

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Update on the angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ decays at LHCb

Zhenzi Wang

Annual Meeting of the Swiss Physical Society

June 28, 2022

Université de Fribourg

Motivation

• Rare decays of *b*-hadrons are flavour changing neutral current decays that only occur at loop level in the Standard Model (SM) — sensitive to NP

• Tension with the SM in e.g. P'_5 of $B^0 \to K^{*0}\mu^+\mu^- - NP$ (LFU?) or QCD effects?

 \longrightarrow $B^0 \rightarrow K^{*0}e^+e^-$ can help!

Zhenzi Wang

Analysis overview

• Distribution of the final state particles of $B^0 \to K^{*0}e^+e^-$ can be described by three angles, $\cos\theta_K$, $\cos\theta_\ell$ and ϕ , and $q^2 = m_{ee}^2$

> $\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2\bar{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K - F_L\cos^2\theta_K\cos^2\theta_K \cos^2\theta_K \Big]$ $+S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi$ $+S_5\sin 2\theta_K\sin \theta_\ell\cos\phi + \frac{4}{3}A_{FB}\sin^2\theta_K\cos\theta_\ell$ $+S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi$ B^0 $+S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin^2 \phi$ K^{*0} also e.g. $P'_5 = \frac{S_5}{\sqrt{F_I(1 - F_I)}}$ [JHEP, 05 (2013) 137] **Complications**: acceptance + resolution, backgrounds, statistics

 θ_ℓ

 e^{-}

June 28, 2022

Analysis strategy

- Full Run 1 and Run 2 data
- Use q^2 calculated with B^0 PV and mass constraint (q_c^2)
- Measure in two bins of q_c²
 1.1-6.0 GeV²/c⁴
 1.1-7.0 GeV²/c⁴ [feasible with q_c²]
- Measure: $S_i, P_i^{(\prime)}, \Delta S_i = S_i^{\mu} S_i^{e}, \Delta P_i^{(\prime)} = P_i^{(\prime)\mu} P_i^{(\prime)e}$
- Use $B^0 \to K^{*0} J/\psi (\to e^+ e^-)$ as control mode

Zhenzi Wang

Effective acceptance

- Differential decay rate pdf does not describe angular distribution in data due to: FSR, acceptance and resolution effects
- If simulation (MC) can be trusted, then function that encodes the effective correction can be obtained via

$$\epsilon_{\rm eff} = MC_{\rm post-sel}/MC_{\rm gen}$$

• Parametrisation of ϵ_{eff} made in 4d without factorisation using Legendre polynomials and Fourier terms (Fourier more suitable for ϕ due to its periodic nature)

$$\epsilon_{\text{eff}}(\cos\theta_{\ell},\cos\theta_{K}\phi,q_{c}^{2}) = \sum_{klmn} c_{klmn} L_{k}(\cos\theta_{\ell}) L_{l}(\cos\theta_{K}) F_{m}(\phi) L_{n}(q_{c}^{2})$$

Acceptance example

Effective acceptance function obtained from $B^0 \rightarrow K^{*0}e^+e^-$ simulation: lacksquare

6

Zhenzi Wang

Background components

- Backgrounds modelled in the fit:
 - Partially reconstructed, e.g. $B \to (K_1/K_2 \to (K^{*0} \to K^+\pi^-)\pi) e^+e^-$
 - Double semi-leptonic (DSL), e.g. $B^0 \to D^-(\to K^{*0}e^-\bar{\nu}_e) e^+\nu_e$
 - Combinatorial

7

Partially reconstructed background

- Hadronic system difficult to model from simulation
- Use $B^+ \to K_1^+ (\to K^+ \pi^+ \pi^-) e^+ e^-$ simulation generated flat in $m(K^\pm \pi^\mp \pi^\pm)$ reweighed to resemble background subtracted data from $B^+ \to K^+ \pi^+ \pi^- (J/\psi \to \mu^+ \mu^-)$
- KDE for mass modelling; Chebyshev polynomials up to 2nd order used for angles

DSL and combinatorial

- Reconstruction of e.g. $B^0 \to D^-(\to K^{*0}e^-\bar{\nu}_e) e^+\nu_e$ as signal
- Challenging to simulate due to presence of multiple modes and partly combinatorial contributions use data-driven approach
- Extract models for DSL (effective) and combinatorial using LFV $K^+\pi^-e^+\mu^-$ sample
 - Step 1: obtain DSL angular model
 - Step 2: fix DSL angular shape from Step 1, obtain slope of DSL mass distribution as well as combinatorial slope and angular parameters

