Introduction to Cosmology

V.Ruhlmann-Kleider CEA/Saclay Irfu/DPhP

- 1) The Big Bang model
- 2) Content of the Universe
- 3) Cosmological probes
- 4) Large Scale Structure: from SDSS to DESI
- 5) The Hubble constant tension

The rise of the Big Bang model

Orders of magnitude. The three pillars of the Big Bang model

- Distances, cosmological scales
- Redshift
- Expansion of the Universe, the metric
- The rise of the Big Bang model

1. Distances

solar system: Earth-Sun ~ 150. 106 km ~ 1 AU

galaxies, eg the Milky Way:

 \varnothing ~100,000 lyr ~ 30kpc Sun-Gal. center ~ 10kpc

1lyr=63,240 AU 1pc=3.26 lyr 1Mpc=3.3 106 lyr

• galaxy clusters: largest and most massive gravitationally bound structures, 50 to 1,000's of galaxies, $\varnothing \sim 2$ to 10 Mpc

- large scale structures: galaxies → clusters → superclusters (15 100Mpc) making a network of voids (25 125Mpc) and filaments (90 300 Mpc)
 - ⇒ beyond 100Mpc, homogeneous and isotropic Universe

6dF Galaxy Redshift Survey, (2009)

2. Redshift

• Emitted light spectrum \Rightarrow spectral lines \Rightarrow astro. object composition, environment ... and motion relative to Earth.

- Redshift: the object moves away from us $\Rightarrow \lambda_{\gamma}$ increases

$$\mathbf{Z} \equiv \frac{\lambda_{observed} - \lambda_{emitted}}{\lambda_{emitted}}$$

 $1+z=\frac{/_{observed}}{/_{emitted}}$

See http://astro.unl.edu/classaction/animations/cosmology/galacticredshift.html

z (redshift): 0.00

$$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$$

Visible Spectrum

z (redshift): 0.10

$$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$$

Visible Spectrum

z (redshift): 0.20 $z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$

Visible Spectrum

z (redshift): 0.30

$$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$$

Visible Spectrum

z (redshift): 0.40 $\lambda_{observed} - \lambda_{emitted}$

$$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$$

Visible Spectrum

z (redshift): 0.50 $\lambda_{observed} - \lambda_{emitted}$

Visible Spectrum

z (redshift): 0.60 $z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$

Visible Spectrum

z (redshift): 0.70 $z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{observed}}}$

Visible Spectrum

z (redshift): 0.90 $z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$

z (redshift): 1.00 $z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$

Different origins of redshifts/blueshifts

Doppler effect: redshift/blueshift due to relative motion

$$1+z=\gamma\left(1+\frac{\mathbf{v}_{//}}{c}\right) \quad z\approx\frac{\mathbf{v}_{//}}{c} \quad for \; small \; \mathbf{v}_{//}$$

(in Minkowski space i.e. flat spacetime)

- Cosmological redshift: dominant for distant sources (above tens of Mpc or z>0.01). Due to Universe expansion.
- Gravitational red/blue shift: radiation moving out of/into a gravitational field.

e.g. grav. redshift
$$1+z=\frac{1}{\sqrt{1-2GM/rc^2}}$$

3. Expansion

The rise of modern cosmology

distant galaxies are receding: the Universe is in expansion (as predicted in General Relativity by A.Friedmann 1922 and G.Lemaître 1927)

• recent, precise measurements (2011):
$$H_0$$
=73.8 \pm 2.4 km/s/Mpc (2016): H_0 =73.24 \pm 1.74km/s/Mpc (2022): H_0 =73.04 \pm 1.04km/s/Mpc

critical density today

$$f_c^0 = 3H_0^2/8\rho G = 1.04h^210^{10} \text{ eV} \times \text{m}^{-3}$$
 $h = H_0/100 \text{ kms}^{-1} \text{ Mpc}^{-1}$ same energy density as 1gal/Mpc³~5p/m³

Describing an expanding universe

- General Relativity: the simplest relativistic theory of gravitaty consistent with data. Gravity described as a geometric property of spacetime.
- Metric: allows to compute distances between two points $ds^2 \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$

 $g_{\mu\nu}$: metric tensor ds^2 : line element, invariant

- Reminder: in special relativity (no gravity):

$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = c^{2} dt^{2} - dx^{2} - dy^{2} - dz^{2}$$
$$= c^{2} dt^{2} - (dr^{2} + r^{2} (d\theta^{2} + \sin\theta^{2} d\varphi^{2}))$$

