Neutrino physics at the LHC

Elena Graverini, with material from the SND@LHC and FASER ν collaborations

École Polytechnique Fédérale, Lausanne

SPS annual meeting 2022

Fribourg, June 28, 2022

Neutrino physics at the LHC

- 2× compact, complementary detectors on either side of the ATLAS interaction point
 - FASER ν on axis: $\eta > 8.8$
 - **SND@LHC** off axis: $7.2 < \eta < 8.4$
 - aim: collect 290 fb⁻¹ luminosity in Run 3
 - expect $\mathcal{O}(10000)$ interacting neutrinos (all flavours)
- LHC neutrinos range from 10² GeV to TeV
 - unexplored area
 - first detection of collider TeV neutrinos
 - relatively large interaction cross-section
 - measure $pp \rightarrow \nu X$ cross-sections

Physics with neutrinos

- forward neutrinos are mainly produced in hadron decays
- measurements will provide novel input to validate/improve generators
- first data on forward charm, hyperon, kaon

Neutrino physics at LHC energies

- probe charm quark production with ν_e . Relevant for:
 - **future colliders:** FCC-*hh* will probe same *x* at larger angles
 - cosmic ray physics:
 - energy scale corresponds to VHE atmospheric neutrinos, main BG for astrophysical neutrinos
 - charm production leading production mechanism for VHE atmospheric neutrinos

The FASER ν concept

- in front of the main FASER detector:
 - interface silicon tracker
 - emulsion/tungsten target
 - veto plane
- distinguish all flavours by topology
- muon identification: track length (8 λ)
- muon charge identification
- neutrino energy measured by ANN with topological and kinematical variables

25x30 cm², 1.1 m long, 1.1 tons

detector (220X_o)

Scattering and Neutrino Detector at the LHC

- 480 m from IP1, in the TI18 tunnel; slightly off-axis: $7.2 < \eta < 8.4$
- approved by CERN Research Board one year ago, now installed and taking data
- SND@LHC collaboration: 180 members from 23 institutes in 13 countries and CERN

...focus of next talk (E. Zaffaroni) too :)

- hybrid, standalone detector
- optimised for the identification of the three neutrino species
- ...and the detection of scattering FIPs

...focus of next talk (E. Zaffaroni) too :)

Veto

- upstream veto: two planes of scintillating bars
 - tag and discard events with incoming muons

...focus of next talk (E. Zaffaroni) too :)

Target region: vertexing, τ ID, energy measurement (ECAL)

- emulsion cloud chambers (ECC): interleaved tungsten plates / emulsions
 - vertexing, τ identification
- scintillating fiber planes (SciFi): timing / position

...focus of next talk (E. Zaffaroni) too :)

Downstream region

- muon system: timing, muon ID, energy measurement (HCAL)
 - interleaved plastic scintillator bars / iron planes
 - sampling every λ

Installation "summary"

September 2021

March 2022

Two-phase event reconstruction

Online, using electronic detectors

- identify scattering candidate (neutrino or FIP)
- identify muon candidates (downstream muon planes), EM shower (SciFi)
- measure neutrino energy (SciFi + muon, hit counting or machine learning techniques)

Offline, with nuclear emulsions

[J. Phys. G: Nucl. Part. Phys. 46 115008]

- develop & scan films extracted in quick access after \sim 25 fb⁻¹exposure (\sim 3 months)
- reconstruct ν interaction vertex, τ candidates
- match showers with events recorded by electronics detectors

9/18

Simulation & expected neutrino flux

Flavour	Neutrinos in acceptance	CC neutrino ir ⟨E⟩ [GeV]	nteractions Yield	NC neutrino ir ⟨E⟩ [GeV]	nteractions Yield
ν_{μ}	3.4×10^{12}	450	1028	480	310
$\bar{\nu}_{\mu}$	3.0×10^{12}	480	419	480	157
ν_e	4.0×10^{11}	760	292	720	88
$\bar{\nu}_e$	4.4×10^{11}	680	158	720	58
ν_{τ}	2.8×10^{10}	740	23	740	8
$\bar{\nu}_{\mathcal{T}}$	3.1×10^{10}	740	11	740	5
all	7.3×10^{12}		1930		625

- ν production in pp collisions at LHC simulated with FLUKA + DPMJET-3
 - full description of all machine elements from IP1 to TI18
- $\nu_{ au}$ production with PYTHIA8
- ν interactions in detector: GENIE
- detector response: GEANT4

Flavour identification

- ν_{μ} ID efficiency ~77% driven by acceptance and occupancy (μ in donwstream Muon planes)
- ν_e identified by presence of EM shower in the ECC brick (99% efficiency)
- ν_{τ} ID relies on topological criteria (secondary vertex), \sim 50% efficient

Energy measurement

- SND@LHC is a non-homogeneous sampling calorimeter
- overall energy resolution \sim 20-30%
- response modelled with linear regression, ML alternative under construction

