超高エネルギー宇宙線の 質量組成異方性探索に必要な統計量の見積もり

信州大学修士1年

齊藤亮介

<目次>

- これまでの研究
- 研究背景と目的
- ・ 本研究の手法(シミュレーションと評価)
- 超銀河面解析
- HotSpot解析

超高エネルギー宇宙線の到来方向毎の質量組成解析

結果今ある実データでは領域毎の組成に有意と言える差は見れなかった

TA実験11年間のデータにより測定された E>57eVの宇宙線のHotSpot

R.U. Abbasi+2014, ApJL

Energy distribution of observed shower event

Xmax異方性が見つかるまでに必要な統計量を見積もる

エネルギー

 これまで行われた実験によりHotSpotや超銀河面 付近に異方性の兆候が見つかっている

質量組成

- 空気シャワーの最大発達深さ(Xmax)を用いて推定
- 現行の実験では統計量が不足しているため、
 Xmaxの異方性は見つかっていない
 →どのくらい貯めれば何がわかるのか

シミュレーションを用いて

エネルギー、粒子種ごとにXmaxのデータベースを作成する

エネルギースペクトル、混合比を仮定する

SHINSHUエネルギースペクトルと組成の混合比の仮定

- ・ 粒子の混合比
 - バックグラウンドの組成比 proton : iron = 7:3
 - ▶ 7:3はTA実験のXmax分布を仮定したもの
 - On-sourceの過剰分は proton

On-source組成の計算		proton:iron	proton:iron
proton $p_p \frac{N(off)}{N(on)} + \frac{N(on) - N(off)}{N(on)}$ iron N(on): On-sourceのイベント数 $p_i \frac{N(off)}{N(on)}$ N(off): Off-sourceのイベント数 p_i : ironの割合 n: protonの割合	10 ^{19.7} ~10 ^{19.8} eV	7:3	7.7 : 2.3
	10 ^{19.8} ~10 ^{19.9} eV	7:3	8.5 : 1.5
	10 ^{19.9} ~10 ^{20.0} eV	7:3	8.3 : 1.7
	仮定に従って	ランダムにイベ	ントを取得する

空気シャワー勉強会

On-source

Off-source

SHINSHUエネルギースペクトルと組成の混合比の仮定

- ・ 粒子の混合比
 - バックグラウンドの組成比 proton : iron = 7:3
 - ▶ 7:3はTA実験のXmax分布を仮定したもの
 - On-sourceの過剰分は proton

On-source組成の計算		proton:iron	proton:iron
proton $p_p \frac{N(off)}{N(on)} + \frac{N(on) - N(off)}{N(on)}$ iron $N(on)$: On-sourceのイベント数 $p_i \frac{N(off)}{N(on)}$ $N(off)$: Off-sourceのイベント数 p_i : ironの割合 p_i : protonの割合	10 ^{19.7} ~10 ^{19.8} eV	7:3	7.7 : 2.3
	$10^{19.8} \sim 10^{19.9} eV$	7:3	<mark>8.5</mark> : 1.5
	10 ^{19.9} ~10 ^{20.0} eV	7:3	<mark>8.3</mark> : 1.7
	仮定に従って	ランダムにイベ	ントを取得する

On-source

Off-source

Ś SHINSHU On-sourceとOff-sourceのXmax分布の比較

SHINSHU 2領域のXmax分布が有意に分かれるイベント数 SHINSHU 2領域のXmax分布が有意に分かれるイベント数 SHINSHU 2 目前の S

2領域における統計量とXnexx分布の有意差の関係が得られた

エネルギー、粒子種ごとにXmaxのデータベースを作成する

エネルギースペクトル、混合比を仮定する

SHINSHUエネルギースペクトルと組成の混合比の仮定

実際の到来数	期待される到来数	過剰分の到来数
19	4.49	14.41
	Background	HotSpot
	割合	割合
10 ^{19.7} ~10 ^{19.8} eV	0.65	0.65
$10^{19.8} \sim 10^{19.9} eV$	0.26	0.26
10 ^{19.9} ~10 ^{20.0} eV	0.09	0.09

Valerio Verzi1,*, Dmitri Ivanov2,*, and Yoshiki Tsunesada PTEP 2017, 12A103

	•	組成の混合比 (HotSpot過剰分	は <mark>proton</mark>)
(Mpc ⁻³ dex ⁻¹]	10 ⁵⁴		$ Total$ $ A = 1$ $ 2 \le A \le 4$ $ 2 \le A \le 22$ $ 23 \le A \le 23$ $ 33 \le A \le 56$
density [erg	10 ⁵³		
Energy	10 ⁵¹	10 ¹⁹ <i>E</i> [eV]	10 ²⁰