 $\eta_{\mu\nu}$: Minkowski metric

- in a particle's rest frame:

$$ds = c d\tau$$
 $d\tau$: particle proper time

 Friedmann-Lemaître-Robertson-Walker (FLRW) metric: metric for a spatially homogeneous and isotropic expanding universe, with scale/expansion factor a(t) and curvature k

$$ds^{2} = c^{2}dt^{2} - a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right) \right)$$

expansion factored out

$$H(t) \equiv \frac{\dot{a}(t)}{a(t)}$$
 expansion rate or Hubble parameter

$$H_0 \equiv H(t_0) t_0 = today$$

r,θ,φ spherical comoving coordinates:

r: dimensionless & stationary wrt expansion

More on FLRW metric

Introducing $d\chi = \frac{dr}{\sqrt{1-kr^2}}$ to account for curvature:

$$\Delta \chi = 3 \quad D(t_1) = a(t_1) \Delta \chi$$

$$\Delta \chi = 3$$
 $D(t_2) = a(t_2) \Delta \chi \ge D(t_1)$

a(t): scale factor

χ: comoving coordinate, stationary wrt expansion

D(t): proper/physical distance $\Delta \chi$: comoving distance

FLRW metric:

$$ds^{2} = c^{2}dt^{2} - a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right) \right)$$

$$ds^{2} = c^{2}dt^{2} - a(t)^{2} \left(d\chi^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right) \right)$$

$$r = f(\chi) = \begin{cases} \sin \chi & k = 1 \\ \chi & k = 0 \\ sh\chi & k = -1 \end{cases}$$

Hubble's law:

$$D(t) = a(t)\Delta\chi \Rightarrow \frac{dD}{dt} = \dot{a}(t)\Delta\chi = \frac{\dot{a}(t)}{a(t)}D(t) \Rightarrow \frac{dD}{dt} = H(t)D(t)$$

Particle trajectories:

$$ds^2=0$$
 geodesic equation (shortest path in three-space and maximum proper time)

The cosmological redshift

Universe in expansion

light from distant sources is redshifted

$$\frac{\lambda_{observed}}{\lambda_{emitted}} = 1 + \mathbf{Z} = \frac{a(t_{observation})}{a(t_{emission})}$$

3. The Big Bang model

Initial dense and hot phase followed by expansion and cooling

More confirmations of the Big Bang model

Primordial nucleosynthesis (He, D): T~1MeV predicted light element abundances = data $\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 10^{-10}$ 1948: G.Gamow, R.Alpher

Matter-radiation decoupling: z~1100 T~3000K Cosmic Microwave Background, relic radiation predicted and observed (T~2.725K 1992)

1948: G.Gamow, R.Alpher, R.Herman

1964: A.Penzias, R.Wilson

The rise of the Big Bang model

General Relativity, Einstein's equations (1907-1915)

Accelerated expansion: dark energy (or modified Einstein's gravity)

CONCLUSIONS (1)

- The Universe is spatially homogeneous and isotropic on cosmological scales (above 100Mpc)
- The Universe, initially in a hot, dense phase, is expanding

$$H_0^{\circ}H(t_{today}) \gg 70 \text{km/s/Mpc}$$

 $H_0^{\circ}H(t_{today}) \gg 70 km/s/Mpc$ • cosmological redshift: due to the Universe expansion

$$\frac{\lambda_{observed}}{\lambda_{emitted}} \equiv 1 + \mathbf{Z} = \frac{a(\mathbf{t}_{observation})}{a(\mathbf{t}_{emission})}$$

- General relativity and FLRW metric are the basics of the Big Bang model
- Observations: expansion, primordial abundances, CMB

Content of the Universe

From General Relativity to the matter-energy content of the Universe

- The Ω_i parameters and the expansion history
- Thermal history of the Universe

1. Densities ρ_i and Ω_i parameters

Big Bang cosmology model+ many cosmological data energy balance of the Universe

$$1 = \Omega_{\rm m}(t) + \Omega_{\rm r}(t) + \Omega_{\rm k}(t) + \Omega_{\Lambda}(t)$$
 NR matter radiation curvature "dark energy" or cosmological constant Λ_{28}

Present values of the Ω_i 's: the Ω_i^0 values

CMB + BAO + SNe Ia data :

2.2% precision

$$W_m^0 = 0.315 \pm 0.007$$

$$W_1^0 = 0.685 \pm 0.007$$

Planck collaboration. 2018, arXiv:1807.06209

Dark Matter

TODAY

atoms: gas (4%), stars (0.4%), v (0.3%), heavy elements (0.03%)

M. Kowalski et al., 2008, ApJ, 686, 749

The rise and fall of the Ω_i 's

Expansion and temperature

Photons emitted at t (e.g. CMB), received today:

$$1+z = \frac{\lambda_{observed}}{\lambda_{emitted}} = \frac{a_0}{a(t)} = \frac{E_{\gamma}(t)}{E_{\gamma}(t_0)} = \frac{T(t)}{T_0}$$
 at emission today