Realistic pseudoexperiments

- Generate toys for sensitivity studies including effective acceptance
- Use component yields obtained from simplified data fit ($N_{sig} = O(600)$)
- Fit in reduced phase-space region

Example toy fit

• $B^0 \to K^{*0} \mu^+ \mu^- \sigma_{\text{stat+syst}}^{P'_5 \mu} = 0.07 \text{ (Run } 1 + 2016) \text{ [PRL } 125 \text{ (2020) } 011802\text{]}$

Control mode validation

- Check angular fit strategy using control mode of $B^0 \to K^{*0}(\to K^+\pi^-)J/\psi(\to e^+e^-)$
- Compare against observable values of $B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-)$
- Main source of systematic uncertainty: simulation correction strategy

Zhenzi Wang

11

Summary and status

- Angular analysis of $B^0 \to K^{*0}(\to K^+\pi^-)e^+e^-$ decays can help clarify the nature of the anomalies in $b \to s\mu^+\mu^-$ (e.g. $B^0 \to K^{*0}\mu^+\mu^-$)
- Added more data since last presentation (2021), now use full Run 1 and Run 2 statistics $(N_{\text{sig}} = \mathcal{O}(600))$
- Analysis under collaboration review performed many checks, but more to go...
- Pending: systematic uncertainties, cross-checks
- Old timeline (2021) too optimistic currently aiming for publication next year

Backup

Acceptance simulation choice

The parametrisation is made in 4d without factorisation using Legendre and Fourier terms:

$$\epsilon_{\text{eff}}(\cos\theta_{\ell},\cos\theta_{K}\phi,q_{c}^{2}) = \sum_{klmn} c_{klmn} L_{k}(\cos\theta_{\ell}) L_{l}(\cos\theta_{K}) F_{m}(\phi) L_{n}(q_{c}^{2})$$

- Use effective 'acceptance' function: parametrise acceptance + FSR + resolution together
- Cost of approach: dependent on underlying physics of the simulation Uniform ('FLATQ2') MC != physics MC 0

Zhenzi Wang

Pathological acceptance weights

• The parametrisation of ϵ_{eff} from physics MC with underpopulated regions, and the application of ϵ_{eff} to small samples can lead to pathological behaviour, e.g.

• Affected region well defined — cut of: $|\cos\theta_{\ell}| < 0.9 \& \cos\theta_{K} < 0.9$ significantly reduces instances of negative/large weights

Zhenzi Wang

Х

Acceptance strategy revision

Revision of nominal acceptance choice

- Low efficiency regions are typically located near the edges of $\cos\theta_{\ell}$ and $\cos\theta_{K} = 1$
- Simple cut of: $|\cos\theta_{\ell}| < 0.9 \& \cos\theta_{K} < 0.9$ significantly reduces instances of negative/large weights and lead to FLATQ2-like behaviour in pseudoexperiment studies

	Sensitivity	Pull mean	Pull width		Sensitivity	Pull mean	Pull width
F_L	0.0418 ± 0.0011	-0.30 ± 0.04	1.041 ± 0.028	F_L	0.0389 ± 0.0011	-0.17 ± 0.04	1.000 ± 0.028
P_1	0.289 ± 0.008	$0.07 \hspace{0.2cm} \pm 0.04 \hspace{0.2cm}$	1.007 ± 0.027	P_1	0.291 ± 0.008	$0.08 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04 \hspace{0.2cm}$	1.002 ± 0.028
P'_4	0.1348 ± 0.0035	$0.02 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04 \hspace{0.2cm}$	$1.010\ \pm 0.027$	P'_4	0.136 ± 0.004	$0.01 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$	1.002 ± 0.028
P_5'	0.1202 ± 0.0028	0.11 ± 0.04	1.027 ± 0.028	P'_5	0.1223 ± 0.0034	$0.04 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$	1.044 ± 0.029
P_2	0.0935 ± 0.0025	0.15 ± 0.04	1.048 ± 0.028	P_2	0.1006 ± 0.0028	$0.01 \hspace{0.1in} \pm 0.04$	1.028 ± 0.028
P_6'	0.1173 ± 0.0032	-0.01 ± 0.04	1.006 ± 0.027	P_6'	0.1184 ± 0.0033	-0.00 ± 0.04	1.011 ± 0.028
P'_8	0.141 ± 0.004	0.01 ± 0.04	$1.028\ \pm 0.028$	P'_8	0.138 ± 0.004	$0.02 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$	0.988 ± 0.027
P_3	0.143 ± 0.004	-0.03 ± 0.04	1.002 ± 0.027	P_3	0.145 ± 0.004	-0.04 ± 0.04	1.007 ± 0.028

Zhenzi Wang

Updated sensitivity studies

• Updated pseudoexperiments are produced with the updated PHYS acceptances and the following yields:

