

Search for long-lived Heavy Neutrinos in B decays

Anne-Mazarine Lyon

ETH Zürich

 SPS Annual Meeting 2022

 $28^{\rm th}$ June 2022

Motivation

• Flavour oscillation of Standard Model (SM) neutrinos

Motivation

• Flavour oscillation of Standard Model (SM) neutrinos

Motivation

Motivation

• Flavour oscillation of Standard Model (SM) neutrinos

- How to generate the SM neutrinos mass?
 - A possible mechanism is the Seesaw Mechanism
 - Introduction of Heavy Neutrinos (HNs)

$\nu MSM [1]$

- Mechanism for baryogenesis
- Masses of Heavy Neutrinos below the EW scale $(\mathcal{O}(100 \text{GeV}))$
- Sterile particles: do not couple to the SM gauge bosons

- Search for long-lived Heavy Neutrinos in B meson decays with CMS
 - Abundant source of SM neutrinos
 - ▶ Daughters of B meson less boosted than those of $W \Rightarrow$ better acceptance

- Search for long-lived Heavy Neutrinos in B meson decays with CMS
 - Abundant source of SM neutrinos
 - ▶ Daughters of B meson less boosted than those of $W \Rightarrow$ better acceptance

- One of the four experiments at CERN-LHC
 - Proton-proton collisions, $\sqrt{s} = 13$ TeV
- General-purpose detector

Transverse slice of the CMS detector

• General-purpose detector

- One of the four experiments at CERN-LHC
 - Proton-proton collisions, $\sqrt{s} = 13$ TeV

- Motivation
- Experimental overview

\mathbf{CMS}

- Dataset
- Strateg
- Reconstruction
- Preselection
- Categorisation
- Selection
- Background
- Sensitivity
- Summary
- Backup

Transverse slice of the CMS detector

• General-purpose detector

- One of the four experiments at CERN-LHC
 - Proton-proton collisions, $\sqrt{s} = 13$ TeV

Kev:

- Motivation
- Experimental overview

\mathbf{CMS}

Charged Hadron (e.g. Pion) - Neutral Hadron (e.g. Neutron) - Photon 1m

Transverse slice of the CMS detector

- One of the four experiments at CERN-LHC
 - Proton-proton collisions, $\sqrt{s} = 13$ TeV
- General-purpose detector

CMS

Transverse slice of the CMS detector

CMS BParking dataset

• Large dataset of $B\bar{B}$ pairs

Data collected in 2018
 \$\mathcal{O}(10^{10})\$ B\mathbf{B}\$ events

- Motivation
- Experimental overview
- CMS
- Dataset
- Strategy
- Reconstruction
- Preselection
- Categorisation
- Selection
- Background
- Sensitivity
- .
- Summary
- Backup

- Total luminosity of 41.6 fb^{-1}
- \bullet Set of triggers designed to capture the signatures of a B meson decay \Box
 - ▶ Single muon trigger
 - Low transverse momentum (p_T) requirement (from 7 GeV on)
 - Large transverse impact parameter significance

CMS BParking dataset

• Large dataset of $B\bar{B}$ pairs

Single muon trigger

Data collected in 2018
 \$\mathcal{O}\$(10^{10}) B\mathcal{B}\$ events

Total luminosity of 41.6 fb⁻¹

- Motivation
- Experimenta overview
- CMS
- Dataset
- Strategy
- Reconstruction
- Preselection
- Categorisation
- Selection
- Background
- Sensitivity
- a
- Summary
- Backup

• Set of triggers designed to capture the signatures of a B meson decay

- Low transverse momentum (p_T) requirement (from 7 GeV on)
- Large transverse impact parameter significance

\Rightarrow Unprecedented possibility to study B-physics with CMS

• Search for long-lived HNs, produced in B meson decays

Restrict the search to HNs decaying within the tracker volume $(l_{xyz} < 1 \text{ m})$ • Inclusive B meson decay $l = \mu, e$ $B \rightarrow \mu \nu_R$ μ $B \rightarrow D^0 \mu \nu_B$ $B^0 \rightarrow \pi \nu_R$ HN Strategy $B_{\circ} \rightarrow K \mu \nu_B$ W W ν_{μ} νı π Х B meson • Inclusive B decay offers a better sensitivity

Backup

• Search for **long-lived** HNs, produced in B meson decays

Restrict the search to HNs decaying within the tracker volume $(l_{xyz} < 1 m)$

Motivation

 $\mu\pi$ invariant mass

background

• Search for **long-lived** HNs, produced in B meson decays

Restrict the search to HNs decaying within the tracker volume $(l_{xyz} < 1 m)$

Motivation

- Inclusive B decay offers a better sensitivity
- Perform a **bump hunt** in the HN mass spectrum
- At least one muon fires a BParking trigger line

• Search for **long-lived** HNs, produced in B meson decays

Restrict the search to HNs decaying within the tracker volume $(l_{xyz} < 1 m)$

Motivation

Experimental overview CMS Dataset Strategy Reconstructio

Preselection Categorisat: Selection Background

- Sensitivity
- Summary
- ____

- Inclusive B decay offers a better sensitivity
- Perform a **bump hunt** in the HN mass spectrum
- At least one muon fires a BParking trigger line
- Interpret against mixed flavour scenarios Anne-Mazarine Lyon