Auger , PHYSICAL REVIEW LETTERS 125, 121106 (2020)

proton	Si	
N(on)-N(off)	N(off)	p_i , Feの割合
N(on)	$p_{si} \frac{1}{N(on)}$	p _{cno} : CNOの割合
CNO	iron	p _{si} : Siの割合
$n \frac{N(off)}{n}$	N(off)	N(on): 実際のイベント数
Pcno N(on)	$p_i \overline{N(on)}$	N(off):期待されるイベント数

	Background	HotSpot
	proton : CNO : Si : iron	proton : CNO : Si : iron
10 ^{19.7} ~10 ^{19.8} eV	0.0 : 4.4 : 4.4 : 1.2	7.6 : 1.1 : 1.1 : 0.2
10 ^{19.8} ~10 ^{19.9} eV	<mark>0.0</mark> : 2.6 : 5.4 : 2.0	7.6 : 0.6 : 1.3 : 0.5
10 ^{19.9} ~10 ^{20.0} eV	0.0:1.6:5.2:3.2	7.6 : 0.4 : 1.2 : 0.8

仮定に従ってランダムにイベントを取得しXmax分布を比較

- 現行の実験では統計量不足のためXmax異方性が見つかっていない
- これまでの実験により得られた様々なパラメータを用い、
 シミュレーションを行いXmax異方性が見つかるまでの統計量を見積もった
- TAサイトで観測した場合のイベント期待値は
 - 超銀河面 約1500イベント(粒子種はproton, iron)
 - HotSpot 約 160イベント(粒子種はproton,iron,CNO,Si)
 - ▶ 10TA-SD換算で約1年強でXmax分布が有意に分かれる

今後の展望

• 様々な仮定に対して本解析を行い、次世代実験の規模を見積もる

Back Up

Xmax:宇宙線空気シャワーの最大発達深さ 宇宙線の質量組成に強く依存する

大気蛍光望遠鏡(FD)では、大気蛍光の光量を 測定することによって空気シャワーにおける 縦方向の発達を観測することができる

空気シャワー勉強会

2022/3/22

生成した粒子種 Proton,iron,CNO,Si

SHINSHU HotSpot解析(Iron:proton = 3:7)

2022/3/22

- 合成確率密度分布 : f 1. ironとprotonからなる合成確率密度分布fを求める 実データのイベント数:N
- fをN倍したものと、実データに対してKStestを行う 2.
- 3. 1~2をiron:proton = 1:0 → iron:proton = 0:1まで混合比を0.01ずつ変化させ、 pvlaueを計算
- 4. 全てのエネルギーに対して行う

合成確率密度分布 f = iraito + praito

iron proton

95%の優位度

2022/3/22

空気シャワー勉強会

18

K-S(コルモゴロフ=スミルノフ)検定

2つの標本についてそれぞれの母集団の確率分布が一致しているのかどう かのノンパラメトリック検定

仮説 標本X x₁, x₂, ・・・x_n 標本Y y₁, y₂, ・・・y_m がある時、標本Xと標本Yが同一の確率分布から生成されている

累積確率分布の差の最大を求める $D = \max |Sn(x) - Sm(x)|$

n、m、Dの値を用いて以下を計算

n = 標本Xのデータ数m = 標本Yのデータ数 $S_n(x) = 標本Xの累積確率分布$ $S_m(x) = 標本Yの累積確率分布$

Kの値からpvalueを求める (Kの値が1.36 → pvalueが0.05)