Component	Run 1	Run 2p1	Run 2p2
Signal	114	170	342
Combinatorial	75	53	104
Partially reconstructed	23	35	24
DSL	94	141	164

• Around 1000 pesudoexperiments are fitted with the cut of $|\cos\theta_{\ell}| < 0.9 \& \cos\theta_{K} < 0.9$:

	$1.1 < q_c^2 < 7.0, \text{SM}$				$1.1 < q_c^2 < 6.0, \text{SM}$			
	Sensitivity	Pull mean	Pull width		Sensitivity	Pull mean	Pull width	
F_L	0.0403 ± 0.0009	-0.163 ± 0.032	1.027 ± 0.023	F_L	0.0453 ± 0.0010	-0.148 ± 0.033	1.021 ± 0.023	
S_3	0.0376 ± 0.0008	0.036 ± 0.032	1.031 ± 0.023	S_3	0.0424 ± 0.0010	0.028 ± 0.033	1.046 ± 0.024	
S_4	0.0589 ± 0.0013	0.017 ± 0.032	1.017 ± 0.022	S_4	0.0681 ± 0.0016	-0.019 ± 0.033	1.035 ± 0.024	
S_5	0.0499 ± 0.0011	0.015 ± 0.032	1.039 ± 0.023	S_5	0.0559 ± 0.0013	0.018 ± 0.033	1.032 ± 0.024	
A_{FB}	0.0379 ± 0.0008	0.071 ± 0.032	1.017 ± 0.022	A_{FB}	0.0427 ± 0.0010	0.052 ± 0.033	1.021 ± 0.023	
S_7	0.0509 ± 0.0011	-0.027 ± 0.031	1.003 ± 0.022	S_7	0.0588 ± 0.0013	-0.043 ± 0.033	1.034 ± 0.024	
S_8	0.0602 ± 0.0013	0.015 ± 0.031	0.993 ± 0.022	S_8	0.0690 ± 0.0016	0.012 ± 0.033	1.011 ± 0.023	
S_9	0.0378 ± 0.0008	0.002 ± 0.032	1.025 ± 0.023	S_9	0.0418 ± 0.0010	-0.008 ± 0.033	1.031 ± 0.024	
F_L	0.0404 ± 0.0009	-0.156 ± 0.032	1.035 ± 0.022	F_L	0.0458 ± 0.0010	-0.152 ± 0.033	1.049 ± 0.023	
P_1	0.295 ± 0.006	0.031 ± 0.031	1.021 ± 0.022	P_1	0.380 ± 0.008	0.022 ± 0.032	1.013 ± 0.023	
P'_4	0.1354 ± 0.0029	0.024 ± 0.031	1.001 ± 0.022	P'_4	0.164 ± 0.004	0.008 ± 0.033	1.011 ± 0.023	
P_5'	0.1206 ± 0.0026	0.060 ± 0.031	1.033 ± 0.022	P_5'	0.1436 ± 0.0032	0.057 ± 0.032	1.022 ± 0.023	
P_2	0.1024 ± 0.0022	0.046 ± 0.031	1.022 ± 0.022	P_2	0.1334 ± 0.0030	0.052 ± 0.032	0.999 ± 0.022	
P'_6	0.1178 ± 0.0025	-0.020 ± 0.031	1.005 ± 0.022	P'_6	0.1410 ± 0.0031	-0.042 ± 0.032	1.020 ± 0.023	
P'_8	0.1400 ± 0.0030	0.014 ± 0.030	0.995 ± 0.021	P'_8	0.167 ± 0.004	0.009 ± 0.032	1.000 ± 0.022	
P_3	0.1478 ± 0.0032	-0.003 ± 0.031	1.010 ± 0.022	P_3	0.187 ± 0.004	$ -0.002 \pm 0.032 $	1.000 ± 0.022	

Zhenzi Wang

Х

Likelihood scans

• Performed likelihood scans in 1d for five SM pseudoexperiments by repeating the fit with the value of a given observable fixed to a range of values about the best-fit result:

Toy behaviour

- Investigated possible causes of F_L , A_{FB} toy biases
- F_L , A_{FB} bias may be due to physical boundary of signal pdf, but in this case signal-only toys do not show the same effect

- Instead they seem to be related to signal-background separation, and likely depends on the background shape
- Plan to take into account as systematic uncertainty (rather than corrections)

Zhenzi Wang

Х

Control mode fit updates

- 2017-2018 data added, fit made with/without phase-space cut
- Compare against observable values of $B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-)$ [LHCb-ANA-2017-055]
- Main source of systematic uncertainty: simulation correction strategy