 Temperature was hotter in the past, expansion implies cooling down

■ CMB now:
$$T_{CMB}^{now} \approx 2.725 K \Rightarrow T_0 \approx 2.35 \ 10^{-4} eV \Rightarrow W_g^0 \approx 5.10^{-5}$$
 (COBE) $(k=8.617 \ 10^{-5} eV.K^{-1})$ negligible (today)

CMB at emission (from anisotropy measurements):

$$z_{CMB}^{emission} \approx 1100 \Rightarrow T_{CMB}(t_{emission}) \approx 0.26 eV \approx 3,000 K$$

matter-radiation equality:

$$\Gamma_r(t_{eq}) = \Gamma_m(t_{eq}) \triangleright a_0/a(t_{eq}) \triangleright T_{eq} > 1eV \quad z > 3500$$

The CMB spectrum as seen by COBE (1989-1993)

D.J. Fixsen et al. 1996, ApJ, 473, 576F

• Final: $T_{CMB} = 2.7255 \pm 0.0006 \text{ K}$

D.J. Fixsen, 2009, AJ,707,916

Primordial nucleosynthesis

• 1948: G.Gamow, R.Alpher "The origin of Chemical Elements"

Expanding universe: deuterium and helium nuclei are formed by nuclear reactions inside the primordial plasma of p,n,e,γ when temperature and densities are adequate, leading to light element abundances as measured.

The evolution of abundances

Present values of the Ω_i 's

Measurements of light element abundances vs predictions:

CONCLUSIONS (2)

Einstein GR equations + FLRW metric:

$$1 = \Omega_{m}(t) + \Omega_{r}(t) + \Omega_{k}(t) + \Omega_{\Lambda}(t)$$

- COBE measurement: radiation today is negligible
- Cosmological measurements vs predictions:
 - CMB+SNeIa+BAO:

$$W_m^0 = 0.315 \pm 0.007$$

$$W_1^0 = 0.685 \pm 0.007$$

- \rightarrow flat universe ($\Omega_k^0 \sim 0$)
- Primordial abundances:

$$\Omega_b^0 = 0.046 \pm 0.001$$
 (with h=0.7)

BACK UP SLIDES

Particular case: photon propagation

t_F emission

$$d\theta, d\varphi = 0$$
: $ds^2 = 0 \Rightarrow \frac{d\chi}{dt} = \frac{c}{a(t)}$

$$\chi_{\mathcal{E}} = \int_{t_{\varepsilon}}^{t_{o}} \frac{cdt}{a(t)} = \int_{t_{\varepsilon} + \lambda_{\varepsilon}/c}^{t_{o} + \lambda_{o}/c} \frac{cdt}{a(t)} = \int_{t_{\varepsilon} + \lambda_{\varepsilon}/c}^{t_{\varepsilon}} \frac{cdt}{a(t)} + \int_{t_{\varepsilon}}^{t_{o}} \frac{cdt}{a(t)} + \int_{t_{o}}^{t_{o} + \lambda_{o}/c} \frac{cdt}{a(t)} = \int_{t_{\varepsilon}}^{t_{o}} \frac{cdt}{a(t)} + \frac{\lambda_{o}}{a_{o}} - \frac{\lambda_{\varepsilon}}{a_{\varepsilon}}$$

$$\frac{\lambda_0}{\lambda_{emitted}} = 1 + z = \frac{a_0}{a(t_{emission})}$$
 light from distant sources is redshifted

to observation today

4. Dark matter

Observational evidence

- Rotation curves of spiral galaxies (1959..)
- Colliding clusters (2006)

dark matter (baryonic or new particles) or modified Newtonian dynamics?

still an open question!

Search for non-baryonic dark matter

Direct search: detect nuclear recoil in cryogenic detectors $10GeV < m_{\gamma} < 1TeV$

Indirect search: gravitational capture and co-annihilation

$$\chi\chi \to \gamma\gamma$$
 γ —ray astronomy $100 \text{GeV} < m_\chi < 10 \text{TeV}$ $\chi\chi \to v+X$ v telescopes $100 \text{GeV} < m_\gamma < 3 \text{TeV}$

 Complementary to exotic particle searches at the LHC $(100 \text{GeV} < \text{m}_{\gamma} < 3 \text{TeV})$

No undisputed signal so far, stay tuned! 41

- Les objets de z les plus grands ?
- Horizon, temps de Hubble, distance de Hubble
- Lien redshift/âge de l'Univers/distance

t_{max} world line timelike locations future ight spacelike locations event horizon past light cone particle horizon

Horizon

- Two seperate events can be causally connected provided |d|/dt|<c: past/future light cones
- particle horizon: largest comoving spatial distance from which a signal could have reached us at to
- event horizon at tmax: most distant event today that will come in causal contact with us at t_{max}