 $[\]mu\pi$ invariant mass

Reconstruction

• Categorise the phase space to enhance the sensitivity on different signal hypotheses

Motivation

Experimenta overview

CMS

Dataset

Enhance sensitivity on signal with different lifetimes

Handle to further reduce the background at large displacement

reselection

Categorisation

Selection
Background
Sensitivity
Summary
Backup

• Categorise the phase space to enhance the sensitivity on different signal hypotheses

Experimental Categorise in displacement

Categorisation

- Enhance sensitivity on signal with different lifetimes
- Handle to further reduce the background at large displacement
- 2) Categorise in relative lepton sign
 - Enhance discrimination between Dirac and Majorana HNs
 - Dirac neutrinos: lepton number violation forbidden

• Categorise the phase space to enhance the sensitivity on different signal hypotheses

Experimental Vienview 1) Categorise in displacement

Categorisation

- Enhance sensitivity on signal with different lifetimes
- Handle to further reduce the background at large displacement
- 2) Categorise in relative lepton sign
 - Enhance discrimination between Dirac and Majorana HNs
 - Dirac neutrinos: lepton number violation forbidden
 - Majorana neutrinos: lepton number violation allowed

• Categorise the phase space to enhance the sensitivity on different signal hypotheses

Experimental Vienview 1) Categorise in displacement

• Handle to further reduce the

different lifetimes

• Enhance sensitivity on signal with

background at large displacement

Categorisation

2) Categorise in relative lepton sign

- Enhance discrimination between Dirac and Majorana HNs
 - Dirac neutrinos: lepton number violation forbidden
 - Majorana neutrinos: lepton number violation allowed

\Rightarrow 6 categories in total

Selection

Selection

Selection

- Selection cutflow optimised
 - In each category
 - In three different mass regimes
 - Based on the significance gain

- overview
- CMS

 $\bullet\,$ Median of the significance $\mathcal S$ computed in the asymptotic approximation

with S and B the number of signal and background events respectively

$$S = \sqrt{2\left((S+B)\ln\left(1+\frac{S}{B}\right) - S\right)}$$

Reconstruction

Preselection

Categorisation

Selection

Background

Sensitivity

Summary

Backup

Discriminating quantities

- \blacktriangleright pion p_T
- SV displacement significance (lxysig)
- min of the muon and pion transverse impact parameter significance (dxysig)
- difference of the $\cos(\Theta_{\text{back-pointing}})$ with 1

Background

	• The background mostly comes from QCD processes
Motivation Experimental overview	 Partially reconstructed B-decays Combinatorial background
CMS	• Known SM resonances in the mass spectra are vetoed
Dataset	
Strategy	
Reconstruction	
Preselection	
Categorisation	
Selection	
Background	
Sensitivity	
Summary	
Backup	

Background

Background

- The background mostly comes from QCD processes
 - Partially reconstructed B-decays
 - Combinatorial background
- Known SM resonances in the mass spectra are vetoed

- $\ ^{\circ}$ \bullet Background estimated from a fit to the data
 - Functional form of the background unknown
 - Can vary in the different mass windows and categories
 - How to assign the systematic uncertainty on the choice of the function?

Background

Background

- The background mostly comes from QCD processes
 - Partially reconstructed B-decays
 - Combinatorial background
- Known SM resonances in the mass spectra are vetoed

- Background estimated from a fit to the data
 - Functional form of the background unknown
 - Can vary in the different mass windows and categories
 - How to assign the systematic uncertainty on the choice of the function?

- Use the discrete profiling method
 - Consider a set of functions that provide a good description of the background
 - ▶ Treat the choice of the function as a discrete nuisance parameter (profiled)

Sensitivity

• Perform a bump hunt in the $\mu\pi$ invariant mass spectrum

Build the signal model, and normalise it

• In each window, in each category

Sensitivity

Sensitivity

• Perform a bump hunt in the $\mu\pi$ invariant mass spectrum

Sensitivity

• In each window, in each category

Summary

Motivation

- Experimental overview
- CMS
- Dataset
- Strategy
- Reconstruction
- Preselection
- Categorisation
- Selection
- Backgroun
- Sensitivity
- Summary
- Backup

- First search for long-lived Heavy Neutrinos from B decays with CMS
- \bullet Possible thanks to the ${\rm B}\bar{\rm B}$ dataset collected in 2018
- Search designed to offer the best sensitivity
 - Inclusive B decay
 - Bump hunt in the HN mass spectrum
 - Categorisation of the phase space
- Interpretation against mixed-flavour coupling scenarios
 - Results soon to be public
 - Competitive sensitivity

Motivation	
Experimental overview	
CMS	L L
Dataset	Васкир
Strategy	
Reconstruction	
Preselection	
Categorisation	
Selection	
Background	
Sensitivity	
Summary	
Backup	

Backup

• Discrete profiling method

Backup

• Background sources

Backup

• Reconstruction efficiency

Motivation

Experimenta

CMS

Dataset

Strategy

Reconstruction

Preselection

Categorisation

Selection

Background

Consitivity

~

Backup

CMS Work in progress

