeated until:
 - o all particles are part of a jet with the distance between the jet axes R_{ij} greater than R inclusive clustering
 - desired amount of jets have been found - exclusive clustering

Proton-proton collisions

- Protons are baryons composed of two u quarks and one d quark ("valence" quarks) and "sea" quarks
- Quarks and gluons within protons are referred to as partons

- Structure of proton described by the Parton model
 - \Rightarrow partons carry a fraction of the total proton momentum, which gives the probability that parton has a fraction x of the total proton momentum $P(p_i = xP)$

Parton distribution function

- The quarks inside the proton will interact with each other through the exchange of gluons
- The dynamics of this interacting system will result in a distribution of quark momenta within the proton
- These distributions are expressed in terms of Parton Distribution Functions (PDFs)

Forms of the quark PDFs:

Parton distribution function

- Functional forms of the PDFs not a priori known and have to be obtained from experiment
 - deep inelastic scattering (DIS) experiments such as lepton-hadron collider HERA
 - hadron colliders such as LHC
 - the fixed-target experiments
- The PDFs depend on the scale at which the hadron is probed
- Evolution of PDFs with the scale μ_F described by the **Dokshitzer-Gribov-Lipatov- Altarelli-Parisi** (**DGLAP**) equations:

$$\mu_F \frac{\delta f_a(x, \mu_F)}{\delta \mu_F^2} = \sum \frac{\alpha_s(\mu_F^2)}{2\pi} \int_x^1 \frac{d\xi}{\xi} P_{a \to bc}(\frac{x}{\xi}, \mu_F) f_a(\xi, \mu_F)$$

- $P_{a o bc}$ Altarelli-Parisi splitting function, that gives the probability for a parton a to split into two partons bc.
- ξ resulting particle momentum fraction of the quark with momentum p_a

Parton distribution function

 Because of the universality of the PDFs, it is possible to use PDFs extracted from well-known processes to obtain predictions corresponding to different scales or different final states

Cross section

- > The **cross section** is a measure of quantum mechanical probability for the interaction
- > It depends on the fundamental physics involved in the Feynman diagrams that contribute to the process
- The cross section of a proton-proton interaction cannot be computed easily, due to the complex structure of protons

$$\sigma_{pp\to X} = \sum_{a,b} \int \int dx_a dx_b f_a(x_a, \mu_F) f_b(x_b, \mu_F) \underline{\sigma_{ab\to X}(x_a x_b, \mu_R, \mu_F)}$$

cross section at the partonic level.

Drell-Yan process

Annihilation of quark-antiquark pairs from hadrons with the creation of a Z boson or a virtual photon, which decays into a lepton-antilepton pair

Drell-Yan process

Annihilation of quark-antiquark pairs from hadrons with the creation of a Z boson or a virtual photon, which decays into a lepton-antilepton pair

Drell-Yan process higher orders

Drell-Yan process cross section

The cross section of the Drell-Yan process:

$$\sigma(pp \to l^+ l^-) = \sum_q \int \int dx_q dx_{\overline{q}} f_q(x_q, \mu_F^2) f_{\overline{q}}(x_{\overline{q}}, \mu_F^2) \sigma(q\overline{q} \to l^+ l^-)$$

• Following the perturbative QCD, the partonic cross section can be expanded in series with respect to the coupling constant α_s :

$$\sigma(q\overline{q} \to l^+l^-) = \sigma_{LO} + \alpha_s \sigma_{NLO} + \dots$$

• The partonic cross section can be calculated using the Matrix Element of the Feynman diagram

Theoretical predictions

 To establish connection between theory and experiment it is necessary to simulate the proton-proton interactions

- The evolution of an event in simulation starts with the two beam particles that are colliding
- The partons from beams start irradiating initial state shower is simulated
- The incoming partons enter the hard interaction and the outgoing particles are produced
- In the hard process, **short-lived resonances** can be created and their decay is considered in this step
- The outgoing particles undergo radiation final state radiation is simulated.
- The simulation of underlying events.
- The process of hadronization is simulated.
- The decay of long-life particles, such as τ leptons or B-hadrons.