2021年の論文にOn-sourceとOff-sourceのexposure ratio について記載されていた

2. Experiment and analysis

The Telescope Array(TA) experiment [2] is a hybrid detector which observe cosmic rays have energy $E > 10^{18}$ eV using fluorescence telescopes and surface detector. The surface detector of TA consists of 507 scintillation counters deployed in 1.2km covering about 700 km². [1]. The energies of observed cosmic ray are calibrated against fluorescence detectors viewing the sky above the surface detector array. The TA surface detector started observation in 2008. Observation efficiency exceeded 95% for every year of operation since the start. Now the accumulated exposure for UHECR is the largest in the northern hemisphere In this analysis, cosmic ray events with energies $E > 10^{19.0}$ eV observed in the period May 2008 to May 2020 are included in a search for anisotropy in cosmic ray energy spectrum. For this analysis, the reconstruction resolution is about 20% for energy and about 2° for arrival direction [2, 6]. From Monte Carlo simulation, we find the detection efficiency to reach 100% for events above $E > 10^{19}$ eV for the shower zenith angle $< 55^{\circ}$. The zenith angle distribution of observed shower at zenith angle $< 55^{\circ}$ is plotted in Fig 1. In this analysis, we divide the sky covered by our exposure into just 2 parts. One is the area which contain nearby objects. Another is the area which does not contain close objects. In this paper, we note the former area as "On source" sky. another area as "Off source" sky. We performed analysis defining On and Off source area as follow. First the Super Galactic Plane (SGP) is a plane contains nearby galaxies of our Local Group [4]. Here we divide the TA exposure equally between the "on source" band with in $\pm 30^{\circ}$ about and "Off source" area outside that region. The fraction of TA exposure for each area is 52% and 48%. The zenith angle distribution for observing the On source and Off source area are plotted together in Fig.2. These distributions show no significant difference and indicate that that the two sets of events cover similar local angles on the ground.

In Fig.3 and Fig.4 compare the energy distributions of observed air shower events from these On and Off source areas. The shape of distributions are evaluated by a likelihood fit to piece-wise

2

52% : 48%

上記の確率でイベントを取得する

- T.Nonaka ICRC 2021

Anisotropy search in the Ultra High Energy Cosmic Ray Spectrum in the Northern Hemisphere using latest data obtained with Telescope Array surface detector

2022/3/22

空気シャワー勉強会

各エネルギーでの組成比は過去に求めた表の値を採用する ▶ 10^{19.7}以降のOn-sourceはprotonを増やした時の値

$= 0^{\circ} $ On source (SGP lat $\leq 30^{\circ} $) $= 0^{\circ} $ Off source (SGP lat $\geq 30^{\circ} $)
Log ₁₀ (E/EeV)
i:ironの比 p:protonの比
i 19.7: 1019.7以降でのironの比
p ^{19 7} : 10 ^{19 7} 以降でのprotonの比
N(om):オンソースのイベント数
N(off):オフソースのイベント数
N(off):オフソースのイベント数 iron
$N(off): オフソースのイベント数ironi\frac{N(off)}{197} + i^{197}\frac{N(on)-N(off)}{197}$

$i \frac{N(Off)}{N(on)}$	+	$i^{19.7} \frac{N(0N) - N(0JJ)}{N(0N)}$
proton		
$p \frac{N(off)}{N(om)}$	+	$p 19.7 \frac{N(on) - N(off)}{N(on)}$
N(OR)		N(OR)

各エネルギーでの組成比

	On-source	Off-source
	iron:proton	iron:proton
$10^{19.0} \sim 10^{19.1} eV$	3:7	3:7
10 ^{19.1} ~10 ^{19.2} eV	3:7	3:7
$10^{19.2} \sim 10^{19.3} eV$	3:7	3:7
$10^{19.3}$ ~ $10^{19.4}$ eV	3:7	3:7
10 ^{19.4} ~10 ^{19.5} eV	3:7	3:7
$10^{19.5}$ ~ $10^{19.6}$ eV	3:7	3:7
10 ^{19.6} ~10 ^{19.7} eV	3:7	3:7
10 ^{19.7} ~10 ^{19.8} eV	2.3 : 7.7	3:7
$10^{19.8} \sim 10^{19.9} eV$	1.5 : 8.5	3:7
10 ^{19.9} ~10 ^{20.0} eV	1.7 : 8.3	3:7

陽子度

宇宙線の質量組成が陽子、鉄のどちら寄りの重さなのかを表したパラメータ 陽子度が高い→組成が<mark>陽子に近い</mark> 陽子度が低い→組成が鉄に近い

茶色く囲まれた領域の陽子度が高くなるのは不自然

茶色く囲まれた領域の陽子度が高くなるのは不自然

茶色く囲まれた領域は正しく評価できていないため今回は陽子度を0として扱う

陽子度
宇宙線の質量組成が陽子、鉄のどちら寄りの重さなのかを表したパラメータ
陽子度が高い→組成が陽子に近い
陽子度が低い→組成が鉄に近い

実データのXmaxとエネルギーから陽子度を判定

実データの陽子度を判定した後、 天球を2領域に分割し、各領域に到来した宇宙線の陽子度を比較

到来した宇宙線を赤い領域とそれ以外の領域で分類

領域別に陽子度を比較

 $10^{19.0} \text{ eV} < \text{E} < 10^{20.0} \text{ eV}$

空気シャワー勉強会

$10^{19.0} \text{ eV} < \text{E} < 10^{20.0} \text{ eV}$