- 90% of $\nu_e + \bar{\nu}_e$ produced in charm decays
 - $\implies \nu_e + \bar{\nu}_e$ flux gives insight on heavy-quark production
- Measure $\sigma (pp \rightarrow \nu_e X)$ (~15% uncertainty)
 - obtain energy response from simulation
 - unfold spectrum of observed events
 - assume SM cross-sections for CC interactions
- Derive charmed hadron yield (\sim 5% stat, \sim 35% syst.)
 - statistical subtraction of ν_e component from kaon decays (\sim 20% syst.)
 - acceptance effect: exploit angular correlation between ν_e and parent charm

Neutrino physics: QCD

- measurement of the charmed hadrons can be translated into measurement of the corresponding open charm production
 - angular correlation between charmed hadron and parent charm
- charm production at LHC dominated by gluon-gluon scattering
- average lowest momentum fraction accessible at SND@LHC $\sim 10^{-6}$
 - here, gluon PDF completely unknown, theory work ongoing on resummation
- constrain PDF with SND@LHC data
 - taking ratio of cross-sections at different energies/rapidities reduces scale uncertainty [JHEP 11 (2015) 009]
 - use LHCb measurement in $\eta < 4.5, \sqrt{s} = 7,13$ TeVs

[Nucl. Phys. B871 (2013) 1-20] [JHEP 03 (2016) 159]

Neutrino physics: $e/\mu/\tau$ comparison

- ν_e and ν_τ only come from charm decays in SND@LHC
 - ratio $N_{\nu_e + \bar{\nu}_e}/N_{\nu_{\tau} + \bar{\nu}_{\tau}}$ depends only on decay branching ratios and charm fractions
 - sensitive to cross-section ratio of the two ν flavours: e- τ LFU in neutrino sector (unc. \sim 30%)
- ν_{μ} neutrinos contamination by π/K decays flat above 600 GeV
 - ratio $N_{\nu_e + \bar{\nu}_e}/N_{\nu_\mu + \bar{\nu}_\mu}$ for $E_\nu > 600$ GeV probes e- μ LFU (uncertainty \sim 15%) and is unaffected by charm fractions and branching ratio uncertainties

Scattering signatures and NP

- not main goal, but dense detector also ideally suited to detect feebly interacting particles
- e.g.: decay of mediators produced in collisions: $pp \to \mathcal{N} + X$, $\mathcal{N} \to \text{visible}$
- e.g.: light dark matter scattering, similar to NC neutrinos interactions: $\chi + N \rightarrow \chi + N$
 - consider $pp \to V + X$, $V \to \chi \chi$ where χ scatters on SND@LHC target
 - direct detection complementary to missing-energy approach (NA64)
- time-of-flight techniques ($\sigma_t = 200$ ps) sensitive to larger masses (~ 10 GeV for $E_{\chi} \sim 1$ TeV)
- opportunity for upgraded detector AdvSND operating in Run4+

Early measurements (2022)

- muon-induced background measurement with electronic detectors
 - muon rates and track topology
 - comparison with simulations
- study of neutrino interactions with electronic detectors only
- 3. response of nuclear emulsions
 - first result from emulsion scanning (5 days surface + 1 month cavern): $0.273 \mu \text{ min}^{-1} \text{ cm}^{-2}$
- **4.** 1/5 of target instrumented with emulsions to be extracted in July
 - evaluate background in the emulsion target
 - define/update the replacement frequency

Simulated muon passing through the muon system

Simulated muons reconstructed in the emulsion target

Summary and plans

- first look at LHC neutrinos
 - ν cross-sections at uncharted energies
 - probe charm production
 - SM tests in the neutrino sector
- SND@LHC installation: ✓

- long commissioning runs
 - optimization of detector settings
 - measure background
- see next talk for first data!

What's next?

- AdvSND envisaged for HL-LHC: far + near detector
- far detector similar to current experiment + muon spectrometer
 - replace nuclear emulsions (possible technologies are under study)
 - charm production measurement and neutrino sector LFU tests at 1% precision
 - possible FPF (Forward Physics Facility) user if space constraints solved

• near detector to overlap with LHCb pseudora

meant to reduce systematic uncertainties

perform cross section measurements

[hep-ph/2109.10905] [hep-ex/2203.05090]

Spare slides

 $^{19}/_{1}$

$$\frac{\sum_{i} \sigma_{NC}^{\nu_{i}} + \sigma_{NC}^{\bar{\nu}_{i}}}{\sum_{i} \sigma_{CC}^{\nu_{i}} + \sigma_{CC}^{\bar{\nu}_{i}}} = \frac{1}{2} \left\{ 1 - 2\sin^{2}\theta_{W} + \frac{20}{9}\sin^{4}\theta_{W} - \lambda \left(1 - 2\sin^{2}\theta_{W}\right)\sin^{2}\theta_{W} \right\}$$

- if dN/dE is the same for ν and $\bar{\nu}$, NC/CC cross section ratio equals ratio of observed events
- for deep inelastic scattering, it is a function of θ_W and of the properties of the target material
- can be measured with 10% precision and compared to SM predictions

