

The LHCb magnetic field map

Procedure and updates

Track reconstruction at LHCb

- Charge, momentum and direction of particles from collisions can be reconstructed using
	- Tracking stations
	- A magnetic field to bend the particle tracks
	- Reconstruction algorithm(s)
- At LHCb, obtain relative momentum $\frac{1}{300}$ resolution of $0.5 - 1\%$
- Need precise knowledge of the magnetic field for reconstruction and simulation

The LHCb magnet

- ◆ Warm dipole magnet with water cooling
- Two 25-ton coils with 5.8kA current in a 1450-ton steel yoke
- ◆ Sloping poles: magnet "opens"
- \triangleleft Maximal field density > 1 T
- Integrated field density (bending power): ~4 Tm
- ◆ Field map from LHC Run 1 was updated for Run 2
- This work: further improvements for the Run 3 map

How to make a field map

- \triangleleft Want: field values B_x, B_y, B_z on a 10cm spaced cubic grid
- Can measure field components with Hall probes, but cannot cover all grid points
- Non-trivial coil and yoke geometry necessitate sophisticated simulation
- Solve Maxwell's equations using finite element modelling with OPERA \bigstar (TOSCA)
- Use input from field measurements too!
- Adapt simulation model
	- To more closely resemble the real detector
	- For better matching of the field with measured values

Field measurements in situ

- Measurements made by the CERN group
- ◆ 37 * 3 Hall probes mounted on bar in x-direction: $x \in [-1m, 1m]$
- ◆ 29 positions in z: $z \in [2.5m, 6.02m]$
- \div 3 5 steps in y ∈ [-0.5m, 0.5m]
- Positive and negative polarity (coil current reversed \rightarrow field reversed)
- ◆ Survey of target positions in situ $+$ detailed measurements of bar in $lab_{\frac{1}{2}+\frac{1}{2}}$ = precise location of each sensor at each point, rotation of bar

Data-driven corrections to measured field values

- ◆ Hall sensors can be rotated slightly with respect to each other
- **←** Field in measurement region is mostly vertical: B_y \gg B_x , *B*z
- A rotated sensor would pick up systematically more of B_y with its B_x probe than its neighbour
- \div Fit smooth field progression in B_x and B_z along the bar of sensors
- \rightarrow Deviation from smoothness is linear with B_y for each probe
- Apply first-order correction:

 $B_x^{\text{corr}} = B_x^{\text{meas}} - c_x B_y^{\text{meas}}$ $B_z^{\text{corr}} = B_z^{\text{meas}} - c_z B_y^{\text{meas}}$ $B_y^{\text{corr}} = B_y^{\text{meas}} + c_x B_x^{\text{meas}} + c_z B_z^{\text{meas}}$

Thanks to Natalia Feliks for important contributions to these studies

Marie Bachmayer SPS Annual meeting 2022 29. 06. 22

6

Adapting the model

Smoothing of field values

- Fluctuations in simulated field values due to macroscopic size of FEM cells
	- Use interpolation from 5cm cube around each map grid point to \bigstar even out these fluctuations
	- Interpolation done with 2nd order polynomials that are compliant \bigstar with Maxwell's equations
- \rightarrow Fields in materials (in iron yoke) should not be used for interpolation of the fields in air
	- For map grid points near material boundaries and in material, extrapolate from points that are fully in air

|B| at y = -1.5m, z=6m

Conclusion

- The magnetic field map of the LHCb dipole has been updated
- Developed correction procedure for the rotation of the Hall probes w.r.t. each other
- More realistic detector model used in simulation
- ◆ Simulation no longer assumes symmetry of detector
- Magnet moved in simulation based on fit to field measurements
- Extrapolation from air for more accurate field values near material boundaries
- Next step: validation of new map, incl. momentum (invariant mass) resolution

The second contract of the

Backup - B field map details

- ◆ Grid of 10cm x 10cm x 10cm of Bx, By, Bz values
- One map per quadrant from $(x,y,z) = (0, 0, -0.5m)$ to $(4m, 4m,$ 14m)
- \div 4 maps à 41 x 41 x 146 points
- \triangleleft Same maps (*-1) for MagUp and MagDown
- In simulation/reconstruction: linear interpolation of field components from surrounding points

Backup - data-driven corrections

Marie Bachmayer SPS Annual meeting 2022 29. 06. 22

 -0.0005

Backup - data-driven corrections (2)

MagUp mean(Z) = 4.17, mean(Y) = 0.65

Backup - Maxwell-compliant interpolation

- ◆ Formalism developed by Pierre Billoir
- \triangleleft Use cubic grid: values (B_x, B_y, B_z) at evenly spaced nodes
- Interpolate values within each cube from the field values on the ✦ cube corners
- Approximate *B* fields as second-degree polynomials in the coordinates (x, y, z): $B_x(X, Y, Z) = B_x^0 + B_x^x X + B_x^y Y + B_x^z Z + B_x^{xx} X^2 + B_x^{yy} Y^2 + B_x^{zz} Z^2 + B_x^{xy} XY + B_x^{xz} XZ + B_x^{yz} YZ$
- Polynomial coefficients over-constrained by Maxwell's equations in vacuum and the field values on the corners

$$
\nabla \cdot B = 0 \qquad \nabla \times B = 0
$$

Marie Bachmayer SPS Annual meeting 2022 29. 06. 22

13

Backup - extrapolation / smoothing

Avoiding unphysical field values from cube vertices in material $y = -1.5$, $z = 6.0$

