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Introduction

• The double focalizing spectrometer at EPFL [1,2]
is a small, hemispherical magnet used for the in-
vestigation of the emission spectra of charged par-
ticles from radioactive sources.

• The device is principally used for the study of elec-
trons and positrons emitted as a result of beta
decay (electron and positron) and electron con-
version.

Technical description

• The device has been laid out with a source holder
on the left side, spaced 30 cm from the entrance
of the magnetic field.

• The emitted particles are deflected by the mag-
netic field with a reference radius of 18 cm and
are detected by a thin silicon detector with a di-
ameter of 1 cm, operated at 40V, placed in the
focal point of the magnetic field.

• All active components are mounted in a vacuum
vessel to avoid scattering and energy loss in air.

• To further improve the energy resolution, collima-
tors have been included in the design, allowing for
horizontal and vertical collimation at the source
and horizontal collimation near the detector.

• The current set in the magnet coils generates the
magnetic field, focusing only particles in a narrow
momentum range to the detector. The B-field and
selected momentum scale linearly (Lorentz force).

• Charged particles deposit their energy in the de-
tector, for particles of reasonably low kinetic en-
ergy (below 1 MeV) all or a substantial fraction
deposit their full energy in the detector.

• The signals pass through two stages of amplifica-
tion and are digitized by a National Instruments
PCI-6115 DAQ card with LabView.

Sources
• Sources for the device are specially prepared. A

0.5 µm Mylar foil is glued on a plexiglas support,
and coated with graphite. This allows it to re-
move charge buildup through the long steel rod
it will be mounted on. A drop containing the ra-
dioactive solution is deposited in the center of the
foil and dried.

• Two groups of sources are used. The first emits
electrons of discrete energy, so-called conversion
electrons, for transitions where photon emission is
forbidden or hindered by angular momentum se-
lection rules. These are used for calibration of the
device. The second group undergoes beta decay
leading to a continous electron energy spectrum.

• The sources available from the first group include
e.g. Cd-109, Ba-133, Bi-207. The second group
includes e.g. Na-22, Co-60, Sr-90/Y-90, Tl-204.
Cs-137 belongs to both groups since Cs-137 emits
a beta spectrum while the populated isomeric
level in the Ba-137 daughter nucleus decays sub-
sequently by emission of conversion electrons .

• Recently a source of Tm-171 was made available,
for which the spectrum has not yet been experi-
mentally established in literature.

Energy calibration
• Calibration of the device was performed using a

long measurement of a Ba-133 source. Scanning
the magnet in steps of current and recording the
amplitude spectrum for each step allows for the
isolation of individual peaks, which then give a
direct detector calibration.

0 0.05 0.1 0.15 0.2 0.25 0.3
Signal amplitude (V)

0

50

100

150

200

250

300

350

400

P
os

iti
on

 o
f I

C
 p

ea
k 

(k
eV

)

• The red line indicates a linear fit to the data.
When comparing the found amplitude values in-
put into the fit, all energy peaks are located
within ±1 keV kinetic energy in the range shown.

Efficiency calculation
• The B-field is measured for each current step us-

ing the full energy deposition peak. With the cal-
ibration of energy to amplitude known, the effi-
ciency of the device is derived using a Sr-90/Y-90
source for which the kinetic energy spectrum is
well known (calculated using BetaShape [4]).
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• The background is subtracted by taking a sepa-
rate run without a source, and subtracting the
resulting amplitude spectrum from the measure-
ment to be analysed. At low energies (below
30 keV of so) the detector efficiency drops be-
cause the signal merges into the detector noise.
Then, for some distance the efficiency increases
close to linearly, as the selected (fractional) en-
ergy window increases linearly with the B-field.
The efficiency finally starts dropping when parti-
cles punch through the detector and don’t always
deposit their full energy.

Tm-171 measurement
• Using all of the above calibrations, a measure-

ment was made of the kinetic energy spectrum
of electrons emitted by a 50 kBq Tm-171 source
prepared at PSI. Tm-171 had been produced by
irradiation of enriched Er-170 in the V4 high-flux
position of the ILL reactor in Grenoble. The pro-
duced short-lived Er-171 decays to Tm-171 that
was radiochemically separated at PSI, leading to
non-carrier-added Tm-171 [5].

• The expected continuous beta curve was calcu-
lated with BetaShape, and is shown here together
with the data. The difference between the two
is also calculated, clearly showing two (expected)
internal conversion peaks.
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• A fit to the two internal conversion peaks gives
56.4±0.3 keV and 65.1±0.4 keV, comparing favourably
to the expected values of 56.2-57.8 keV and 64.3-
65.2 keV.
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